xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision 8e74a48d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15 
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20 
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24 
25 struct msm_gpu_config {
26 	const char *ioname;
27 	unsigned int nr_rings;
28 };
29 
30 /* So far, with hardware that I've seen to date, we can have:
31  *  + zero, one, or two z180 2d cores
32  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
33  *    for the CP seems to implement some different PM4 packet types
34  *    but the basics of cmdstream submission are the same)
35  *
36  * Which means that the eventual complete "class" hierarchy, once
37  * support for all past and present hw is in place, becomes:
38  *  + msm_gpu
39  *    + adreno_gpu
40  *      + a3xx_gpu
41  *      + a2xx_gpu
42  *    + z180_gpu
43  */
44 struct msm_gpu_funcs {
45 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 	int (*hw_init)(struct msm_gpu *gpu);
47 	int (*pm_suspend)(struct msm_gpu *gpu);
48 	int (*pm_resume)(struct msm_gpu *gpu);
49 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 	irqreturn_t (*irq)(struct msm_gpu *irq);
52 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 	void (*recover)(struct msm_gpu *gpu);
54 	void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 	/* show GPU status in debugfs: */
57 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 			struct drm_printer *p);
59 	/* for generation specific debugfs: */
60 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 	int (*gpu_state_put)(struct msm_gpu_state *state);
65 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 	struct msm_gem_address_space *(*create_address_space)
68 		(struct msm_gpu *gpu, struct platform_device *pdev);
69 	struct msm_gem_address_space *(*create_private_address_space)
70 		(struct msm_gpu *gpu);
71 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73 
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 	u64 ttbr0;
77 	unsigned long iova;
78 	int flags;
79 	const char *type;
80 	const char *block;
81 };
82 
83 /**
84  * struct msm_gpu_devfreq - devfreq related state
85  */
86 struct msm_gpu_devfreq {
87 	/** devfreq: devfreq instance */
88 	struct devfreq *devfreq;
89 
90 	/**
91 	 * idle_constraint:
92 	 *
93 	 * A PM QoS constraint to limit max freq while the GPU is idle.
94 	 */
95 	struct dev_pm_qos_request idle_freq;
96 
97 	/**
98 	 * boost_constraint:
99 	 *
100 	 * A PM QoS constraint to boost min freq for a period of time
101 	 * until the boost expires.
102 	 */
103 	struct dev_pm_qos_request boost_freq;
104 
105 	/**
106 	 * busy_cycles:
107 	 *
108 	 * Used by implementation of gpu->gpu_busy() to track the last
109 	 * busy counter value, for calculating elapsed busy cycles since
110 	 * last sampling period.
111 	 */
112 	u64 busy_cycles;
113 
114 	/** time: Time of last sampling period. */
115 	ktime_t time;
116 
117 	/** idle_time: Time of last transition to idle: */
118 	ktime_t idle_time;
119 
120 	/**
121 	 * idle_work:
122 	 *
123 	 * Used to delay clamping to idle freq on active->idle transition.
124 	 */
125 	struct msm_hrtimer_work idle_work;
126 
127 	/**
128 	 * boost_work:
129 	 *
130 	 * Used to reset the boost_constraint after the boost period has
131 	 * elapsed
132 	 */
133 	struct msm_hrtimer_work boost_work;
134 };
135 
136 struct msm_gpu {
137 	const char *name;
138 	struct drm_device *dev;
139 	struct platform_device *pdev;
140 	const struct msm_gpu_funcs *funcs;
141 
142 	struct adreno_smmu_priv adreno_smmu;
143 
144 	/* performance counters (hw & sw): */
145 	spinlock_t perf_lock;
146 	bool perfcntr_active;
147 	struct {
148 		bool active;
149 		ktime_t time;
150 	} last_sample;
151 	uint32_t totaltime, activetime;    /* sw counters */
152 	uint32_t last_cntrs[5];            /* hw counters */
153 	const struct msm_gpu_perfcntr *perfcntrs;
154 	uint32_t num_perfcntrs;
155 
156 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
157 	int nr_rings;
158 
159 	/**
160 	 * cur_ctx_seqno:
161 	 *
162 	 * The ctx->seqno value of the last context to submit rendering,
163 	 * and the one with current pgtables installed (for generations
164 	 * that support per-context pgtables).  Tracked by seqno rather
165 	 * than pointer value to avoid dangling pointers, and cases where
166 	 * a ctx can be freed and a new one created with the same address.
