1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/interconnect.h> 13 #include <linux/pm_opp.h> 14 #include <linux/regulator/consumer.h> 15 16 #include "msm_drv.h" 17 #include "msm_fence.h" 18 #include "msm_ringbuffer.h" 19 #include "msm_gem.h" 20 21 struct msm_gem_submit; 22 struct msm_gpu_perfcntr; 23 struct msm_gpu_state; 24 25 struct msm_gpu_config { 26 const char *ioname; 27 unsigned int nr_rings; 28 }; 29 30 /* So far, with hardware that I've seen to date, we can have: 31 * + zero, one, or two z180 2d cores 32 * + a3xx or a2xx 3d core, which share a common CP (the firmware 33 * for the CP seems to implement some different PM4 packet types 34 * but the basics of cmdstream submission are the same) 35 * 36 * Which means that the eventual complete "class" hierarchy, once 37 * support for all past and present hw is in place, becomes: 38 * + msm_gpu 39 * + adreno_gpu 40 * + a3xx_gpu 41 * + a2xx_gpu 42 * + z180_gpu 43 */ 44 struct msm_gpu_funcs { 45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 46 int (*hw_init)(struct msm_gpu *gpu); 47 int (*pm_suspend)(struct msm_gpu *gpu); 48 int (*pm_resume)(struct msm_gpu *gpu); 49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 51 irqreturn_t (*irq)(struct msm_gpu *irq); 52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 53 void (*recover)(struct msm_gpu *gpu); 54 void (*destroy)(struct msm_gpu *gpu); 55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 56 /* show GPU status in debugfs: */ 57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 58 struct drm_printer *p); 59 /* for generation specific debugfs: */ 60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 61 #endif 62 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 64 int (*gpu_state_put)(struct msm_gpu_state *state); 65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 67 struct msm_gem_address_space *(*create_address_space) 68 (struct msm_gpu *gpu, struct platform_device *pdev); 69 struct msm_gem_address_space *(*create_private_address_space) 70 (struct msm_gpu *gpu); 71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 72 }; 73 74 /* Additional state for iommu faults: */ 75 struct msm_gpu_fault_info { 76 u64 ttbr0; 77 unsigned long iova; 78 int flags; 79 const char *type; 80 const char *block; 81 }; 82 83 /** 84 * struct msm_gpu_devfreq - devfreq related state 85 */ 86 struct msm_gpu_devfreq { 87 /** devfreq: devfreq instance */ 88 struct devfreq *devfreq; 89 90 /** 91 * idle_constraint: 92 * 93 * A PM QoS constraint to limit max freq while the GPU is idle. 94 */ 95 struct dev_pm_qos_request idle_freq; 96 97 /** 98 * boost_constraint: 99 * 100 * A PM QoS constraint to boost min freq for a period of time 101 * until the boost expires. 102 */ 103 struct dev_pm_qos_request boost_freq; 104 105 /** 106 * busy_cycles: 107 * 108 * Used by implementation of gpu->gpu_busy() to track the last 109 * busy counter value, for calculating elapsed busy cycles since 110 * last sampling period. 111 */ 112 u64 busy_cycles; 113 114 /** time: Time of last sampling period. */ 115 ktime_t time; 116 117 /** idle_time: Time of last transition to idle: */ 118 ktime_t idle_time; 119 120 /** 121 * idle_work: 122 * 123 * Used to delay clamping to idle freq on active->idle transition. 124 */ 125 struct msm_hrtimer_work idle_work; 126 127 /** 128 * boost_work: 129 * 130 * Used to reset the boost_constraint after the boost period has 131 * elapsed 132 */ 133 struct msm_hrtimer_work boost_work; 134 }; 135 136 struct msm_gpu { 137 const char *name; 138 struct drm_device *dev; 139 struct platform_device *pdev; 140 const struct msm_gpu_funcs *funcs; 141 142 struct adreno_smmu_priv adreno_smmu; 143 144 /* performance counters (hw & sw): */ 145 spinlock_t perf_lock; 146 bool perfcntr_active; 147 struct { 148 bool active; 149 ktime_t time; 150 } last_sample; 151 uint32_t totaltime, activetime; /* sw counters */ 152 uint32_t last_cntrs[5]; /* hw counters */ 153 const struct msm_gpu_perfcntr *perfcntrs; 154 uint32_t num_perfcntrs; 155 156 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 157 int nr_rings; 158 159 /** 160 * cur_ctx_seqno: 161 * 162 * The ctx->seqno value of the last context to submit rendering, 163 * and the one with current pgtables installed (for generations 164 * that support per-context pgtables). Tracked by seqno rather 165 * than pointer value to avoid dangling pointers, and cases where 166 * a ctx can be freed and a new one created with the same address. 