1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/interconnect.h> 13 #include <linux/pm_opp.h> 14 #include <linux/regulator/consumer.h> 15 16 #include "msm_drv.h" 17 #include "msm_fence.h" 18 #include "msm_ringbuffer.h" 19 #include "msm_gem.h" 20 21 struct msm_gem_submit; 22 struct msm_gpu_perfcntr; 23 struct msm_gpu_state; 24 25 struct msm_gpu_config { 26 const char *ioname; 27 unsigned int nr_rings; 28 }; 29 30 /* So far, with hardware that I've seen to date, we can have: 31 * + zero, one, or two z180 2d cores 32 * + a3xx or a2xx 3d core, which share a common CP (the firmware 33 * for the CP seems to implement some different PM4 packet types 34 * but the basics of cmdstream submission are the same) 35 * 36 * Which means that the eventual complete "class" hierarchy, once 37 * support for all past and present hw is in place, becomes: 38 * + msm_gpu 39 * + adreno_gpu 40 * + a3xx_gpu 41 * + a2xx_gpu 42 * + z180_gpu 43 */ 44 struct msm_gpu_funcs { 45 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 46 uint32_t param, uint64_t *value); 47 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t value); 49 int (*hw_init)(struct msm_gpu *gpu); 50 int (*pm_suspend)(struct msm_gpu *gpu); 51 int (*pm_resume)(struct msm_gpu *gpu); 52 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 53 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 54 irqreturn_t (*irq)(struct msm_gpu *irq); 55 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 56 void (*recover)(struct msm_gpu *gpu); 57 void (*destroy)(struct msm_gpu *gpu); 58 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 59 /* show GPU status in debugfs: */ 60 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 61 struct drm_printer *p); 62 /* for generation specific debugfs: */ 63 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 64 #endif 65 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 66 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 67 int (*gpu_state_put)(struct msm_gpu_state *state); 68 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 69 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 70 struct msm_gem_address_space *(*create_address_space) 71 (struct msm_gpu *gpu, struct platform_device *pdev); 72 struct msm_gem_address_space *(*create_private_address_space) 73 (struct msm_gpu *gpu); 74 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 75 }; 76 77 /* Additional state for iommu faults: */ 78 struct msm_gpu_fault_info { 79 u64 ttbr0; 80 unsigned long iova; 81 int flags; 82 const char *type; 83 const char *block; 84 }; 85 86 /** 87 * struct msm_gpu_devfreq - devfreq related state 88 */ 89 struct msm_gpu_devfreq { 90 /** devfreq: devfreq instance */ 91 struct devfreq *devfreq; 92 93 /** 94 * idle_constraint: 95 * 96 * A PM QoS constraint to limit max freq while the GPU is idle. 97 */ 98 struct dev_pm_qos_request idle_freq; 99 100 /** 101 * boost_constraint: 102 * 103 * A PM QoS constraint to boost min freq for a period of time 104 * until the boost expires. 105 */ 106 struct dev_pm_qos_request boost_freq; 107 108 /** 109 * busy_cycles: 110 * 111 * Used by implementation of gpu->gpu_busy() to track the last 112 * busy counter value, for calculating elapsed busy cycles since 113 * last sampling period. 114 */ 115 u64 busy_cycles; 116 117 /** time: Time of last sampling period. */ 118 ktime_t time; 119 120 /** idle_time: Time of last transition to idle: */ 121 ktime_t idle_time; 122 123 /** 124 * idle_work: 125 * 126 * Used to delay clamping to idle freq on active->idle transition. 127 */ 128 struct msm_hrtimer_work idle_work; 129 130 /** 131 * boost_work: 132 * 133 * Used to reset the boost_constraint after the boost period has 134 * elapsed 135 */ 136 struct msm_hrtimer_work boost_work; 137 }; 138 139 struct msm_gpu { 140 const char *name; 141 struct drm_device *dev; 142 struct platform_device *pdev; 143 const struct msm_gpu_funcs *funcs; 144 145 struct adreno_smmu_priv adreno_smmu; 146 147 /* performance counters (hw & sw): */ 148 spinlock_t perf_lock; 149 bool perfcntr_active; 150 struct { 151 bool active; 152 ktime_t time; 153 } last_sample; 154 uint32_t totaltime, activetime; /* sw counters */ 155 uint32_t last_cntrs[5]; /* hw counters */ 156 const struct msm_gpu_perfcntr *perfcntrs; 157 uint32_t num_perfcntrs; 158 159 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 160 int nr_rings; 161 162 /** 163 * sysprof_active: 164 * 165 * The count of contexts that have enabled system profiling. 