167 	 */
168 	int cur_ctx_seqno;
169 
170 	/*
171 	 * List of GEM active objects on this gpu.  Protected by
172 	 * msm_drm_private::mm_lock
173 	 */
174 	struct list_head active_list;
175 
176 	/**
177 	 * lock:
178 	 *
179 	 * General lock for serializing all the gpu things.
180 	 *
181 	 * TODO move to per-ring locking where feasible (ie. submit/retire
182 	 * path, etc)
183 	 */
184 	struct mutex lock;
185 
186 	/**
187 	 * active_submits:
188 	 *
189 	 * The number of submitted but not yet retired submits, used to
190 	 * determine transitions between active and idle.
191 	 *
192 	 * Protected by active_lock
193 	 */
194 	int active_submits;
195 
196 	/** lock: protects active_submits and idle/active transitions */
197 	struct mutex active_lock;
198 
199 	/* does gpu need hw_init? */
200 	bool needs_hw_init;
201 
202 	/* number of GPU hangs (for all contexts) */
203 	int global_faults;
204 
205 	void __iomem *mmio;
206 	int irq;
207 
208 	struct msm_gem_address_space *aspace;
209 
210 	/* Power Control: */
211 	struct regulator *gpu_reg, *gpu_cx;
212 	struct clk_bulk_data *grp_clks;
213 	int nr_clocks;
214 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
215 	uint32_t fast_rate;
216 
217 	/* Hang and Inactivity Detection:
218 	 */
219 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
220 
221 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
222 	struct timer_list hangcheck_timer;
223 
224 	/* Fault info for most recent iova fault: */
225 	struct msm_gpu_fault_info fault_info;
226 
227 	/* work for handling GPU ioval faults: */
228 	struct kthread_work fault_work;
229 
230 	/* work for handling GPU recovery: */
231 	struct kthread_work recover_work;
232 
233 	/* work for handling active-list retiring: */
234 	struct kthread_work retire_work;
235 
236 	/* worker for retire/recover: */
237 	struct kthread_worker *worker;
238 
239 	struct drm_gem_object *memptrs_bo;
240 
241 	struct msm_gpu_devfreq devfreq;
242 
243 	uint32_t suspend_count;
244 
245 	struct msm_gpu_state *crashstate;
246 
247 	/* Enable clamping to idle freq when inactive: */
248 	bool clamp_to_idle;
249 
250 	/* True if the hardware supports expanded apriv (a650 and newer) */
251 	bool hw_apriv;
252 
253 	struct thermal_cooling_device *cooling;
254 };
255 
256 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
257 {
258 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
259 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
260 }
261 
262 /* It turns out that all targets use the same ringbuffer size */
263 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
264 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
265 
266 #define MSM_GPU_RB_CNTL_DEFAULT \
267 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
268 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
269 
270 static inline bool msm_gpu_active(struct msm_gpu *gpu)
271 {
272 	int i;
273 
274 	for (i = 0; i < gpu->nr_rings; i++) {
275 		struct msm_ringbuffer *ring = gpu->rb[i];
276 
277 		if (fence_after(ring->seqno, ring->memptrs->fence))
278 			return true;
279 	}
280 
281 	return false;
282 }
283 
284 /* Perf-Counters:
285  * The select_reg and select_val are just there for the benefit of the child
286  * class that actually enables the perf counter..  but msm_gpu base class
287  * will handle sampling/displaying the counters.
288  */
289 
290 struct msm_gpu_perfcntr {
291 	uint32_t select_reg;
292 	uint32_t sample_reg;
293 	uint32_t select_val;
294 	const char *name;
295 };
296 
297 /*
298  * The number of priority levels provided by drm gpu scheduler.  The
299  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
300  * cases, so we don't use it (no need for kernel generated jobs).
