xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision 91db9311945f01901ddb9813ce11364de214a156)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/clk.h>
11 #include <linux/interconnect.h>
12 #include <linux/regulator/consumer.h>
13 
14 #include "msm_drv.h"
15 #include "msm_fence.h"
16 #include "msm_ringbuffer.h"
17 
18 struct msm_gem_submit;
19 struct msm_gpu_perfcntr;
20 struct msm_gpu_state;
21 
22 struct msm_gpu_config {
23 	const char *ioname;
24 	uint64_t va_start;
25 	uint64_t va_end;
26 	unsigned int nr_rings;
27 };
28 
29 /* So far, with hardware that I've seen to date, we can have:
30  *  + zero, one, or two z180 2d cores
31  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
32  *    for the CP seems to implement some different PM4 packet types
33  *    but the basics of cmdstream submission are the same)
34  *
35  * Which means that the eventual complete "class" hierarchy, once
36  * support for all past and present hw is in place, becomes:
37  *  + msm_gpu
38  *    + adreno_gpu
39  *      + a3xx_gpu
40  *      + a2xx_gpu
41  *    + z180_gpu
42  */
43 struct msm_gpu_funcs {
44 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
45 	int (*hw_init)(struct msm_gpu *gpu);
46 	int (*pm_suspend)(struct msm_gpu *gpu);
47 	int (*pm_resume)(struct msm_gpu *gpu);
48 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
49 			struct msm_file_private *ctx);
50 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 	irqreturn_t (*irq)(struct msm_gpu *irq);
52 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 	void (*recover)(struct msm_gpu *gpu);
54 	void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 	/* show GPU status in debugfs: */
57 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 			struct drm_printer *p);
59 	/* for generation specific debugfs: */
60 	int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 	int (*gpu_state_put)(struct msm_gpu_state *state);
65 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 	void (*gpu_set_freq)(struct msm_gpu *gpu, unsigned long freq);
67 };
68 
69 struct msm_gpu {
70 	const char *name;
71 	struct drm_device *dev;
72 	struct platform_device *pdev;
73 	const struct msm_gpu_funcs *funcs;
74 
75 	/* performance counters (hw & sw): */
76 	spinlock_t perf_lock;
77 	bool perfcntr_active;
78 	struct {
79 		bool active;
80 		ktime_t time;
81 	} last_sample;
82 	uint32_t totaltime, activetime;    /* sw counters */
83 	uint32_t last_cntrs[5];            /* hw counters */
84 	const struct msm_gpu_perfcntr *perfcntrs;
85 	uint32_t num_perfcntrs;
86 
87 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
88 	int nr_rings;
89 
90 	/* list of GEM active objects: */
91 	struct list_head active_list;
92 
93 	/* does gpu need hw_init? */
94 	bool needs_hw_init;
95 
96 	/* number of GPU hangs (for all contexts) */
97 	int global_faults;
98 
99 	/* worker for handling active-list retiring: */
100 	struct work_struct retire_work;
101 
102 	void __iomem *mmio;
103 	int irq;
104 
105 	struct msm_gem_address_space *aspace;
106 
107 	/* Power Control: */
108 	struct regulator *gpu_reg, *gpu_cx;
109 	struct clk_bulk_data *grp_clks;
110 	int nr_clocks;
111 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
112 	uint32_t fast_rate;
113 
114 	struct icc_path *icc_path;
115 
116 	/* Hang and Inactivity Detection:
117 	 */
118 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
119 
120 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
121 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
122 	struct timer_list hangcheck_timer;
123 	struct work_struct recover_work;
124 
125 	struct drm_gem_object *memptrs_bo;
126 
127 	struct {
128 		struct devfreq *devfreq;
129 		u64 busy_cycles;
130 		ktime_t time;
131 	} devfreq;
132 
133 	struct msm_gpu_state *crashstate;
134 };
135 
136 /* It turns out that all targets use the same ringbuffer size */
137 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
138 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
139 
140 #define MSM_GPU_RB_CNTL_DEFAULT \
141 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
142 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
143 
144 static inline bool msm_gpu_active(struct msm_gpu *gpu)
145 {
146 	int i;
147 
148 	for (i = 0; i < gpu->nr_rings; i++) {
149 		struct msm_ringbuffer *ring = gpu->rb[i];
150 
151 		if (ring->seqno > ring->memptrs->fence)
152 			return true;
153 	}
154 
155 	return false;
156 }
157 
158 /* Perf-Counters:
159  * The select_reg and select_val are just there for the benefit of the child
160  * class that actually enables the perf counter..  but msm_gpu base class
161  * will handle sampling/displaying the counters.