166 */ 167 refcount_t sysprof_active; 168 169 /** 170 * cur_ctx_seqno: 171 * 172 * The ctx->seqno value of the last context to submit rendering, 173 * and the one with current pgtables installed (for generations 174 * that support per-context pgtables). Tracked by seqno rather 175 * than pointer value to avoid dangling pointers, and cases where 176 * a ctx can be freed and a new one created with the same address. 177 */ 178 int cur_ctx_seqno; 179 180 /* 181 * List of GEM active objects on this gpu. Protected by 182 * msm_drm_private::mm_lock 183 */ 184 struct list_head active_list; 185 186 /** 187 * lock: 188 * 189 * General lock for serializing all the gpu things. 190 * 191 * TODO move to per-ring locking where feasible (ie. submit/retire 192 * path, etc) 193 */ 194 struct mutex lock; 195 196 /** 197 * active_submits: 198 * 199 * The number of submitted but not yet retired submits, used to 200 * determine transitions between active and idle. 201 * 202 * Protected by active_lock 203 */ 204 int active_submits; 205 206 /** lock: protects active_submits and idle/active transitions */ 207 struct mutex active_lock; 208 209 /* does gpu need hw_init? */ 210 bool needs_hw_init; 211 212 /** 213 * global_faults: number of GPU hangs not attributed to a particular 214 * address space 215 */ 216 int global_faults; 217 218 void __iomem *mmio; 219 int irq; 220 221 struct msm_gem_address_space *aspace; 222 223 /* Power Control: */ 224 struct regulator *gpu_reg, *gpu_cx; 225 struct clk_bulk_data *grp_clks; 226 int nr_clocks; 227 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 228 uint32_t fast_rate; 229 230 /* Hang and Inactivity Detection: 231 */ 232 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 233 234 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 235 struct timer_list hangcheck_timer; 236 237 /* Fault info for most recent iova fault: */ 238 struct msm_gpu_fault_info fault_info; 239 240 /* work for handling GPU ioval faults: */ 241 struct kthread_work fault_work; 242 243 /* work for handling GPU recovery: */ 244 struct kthread_work recover_work; 245 246 /** retire_event: notified when submits are retired: */ 247 wait_queue_head_t retire_event; 248 249 /* work for handling active-list retiring: */ 250 struct kthread_work retire_work; 251 252 /* worker for retire/recover: */ 253 struct kthread_worker *worker; 254 255 struct drm_gem_object *memptrs_bo; 256 257 struct msm_gpu_devfreq devfreq; 258 259 uint32_t suspend_count; 260 261 struct msm_gpu_state *crashstate; 262 263 /* Enable clamping to idle freq when inactive: */ 264 bool clamp_to_idle; 265 266 /* True if the hardware supports expanded apriv (a650 and newer) */ 267 bool hw_apriv; 268 269 struct thermal_cooling_device *cooling; 270 }; 271 272 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 273 { 274 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 275 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 276 } 277 278 /* It turns out that all targets use the same ringbuffer size */ 279 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 280 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 281 282 #define MSM_GPU_RB_CNTL_DEFAULT \ 283 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 284 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 285 286 static inline bool msm_gpu_active(struct msm_gpu *gpu) 287 { 288 int i; 289 290 for (i = 0; i < gpu->nr_rings; i++) { 291 struct msm_ringbuffer *ring = gpu->rb[i]; 292 293 if (fence_after(ring->seqno, ring->memptrs->fence)) 294 return true; 295 } 296 297 return false; 298 } 299 300 /* Perf-Counters: 301 * The select_reg and select_val are just there for the benefit of the child 302 * class that actually enables the perf counter.. but msm_gpu base class 303 * will handle sampling/displaying the counters. 304 */ 305 306 struct msm_gpu_perfcntr { 307 uint32_t select_reg; 308 uint32_t sample_reg; 309 uint32_t select_val; 310 const char *name; 311 }; 312 313 /* 314 * The number of priority levels provided by drm gpu scheduler. The 315 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 316 * cases, so we don't use it (no need for kernel generated jobs). 317 */ 318 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 319 320 /** 321 * struct msm_file_private - per-drm_file context 322 * 323 * @queuelock: synchronizes access to submitqueues list 324 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 325 * @queueid: counter incremented each time a submitqueue is created, 326 * used to assign &msm_gpu_submitqueue.id 327 * @aspace: the per-process GPU address-space 328 * @ref: reference count 329 * @seqno: unique per process seqno 330 */ 331 struct msm_file_private { 332 rwlock_t queuelock; 333 struct list_head submitqueues; 334 int queueid; 335 struct msm_gem_address_space *aspace; 336 struct kref ref; 337 int seqno; 338 339 /** 340 * sysprof: 341 * 342 * The value of MSM_PARAM_SYSPROF set by userspace. This is 343 * intended to be used by system profiling tools like Mesa's 344 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 345 * 346 * Setting a value of 1 will preserve performance counters across 347 * context switches. Setting a value of 2 will in addition 348 * suppress suspend. (Performance counters lose state across 349 * power collapse, which is undesirable for profiling in some 350 * cases.) 