301  */
302 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
303 
304 /**
305  * struct msm_file_private - per-drm_file context
306  *
307  * @queuelock:    synchronizes access to submitqueues list
308  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
309  * @queueid:      counter incremented each time a submitqueue is created,
310  *                used to assign &msm_gpu_submitqueue.id
311  * @aspace:       the per-process GPU address-space
312  * @ref:          reference count
313  * @seqno:        unique per process seqno
314  */
315 struct msm_file_private {
316 	rwlock_t queuelock;
317 	struct list_head submitqueues;
318 	int queueid;
319 	struct msm_gem_address_space *aspace;
320 	struct kref ref;
321 	int seqno;
322 
323 	/**
324 	 * entities:
325 	 *
326 	 * Table of per-priority-level sched entities used by submitqueues
327 	 * associated with this &drm_file.  Because some userspace apps
328 	 * make assumptions about rendering from multiple gl contexts
329 	 * (of the same priority) within the process happening in FIFO
330 	 * order without requiring any fencing beyond MakeCurrent(), we
331 	 * create at most one &drm_sched_entity per-process per-priority-
332 	 * level.
333 	 */
334 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
335 };
336 
337 /**
338  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
339  *
340  * @gpu:        the gpu instance
341  * @prio:       the userspace priority level
342  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
343  * @sched_prio: [out] the gpu scheduler priority level which the userspace
344  *              priority maps to
345  *
346  * With drm/scheduler providing it's own level of prioritization, our total
347  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
348  * Each ring is associated with it's own scheduler instance.  However, our
349  * UABI is that lower numerical values are higher priority.  So mapping the
350  * single userspace priority level into ring_nr and sched_prio takes some
351  * care.  The userspace provided priority (when a submitqueue is created)
352  * is mapped to ring nr and scheduler priority as such:
353  *
354  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
355  *   sched_prio = NR_SCHED_PRIORITIES -
356  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
357  *
358  * This allows generations without preemption (nr_rings==1) to have some
359  * amount of prioritization, and provides more priority levels for gens
360  * that do have preemption.
361  */
362 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
363 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
364 {
365 	unsigned rn, sp;
366 
367 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
368 
369 	/* invert sched priority to map to higher-numeric-is-higher-
370 	 * priority convention
371 	 */
372 	sp = NR_SCHED_PRIORITIES - sp - 1;
373 
374 	if (rn >= gpu->nr_rings)
375 		return -EINVAL;
376 
377 	*ring_nr = rn;
378 	*sched_prio = sp;
379 
380 	return 0;
381 }
382 
383 /**
384  * struct msm_gpu_submitqueues - Userspace created context.
385  *
386  * A submitqueue is associated with a gl context or vk queue (or equiv)
387  * in userspace.
388  *
389  * @id:        userspace id for the submitqueue, unique within the drm_file
390  * @flags:     userspace flags for the submitqueue, specified at creation
391  *             (currently unusued)
392  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
393  *             by the submitqueue's priority
394  * @faults:    the number of GPU hangs associated with this submitqueue
395  * @last_fence: the sequence number of the last allocated fence (for error
396  *             checking)
397  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
398  *             which set of pgtables do submits jobs associated with the
399  *             submitqueue use)
400  * @node:      node in the context's list of submitqueues
401  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
402  *             seqno, protected by submitqueue lock
403  * @lock:      submitqueue lock
404  * @ref:       reference count
405  * @entity:    the submit job-queue
406  */
407 struct msm_gpu_submitqueue {
408 	int id;
409 	u32 flags;
410 	u32 ring_nr;
411 	int faults;
412 	uint32_t last_fence;
413 	struct msm_file_private *ctx;
414 	struct list_head node;
415 	struct idr fence_idr;
416 	struct mutex lock;
417 	struct kref ref;
418 	struct drm_sched_entity *entity;
419 };
420 
421 struct msm_gpu_state_bo {
422 	u64 iova;
423 	size_t size;
424 	void *data;
425 	bool encoded;
426 };
427 
428 struct msm_gpu_state {
429 	struct kref ref;
430 	struct timespec64 time;
431 
432 	struct {
433 		u64 iova;
434 		u32 fence;
435 		u32 seqno;
436 		u32 rptr;
437 		u32 wptr;
438 		void *data;
439 		int data_size;
440 		bool encoded;
441 	} ring[MSM_GPU_MAX_RINGS];
442 
443 	int nr_registers;
444 	u32 *registers;
445 
446 	u32 rbbm_status;
447 
448 	char *comm;
449 	char *cmd;
450 
451 	struct msm_gpu_fault_info fault_info;
452 
453 	int nr_bos;
454 	struct msm_gpu_state_bo *bos;
455 };
456 
457 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
458 {
459 	msm_writel(data, gpu->mmio + (reg << 2));
460 }
461 
462 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
463 {
464 	return msm_readl(gpu->mmio + (reg << 2));
465 }
466 
467 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
468 {
469 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
470 }
471 
472 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
473 {
474 	u64 val;
475 
476 	/*
477 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
478 	 * not quad word aligned and 2) the GPU hardware designers have a bit
479 	 * of a history of putting registers where they fit, especially in
480 	 * spins. The longer a GPU family goes the higher the chance that
481 	 * we'll get burned.  We could do a series of validity checks if we
482 	 * wanted to, but really is a readq() that much better? Nah.
