xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision 8e54eea5)
1 /*
2  * Copyright (C) 2013 Red Hat
3  * Author: Rob Clark <robdclark@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __MSM_GPU_H__
19 #define __MSM_GPU_H__
20 
21 #include <linux/clk.h>
22 #include <linux/regulator/consumer.h>
23 
24 #include "msm_drv.h"
25 #include "msm_fence.h"
26 #include "msm_ringbuffer.h"
27 
28 struct msm_gem_submit;
29 struct msm_gpu_perfcntr;
30 struct msm_gpu_state;
31 
32 struct msm_gpu_config {
33 	const char *ioname;
34 	const char *irqname;
35 	uint64_t va_start;
36 	uint64_t va_end;
37 	unsigned int nr_rings;
38 };
39 
40 /* So far, with hardware that I've seen to date, we can have:
41  *  + zero, one, or two z180 2d cores
42  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
43  *    for the CP seems to implement some different PM4 packet types
44  *    but the basics of cmdstream submission are the same)
45  *
46  * Which means that the eventual complete "class" hierarchy, once
47  * support for all past and present hw is in place, becomes:
48  *  + msm_gpu
49  *    + adreno_gpu
50  *      + a3xx_gpu
51  *      + a2xx_gpu
52  *    + z180_gpu
53  */
54 struct msm_gpu_funcs {
55 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
56 	int (*hw_init)(struct msm_gpu *gpu);
57 	int (*pm_suspend)(struct msm_gpu *gpu);
58 	int (*pm_resume)(struct msm_gpu *gpu);
59 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
60 			struct msm_file_private *ctx);
61 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 	irqreturn_t (*irq)(struct msm_gpu *irq);
63 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 	void (*recover)(struct msm_gpu *gpu);
65 	void (*destroy)(struct msm_gpu *gpu);
66 #ifdef CONFIG_DEBUG_FS
67 	/* show GPU status in debugfs: */
68 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 			struct drm_printer *p);
70 	/* for generation specific debugfs: */
71 	int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 	int (*gpu_busy)(struct msm_gpu *gpu, uint64_t *value);
74 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
75 	int (*gpu_state_put)(struct msm_gpu_state *state);
76 };
77 
78 struct msm_gpu {
79 	const char *name;
80 	struct drm_device *dev;
81 	struct platform_device *pdev;
82 	const struct msm_gpu_funcs *funcs;
83 
84 	/* performance counters (hw & sw): */
85 	spinlock_t perf_lock;
86 	bool perfcntr_active;
87 	struct {
88 		bool active;
89 		ktime_t time;
90 	} last_sample;
91 	uint32_t totaltime, activetime;    /* sw counters */
92 	uint32_t last_cntrs[5];            /* hw counters */
93 	const struct msm_gpu_perfcntr *perfcntrs;
94 	uint32_t num_perfcntrs;
95 
96 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
97 	int nr_rings;
98 
99 	/* list of GEM active objects: */
100 	struct list_head active_list;
101 
102 	/* does gpu need hw_init? */
103 	bool needs_hw_init;
104 
105 	/* worker for handling active-list retiring: */
106 	struct work_struct retire_work;
107 
108 	void __iomem *mmio;
109 	int irq;
110 
111 	struct msm_gem_address_space *aspace;
112 
113 	/* Power Control: */
114 	struct regulator *gpu_reg, *gpu_cx;
115 	struct clk_bulk_data *grp_clks;
116 	int nr_clocks;
117 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
118 	uint32_t fast_rate;
119 
120 	/* Hang and Inactivity Detection:
121 	 */
122 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
123 
124 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
125 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
126 	struct timer_list hangcheck_timer;
127 	struct work_struct recover_work;
128 
129 	struct drm_gem_object *memptrs_bo;
130 
131 	struct {
132 		struct devfreq *devfreq;
133 		u64 busy_cycles;
134 		ktime_t time;
135 	} devfreq;
136 
137 	struct msm_gpu_state *crashstate;
138 };
139 
140 /* It turns out that all targets use the same ringbuffer size */
141 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
142 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
143 
144 #define MSM_GPU_RB_CNTL_DEFAULT \
145 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
146 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
147 
148 static inline bool msm_gpu_active(struct msm_gpu *gpu)
149 {
150 	int i;
151 
152 	for (i = 0; i < gpu->nr_rings; i++) {
153 		struct msm_ringbuffer *ring = gpu->rb[i];
154 
155 		if (ring->seqno > ring->memptrs->fence)
156 			return true;
157 	}
158 
159 	return false;
160 }
161 
162 /* Perf-Counters:
163  * The select_reg and select_val are just there for the benefit of the child
164  * class that actually enables the perf counter..  but msm_gpu base class
165  * will handle sampling/displaying the counters.