351 * 352 * The value automatically reverts to zero when the drm device 353 * file is closed. 354 */ 355 int sysprof; 356 357 /** 358 * entities: 359 * 360 * Table of per-priority-level sched entities used by submitqueues 361 * associated with this &drm_file. Because some userspace apps 362 * make assumptions about rendering from multiple gl contexts 363 * (of the same priority) within the process happening in FIFO 364 * order without requiring any fencing beyond MakeCurrent(), we 365 * create at most one &drm_sched_entity per-process per-priority- 366 * level. 367 */ 368 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 369 }; 370 371 /** 372 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 373 * 374 * @gpu: the gpu instance 375 * @prio: the userspace priority level 376 * @ring_nr: [out] the ringbuffer the userspace priority maps to 377 * @sched_prio: [out] the gpu scheduler priority level which the userspace 378 * priority maps to 379 * 380 * With drm/scheduler providing it's own level of prioritization, our total 381 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 382 * Each ring is associated with it's own scheduler instance. However, our 383 * UABI is that lower numerical values are higher priority. So mapping the 384 * single userspace priority level into ring_nr and sched_prio takes some 385 * care. The userspace provided priority (when a submitqueue is created) 386 * is mapped to ring nr and scheduler priority as such: 387 * 388 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 389 * sched_prio = NR_SCHED_PRIORITIES - 390 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 391 * 392 * This allows generations without preemption (nr_rings==1) to have some 393 * amount of prioritization, and provides more priority levels for gens 394 * that do have preemption. 395 */ 396 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 397 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 398 { 399 unsigned rn, sp; 400 401 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 402 403 /* invert sched priority to map to higher-numeric-is-higher- 404 * priority convention 405 */ 406 sp = NR_SCHED_PRIORITIES - sp - 1; 407 408 if (rn >= gpu->nr_rings) 409 return -EINVAL; 410 411 *ring_nr = rn; 412 *sched_prio = sp; 413 414 return 0; 415 } 416 417 /** 418 * struct msm_gpu_submitqueues - Userspace created context. 419 * 420 * A submitqueue is associated with a gl context or vk queue (or equiv) 421 * in userspace. 422 * 423 * @id: userspace id for the submitqueue, unique within the drm_file 424 * @flags: userspace flags for the submitqueue, specified at creation 425 * (currently unusued) 426 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 427 * by the submitqueue's priority 428 * @faults: the number of GPU hangs associated with this submitqueue 429 * @last_fence: the sequence number of the last allocated fence (for error 430 * checking) 431 * @ctx: the per-drm_file context associated with the submitqueue (ie. 432 * which set of pgtables do submits jobs associated with the 433 * submitqueue use) 434 * @node: node in the context's list of submitqueues 435 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 436 * seqno, protected by submitqueue lock 437 * @lock: submitqueue lock 438 * @ref: reference count 439 * @entity: the submit job-queue 440 */ 441 struct msm_gpu_submitqueue { 442 int id; 443 u32 flags; 444 u32 ring_nr; 445 int faults; 446 uint32_t last_fence; 447 struct msm_file_private *ctx; 448 struct list_head node; 449 struct idr fence_idr; 450 struct mutex lock; 451 struct kref ref; 452 struct drm_sched_entity *entity; 453 }; 454 455 struct msm_gpu_state_bo { 456 u64 iova; 457 size_t size; 458 void *data; 459 bool encoded; 460 }; 461 462 struct msm_gpu_state { 463 struct kref ref; 464 struct timespec64 time; 465 466 struct { 467 u64 iova; 468 u32 fence; 469 u32 seqno; 470 u32 rptr; 471 u32 wptr; 472 void *data; 473 int data_size; 474 bool encoded; 475 } ring[MSM_GPU_MAX_RINGS]; 476 477 int nr_registers; 478 u32 *registers; 479 480 u32 rbbm_status; 481 482 char *comm; 483 char *cmd; 484 485 struct msm_gpu_fault_info fault_info; 486 487 int nr_bos; 488 struct msm_gpu_state_bo *bos; 489 }; 490 491 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 