483 	 */
484 
485 	/*
486 	 * For some lo/hi registers (like perfcounters), the hi value is latched
487 	 * when the lo is read, so make sure to read the lo first to trigger
488 	 * that
489 	 */
490 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
491 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
492 
493 	return val;
494 }
495 
496 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
497 {
498 	/* Why not a writeq here? Read the screed above */
499 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
500 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
501 }
502 
503 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
504 int msm_gpu_pm_resume(struct msm_gpu *gpu);
505 
506 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
507 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
508 		u32 id);
509 int msm_submitqueue_create(struct drm_device *drm,
510 		struct msm_file_private *ctx,
511 		u32 prio, u32 flags, u32 *id);
512 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
513 		struct drm_msm_submitqueue_query *args);
514 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
515 void msm_submitqueue_close(struct msm_file_private *ctx);
516 
517 void msm_submitqueue_destroy(struct kref *kref);
518 
519 void __msm_file_private_destroy(struct kref *kref);
520 
521 static inline void msm_file_private_put(struct msm_file_private *ctx)
522 {
523 	kref_put(&ctx->ref, __msm_file_private_destroy);
524 }
525 
526 static inline struct msm_file_private *msm_file_private_get(
527 	struct msm_file_private *ctx)
528 {
529 	kref_get(&ctx->ref);
530 	return ctx;
531 }
532 
533 void msm_devfreq_init(struct msm_gpu *gpu);
534 void msm_devfreq_cleanup(struct msm_gpu *gpu);
535 void msm_devfreq_resume(struct msm_gpu *gpu);
536 void msm_devfreq_suspend(struct msm_gpu *gpu);
537 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
538 void msm_devfreq_active(struct msm_gpu *gpu);
539 void msm_devfreq_idle(struct msm_gpu *gpu);
540 
541 int msm_gpu_hw_init(struct msm_gpu *gpu);
542 
543 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
544 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
545 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
546 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
547 
548 void msm_gpu_retire(struct msm_gpu *gpu);
549 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
550 
551 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
552 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
553 		const char *name, struct msm_gpu_config *config);
554 
555 struct msm_gem_address_space *
556 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
557 
558 void msm_gpu_cleanup(struct msm_gpu *gpu);
559 
560 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
561 void __init adreno_register(void);
562 void __exit adreno_unregister(void);
563 
564 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
565 {
566 	if (queue)
567 		kref_put(&queue->ref, msm_submitqueue_destroy);
568 }
569 
570 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
571 {
572 	struct msm_gpu_state *state = NULL;
573 
574 	mutex_lock(&gpu->lock);
575 
576 	if (gpu->crashstate) {
577 		kref_get(&gpu->crashstate->ref);
578 		state = gpu->crashstate;
579 	}
580 
581 	mutex_unlock(&gpu->lock);
582 
583 	return state;
584 }
585 
586 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
587 {
588 	mutex_lock(&gpu->lock);
589 
590 	if (gpu->crashstate) {
591 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
592 			gpu->crashstate = NULL;
593 	}
594 
595 	mutex_unlock(&gpu->lock);
596 }
597 
598 /*
599  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
600  * support expanded privileges
601  */
602 #define check_apriv(gpu, flags) \
603 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
604 
605 
606 #endif /* __MSM_GPU_H__ */
607