167 */ 168 int cur_ctx_seqno; 169 170 /* 171 * List of GEM active objects on this gpu. Protected by 172 * msm_drm_private::mm_lock 173 */ 174 struct list_head active_list; 175 176 /** 177 * lock: 178 * 179 * General lock for serializing all the gpu things. 180 * 181 * TODO move to per-ring locking where feasible (ie. submit/retire 182 * path, etc) 183 */ 184 struct mutex lock; 185 186 /** 187 * active_submits: 188 * 189 * The number of submitted but not yet retired submits, used to 190 * determine transitions between active and idle. 191 * 192 * Protected by active_lock 193 */ 194 int active_submits; 195 196 /** lock: protects active_submits and idle/active transitions */ 197 struct mutex active_lock; 198 199 /* does gpu need hw_init? */ 200 bool needs_hw_init; 201 202 /* number of GPU hangs (for all contexts) */ 203 int global_faults; 204 205 void __iomem *mmio; 206 int irq; 207 208 struct msm_gem_address_space *aspace; 209 210 /* Power Control: */ 211 struct regulator *gpu_reg, *gpu_cx; 212 struct clk_bulk_data *grp_clks; 213 int nr_clocks; 214 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 215 uint32_t fast_rate; 216 217 /* Hang and Inactivity Detection: 218 */ 219 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 220 221 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 222 struct timer_list hangcheck_timer; 223 224 /* Fault info for most recent iova fault: */ 225 struct msm_gpu_fault_info fault_info; 226 227 /* work for handling GPU ioval faults: */ 228 struct kthread_work fault_work; 229 230 /* work for handling GPU recovery: */ 231 struct kthread_work recover_work; 232 233 /* work for handling active-list retiring: */ 234 struct kthread_work retire_work; 235 236 /* worker for retire/recover: */ 237 struct kthread_worker *worker; 238 239 struct drm_gem_object *memptrs_bo; 240 241 struct msm_gpu_devfreq devfreq; 242 243 uint32_t suspend_count; 244 245 struct msm_gpu_state *crashstate; 246 247 /* Enable clamping to idle freq when inactive: */ 248 bool clamp_to_idle; 249 250 /* True if the hardware supports expanded apriv (a650 and newer) */ 251 bool hw_apriv; 252 253 struct thermal_cooling_device *cooling; 254 }; 255 256 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 257 { 258 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 259 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 260 } 261 262 /* It turns out that all targets use the same ringbuffer size */ 263 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 264 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 265 266 #define MSM_GPU_RB_CNTL_DEFAULT \ 267 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 268 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 269 270 static inline bool msm_gpu_active(struct msm_gpu *gpu) 271 { 272 int i; 273 274 for (i = 0; i < gpu->nr_rings; i++) { 275 struct msm_ringbuffer *ring = gpu->rb[i]; 276 277 if (fence_after(ring->seqno, ring->memptrs->fence)) 278 return true; 279 } 280 281 return false; 282 } 283 284 /* Perf-Counters: 285 * The select_reg and select_val are just there for the benefit of the child 286 * class that actually enables the perf counter.. but msm_gpu base class 287 * will handle sampling/displaying the counters. 288 */ 289 290 struct msm_gpu_perfcntr { 291 uint32_t select_reg; 292 uint32_t sample_reg; 293 uint32_t select_val; 294 const char *name; 295 }; 296 297 /* 298 * The number of priority levels provided by drm gpu scheduler. The 299 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 300 * cases, so we don't use it (no need for kernel generated jobs). 301 */ 302 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 303 304 /** 305 * struct msm_file_private - per-drm_file context 306 * 307 * @queuelock: synchronizes access to submitqueues list 308 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 309 * @queueid: counter incremented each time a submitqueue is created, 310 * used to assign &msm_gpu_submitqueue.id 311 * @aspace: the per-process GPU address-space 312 * @ref: reference count 313 * @seqno: unique per process seqno 314 */ 315 struct msm_file_private { 316 rwlock_t queuelock; 317 struct list_head submitqueues; 318 int queueid; 319 struct msm_gem_address_space *aspace; 320 struct kref ref; 321 int seqno; 322 323 /** 324 * entities: 325 * 326 * Table of per-priority-level sched entities used by submitqueues 327 * associated with this &drm_file. Because some userspace apps 328 * make assumptions about rendering from multiple gl contexts 329 * (of the same priority) within the process happening in FIFO 330 * order without requiring any fencing beyond MakeCurrent(), we 331 * create at most one &drm_sched_entity per-process per-priority- 332 * level. 