166  */
167 
168 struct msm_gpu_perfcntr {
169 	uint32_t select_reg;
170 	uint32_t sample_reg;
171 	uint32_t select_val;
172 	const char *name;
173 };
174 
175 struct msm_gpu_submitqueue {
176 	int id;
177 	u32 flags;
178 	u32 prio;
179 	int faults;
180 	struct list_head node;
181 	struct kref ref;
182 };
183 
184 struct msm_gpu_state_bo {
185 	u64 iova;
186 	size_t size;
187 	void *data;
188 };
189 
190 struct msm_gpu_state {
191 	struct kref ref;
192 	struct timespec64 time;
193 
194 	struct {
195 		u64 iova;
196 		u32 fence;
197 		u32 seqno;
198 		u32 rptr;
199 		u32 wptr;
200 		void *data;
201 		int data_size;
202 	} ring[MSM_GPU_MAX_RINGS];
203 
204 	int nr_registers;
205 	u32 *registers;
206 
207 	u32 rbbm_status;
208 
209 	char *comm;
210 	char *cmd;
211 
212 	int nr_bos;
213 	struct msm_gpu_state_bo *bos;
214 };
215 
216 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
217 {
218 	msm_writel(data, gpu->mmio + (reg << 2));
219 }
220 
221 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
222 {
223 	return msm_readl(gpu->mmio + (reg << 2));
224 }
225 
226 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
227 {
228 	uint32_t val = gpu_read(gpu, reg);
229 
230 	val &= ~mask;
231 	gpu_write(gpu, reg, val | or);
232 }
233 
234 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
235 {
236 	u64 val;
237 
238 	/*
239 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
240 	 * not quad word aligned and 2) the GPU hardware designers have a bit
241 	 * of a history of putting registers where they fit, especially in
242 	 * spins. The longer a GPU family goes the higher the chance that
243 	 * we'll get burned.  We could do a series of validity checks if we
244 	 * wanted to, but really is a readq() that much better? Nah.
245 	 */
246 
247 	/*
248 	 * For some lo/hi registers (like perfcounters), the hi value is latched
249 	 * when the lo is read, so make sure to read the lo first to trigger
250 	 * that
251 	 */
252 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
253 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
254 
255 	return val;
256 }
257 
258 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
259 {
260 	/* Why not a writeq here? Read the screed above */
261 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
262 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
263 }
264 
265 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
266 int msm_gpu_pm_resume(struct msm_gpu *gpu);
267 
268 int msm_gpu_hw_init(struct msm_gpu *gpu);
269 
270 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
271 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
272 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
273 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
274 
275 void msm_gpu_retire(struct msm_gpu *gpu);
276 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
277 		struct msm_file_private *ctx);
278 
279 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
280 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
281 		const char *name, struct msm_gpu_config *config);
282 
283 void msm_gpu_cleanup(struct msm_gpu *gpu);
284 
285 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
286 void __init adreno_register(void);
287 void __exit adreno_unregister(void);
288 
289 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
290 {
291 	if (queue)
292 		kref_put(&queue->ref, msm_submitqueue_destroy);
293 }
294 
295 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
296 {
297 	struct msm_gpu_state *state = NULL;
298 
299 	mutex_lock(&gpu->dev->struct_mutex);
300 
301 	if (gpu->crashstate) {
302 		kref_get(&gpu->crashstate->ref);
303 		state = gpu->crashstate;
304 	}
305 
306 	mutex_unlock(&gpu->dev->struct_mutex);
307 
308 	return state;
309 }
310 
311 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
312 {
313 	mutex_lock(&gpu->dev->struct_mutex);
314 
315 	if (gpu->crashstate) {
316 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
317 			gpu->crashstate = NULL;
318 	}
319 
320 	mutex_unlock(&gpu->dev->struct_mutex);
321 }
322 
323 #endif /* __MSM_GPU_H__ */
324