492 { 493 msm_writel(data, gpu->mmio + (reg << 2)); 494 } 495 496 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 497 { 498 return msm_readl(gpu->mmio + (reg << 2)); 499 } 500 501 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 502 { 503 msm_rmw(gpu->mmio + (reg << 2), mask, or); 504 } 505 506 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 507 { 508 u64 val; 509 510 /* 511 * Why not a readq here? Two reasons: 1) many of the LO registers are 512 * not quad word aligned and 2) the GPU hardware designers have a bit 513 * of a history of putting registers where they fit, especially in 514 * spins. The longer a GPU family goes the higher the chance that 515 * we'll get burned. We could do a series of validity checks if we 516 * wanted to, but really is a readq() that much better? Nah. 517 */ 518 519 /* 520 * For some lo/hi registers (like perfcounters), the hi value is latched 521 * when the lo is read, so make sure to read the lo first to trigger 522 * that 523 */ 524 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 525 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 526 527 return val; 528 } 529 530 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 531 { 532 /* Why not a writeq here? Read the screed above */ 533 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 534 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 535 } 536 537 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 538 int msm_gpu_pm_resume(struct msm_gpu *gpu); 539 540 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 541 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 542 u32 id); 543 int msm_submitqueue_create(struct drm_device *drm, 544 struct msm_file_private *ctx, 545 u32 prio, u32 flags, u32 *id); 546 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 547 struct drm_msm_submitqueue_query *args); 548 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 549 void msm_submitqueue_close(struct msm_file_private *ctx); 550 551 void msm_submitqueue_destroy(struct kref *kref); 552 553 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 554 struct msm_gpu *gpu, int sysprof); 555 void __msm_file_private_destroy(struct kref *kref); 556 557 static inline void msm_file_private_put(struct msm_file_private *ctx) 558 { 559 kref_put(&ctx->ref, __msm_file_private_destroy); 560 } 561 562 static inline struct msm_file_private *msm_file_private_get( 563 struct msm_file_private *ctx) 564 { 565 kref_get(&ctx->ref); 566 return ctx; 567 } 568 569 void msm_devfreq_init(struct msm_gpu *gpu); 570 void msm_devfreq_cleanup(struct msm_gpu *gpu); 571 void msm_devfreq_resume(struct msm_gpu *gpu); 572 void msm_devfreq_suspend(struct msm_gpu *gpu); 573 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 574 void msm_devfreq_active(struct msm_gpu *gpu); 575 void msm_devfreq_idle(struct msm_gpu *gpu); 576 577 int msm_gpu_hw_init(struct msm_gpu *gpu); 578 579 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 580 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 581 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 582 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 583 584 void msm_gpu_retire(struct msm_gpu *gpu); 585 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 586 587 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 588 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 589 const char *name, struct msm_gpu_config *config); 590 591 struct msm_gem_address_space * 592 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 593 594 void msm_gpu_cleanup(struct msm_gpu *gpu); 595 596 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 597 void __init adreno_register(void); 598 void __exit adreno_unregister(void); 599 600 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 601 { 602 if (queue) 603 kref_put(&queue->ref, msm_submitqueue_destroy); 604 } 605 606 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 607 { 608 struct msm_gpu_state *state = NULL; 609 610 mutex_lock(&gpu->lock); 611 612 if (gpu->crashstate) { 613 kref_get(&gpu->crashstate->ref); 614 state = gpu->crashstate; 615 } 616 617 mutex_unlock(&gpu->lock); 618 619 return state; 620 } 621 622 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 623 { 624 mutex_lock(&gpu->lock); 625 626 if (gpu->crashstate) { 627 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 628 gpu->crashstate = NULL; 629 } 630 631 mutex_unlock(&gpu->lock); 632 } 633 634 /* 635 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 636 * support expanded privileges 637 */ 638 #define check_apriv(gpu, flags) \ 639 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 640 641 642 #endif /* __MSM_GPU_H__ */ 643