333 */ 334 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 335 }; 336 337 /** 338 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 339 * 340 * @gpu: the gpu instance 341 * @prio: the userspace priority level 342 * @ring_nr: [out] the ringbuffer the userspace priority maps to 343 * @sched_prio: [out] the gpu scheduler priority level which the userspace 344 * priority maps to 345 * 346 * With drm/scheduler providing it's own level of prioritization, our total 347 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 348 * Each ring is associated with it's own scheduler instance. However, our 349 * UABI is that lower numerical values are higher priority. So mapping the 350 * single userspace priority level into ring_nr and sched_prio takes some 351 * care. The userspace provided priority (when a submitqueue is created) 352 * is mapped to ring nr and scheduler priority as such: 353 * 354 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 355 * sched_prio = NR_SCHED_PRIORITIES - 356 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 357 * 358 * This allows generations without preemption (nr_rings==1) to have some 359 * amount of prioritization, and provides more priority levels for gens 360 * that do have preemption. 361 */ 362 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 363 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 364 { 365 unsigned rn, sp; 366 367 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 368 369 /* invert sched priority to map to higher-numeric-is-higher- 370 * priority convention 371 */ 372 sp = NR_SCHED_PRIORITIES - sp - 1; 373 374 if (rn >= gpu->nr_rings) 375 return -EINVAL; 376 377 *ring_nr = rn; 378 *sched_prio = sp; 379 380 return 0; 381 } 382 383 /** 384 * struct msm_gpu_submitqueues - Userspace created context. 385 * 386 * A submitqueue is associated with a gl context or vk queue (or equiv) 387 * in userspace. 388 * 389 * @id: userspace id for the submitqueue, unique within the drm_file 390 * @flags: userspace flags for the submitqueue, specified at creation 391 * (currently unusued) 392 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 393 * by the submitqueue's priority 394 * @faults: the number of GPU hangs associated with this submitqueue 395 * @last_fence: the sequence number of the last allocated fence (for error 396 * checking) 397 * @ctx: the per-drm_file context associated with the submitqueue (ie. 398 * which set of pgtables do submits jobs associated with the 399 * submitqueue use) 400 * @node: node in the context's list of submitqueues 401 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 402 * seqno, protected by submitqueue lock 403 * @lock: submitqueue lock 404 * @ref: reference count 405 * @entity: the submit job-queue 406 */ 407 struct msm_gpu_submitqueue { 408 int id; 409 u32 flags; 410 u32 ring_nr; 411 int faults; 412 uint32_t last_fence; 413 struct msm_file_private *ctx; 414 struct list_head node; 415 struct idr fence_idr; 416 struct mutex lock; 417 struct kref ref; 418 struct drm_sched_entity *entity; 419 }; 420 421 struct msm_gpu_state_bo { 422 u64 iova; 423 size_t size; 424 void *data; 425 bool encoded; 426 }; 427 428 struct msm_gpu_state { 429 struct kref ref; 430 struct timespec64 time; 431 432 struct { 433 u64 iova; 434 u32 fence; 435 u32 seqno; 436 u32 rptr; 437 u32 wptr; 438 void *data; 439 int data_size; 440 bool encoded; 441 } ring[MSM_GPU_MAX_RINGS]; 442 443 int nr_registers; 444 u32 *registers; 445 446 u32 rbbm_status; 447 448 char *comm; 449 char *cmd; 450 451 struct msm_gpu_fault_info fault_info; 452 453 int nr_bos; 454 struct msm_gpu_state_bo *bos; 455 }; 456 457 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 458 { 459 msm_writel(data, gpu->mmio + (reg << 2)); 460 } 461 462 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 463 { 464 return msm_readl(gpu->mmio + (reg << 2)); 465 } 466 467 