162  */
163 
164 struct msm_gpu_perfcntr {
165 	uint32_t select_reg;
166 	uint32_t sample_reg;
167 	uint32_t select_val;
168 	const char *name;
169 };
170 
171 struct msm_gpu_submitqueue {
172 	int id;
173 	u32 flags;
174 	u32 prio;
175 	int faults;
176 	struct list_head node;
177 	struct kref ref;
178 };
179 
180 struct msm_gpu_state_bo {
181 	u64 iova;
182 	size_t size;
183 	void *data;
184 	bool encoded;
185 };
186 
187 struct msm_gpu_state {
188 	struct kref ref;
189 	struct timespec64 time;
190 
191 	struct {
192 		u64 iova;
193 		u32 fence;
194 		u32 seqno;
195 		u32 rptr;
196 		u32 wptr;
197 		void *data;
198 		int data_size;
199 		bool encoded;
200 	} ring[MSM_GPU_MAX_RINGS];
201 
202 	int nr_registers;
203 	u32 *registers;
204 
205 	u32 rbbm_status;
206 
207 	char *comm;
208 	char *cmd;
209 
210 	int nr_bos;
211 	struct msm_gpu_state_bo *bos;
212 };
213 
214 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
215 {
216 	msm_writel(data, gpu->mmio + (reg << 2));
217 }
218 
219 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
220 {
221 	return msm_readl(gpu->mmio + (reg << 2));
222 }
223 
224 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
225 {
226 	uint32_t val = gpu_read(gpu, reg);
227 
228 	val &= ~mask;
229 	gpu_write(gpu, reg, val | or);
230 }
231 
232 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
233 {
234 	u64 val;
235 
236 	/*
237 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
238 	 * not quad word aligned and 2) the GPU hardware designers have a bit
239 	 * of a history of putting registers where they fit, especially in
240 	 * spins. The longer a GPU family goes the higher the chance that
241 	 * we'll get burned.  We could do a series of validity checks if we
242 	 * wanted to, but really is a readq() that much better? Nah.
243 	 */
244 
245 	/*
246 	 * For some lo/hi registers (like perfcounters), the hi value is latched
247 	 * when the lo is read, so make sure to read the lo first to trigger
248 	 * that
249 	 */
250 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
251 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
252 
253 	return val;
254 }
255 
256 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
257 {
258 	/* Why not a writeq here? Read the screed above */
259 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
260 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
261 }
262 
263 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
264 int msm_gpu_pm_resume(struct msm_gpu *gpu);
265 void msm_gpu_resume_devfreq(struct msm_gpu *gpu);
266 
267 int msm_gpu_hw_init(struct msm_gpu *gpu);
268 
269 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
270 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
271 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
272 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
273 
274 void msm_gpu_retire(struct msm_gpu *gpu);
275 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
276 		struct msm_file_private *ctx);
277 
278 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
279 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
280 		const char *name, struct msm_gpu_config *config);
281 
282 void msm_gpu_cleanup(struct msm_gpu *gpu);
283 
284 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
285 void __init adreno_register(void);
286 void __exit adreno_unregister(void);
287 
288 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
289 {
290 	if (queue)
291 		kref_put(&queue->ref, msm_submitqueue_destroy);
292 }
293 
294 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
295 {
296 	struct msm_gpu_state *state = NULL;
297 
298 	mutex_lock(&gpu->dev->struct_mutex);
299 
300 	if (gpu->crashstate) {
301 		kref_get(&gpu->crashstate->ref);
302 		state = gpu->crashstate;
303 	}
304 
305 	mutex_unlock(&gpu->dev->struct_mutex);
306 
307 	return state;
308 }
309 
310 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
311 {
312 	mutex_lock(&gpu->dev->struct_mutex);
313 
314 	if (gpu->crashstate) {
315 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
316 			gpu->crashstate = NULL;
317 	}
318 
319 	mutex_unlock(&gpu->dev->struct_mutex);
320 }
321 
322 #endif /* __MSM_GPU_H__ */
323