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 468 { 469 msm_rmw(gpu->mmio + (reg << 2), mask, or); 470 } 471 472 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 473 { 474 u64 val; 475 476 /* 477 * Why not a readq here? Two reasons: 1) many of the LO registers are 478 * not quad word aligned and 2) the GPU hardware designers have a bit 479 * of a history of putting registers where they fit, especially in 480 * spins. The longer a GPU family goes the higher the chance that 481 * we'll get burned. We could do a series of validity checks if we 482 * wanted to, but really is a readq() that much better? Nah. 483 */ 484 485 /* 486 * For some lo/hi registers (like perfcounters), the hi value is latched 487 * when the lo is read, so make sure to read the lo first to trigger 488 * that 489 */ 490 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 491 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 492 493 return val; 494 } 495 496 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 497 { 498 /* Why not a writeq here? Read the screed above */ 499 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 500 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 501 } 502 503 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 504 int msm_gpu_pm_resume(struct msm_gpu *gpu); 505 506 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 507 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 508 u32 id); 509 int msm_submitqueue_create(struct drm_device *drm, 510 struct msm_file_private *ctx, 511 u32 prio, u32 flags, u32 *id); 512 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 513 struct drm_msm_submitqueue_query *args); 514 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 515 void msm_submitqueue_close(struct msm_file_private *ctx); 516 517 void msm_submitqueue_destroy(struct kref *kref); 518 519 void __msm_file_private_destroy(struct kref *kref); 520 521 static inline void msm_file_private_put(struct msm_file_private *ctx) 522 { 523 kref_put(&ctx->ref, __msm_file_private_destroy); 524 } 525 526 static inline struct msm_file_private *msm_file_private_get( 527 struct msm_file_private *ctx) 528 { 529 kref_get(&ctx->ref); 530 return ctx; 531 } 532 533 void msm_devfreq_init(struct msm_gpu *gpu); 534 void msm_devfreq_cleanup(struct msm_gpu *gpu); 535 void msm_devfreq_resume(struct msm_gpu *gpu); 536 void msm_devfreq_suspend(struct msm_gpu *gpu); 537 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 538 void msm_devfreq_active(struct msm_gpu *gpu); 539 void msm_devfreq_idle(struct msm_gpu *gpu); 540 541 int msm_gpu_hw_init(struct msm_gpu *gpu); 542 543 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 544 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 545 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 546 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 547 548 void msm_gpu_retire(struct msm_gpu *gpu); 549 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 550 551 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 552 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 553 const char *name, struct msm_gpu_config *config); 554 555 struct msm_gem_address_space * 556 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 557 558 void msm_gpu_cleanup(struct msm_gpu *gpu); 559 560 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 561 void __init adreno_register(void); 562 void __exit adreno_unregister(void); 563 564 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 565 { 566 if (queue) 567 kref_put(&queue->ref, msm_submitqueue_destroy); 568 } 569 570 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 571 { 572 struct msm_gpu_state *state = NULL; 573 574 mutex_lock(&gpu->lock); 575 576 if (gpu->crashstate) { 577 kref_get(&gpu->crashstate->ref); 578 state = gpu->crashstate; 579 } 580 581 mutex_unlock(&gpu->lock); 582 583 return state; 584 } 585 586 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 587 { 588 mutex_lock(&gpu->lock); 589 590 if (gpu->crashstate) { 591 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 592 gpu->crashstate = NULL; 593 } 594 595 mutex_unlock(&gpu->lock); 596 } 597 598 /* 599 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 600 * support expanded privileges 601 */ 602 #define check_apriv(gpu, flags) \ 603 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 604 605 606 #endif /* __MSM_GPU_H__ */ 607