1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gpu_perfcntr; 24 struct msm_gpu_state; 25 struct msm_file_private; 26 27 struct msm_gpu_config { 28 const char *ioname; 29 unsigned int nr_rings; 30 }; 31 32 /* So far, with hardware that I've seen to date, we can have: 33 * + zero, one, or two z180 2d cores 34 * + a3xx or a2xx 3d core, which share a common CP (the firmware 35 * for the CP seems to implement some different PM4 packet types 36 * but the basics of cmdstream submission are the same) 37 * 38 * Which means that the eventual complete "class" hierarchy, once 39 * support for all past and present hw is in place, becomes: 40 * + msm_gpu 41 * + adreno_gpu 42 * + a3xx_gpu 43 * + a2xx_gpu 44 * + z180_gpu 45 */ 46 struct msm_gpu_funcs { 47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t *value, uint32_t *len); 49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 50 uint32_t param, uint64_t value, uint32_t len); 51 int (*hw_init)(struct msm_gpu *gpu); 52 53 /** 54 * @ucode_load: Optional hook to upload fw to GEM objs 55 */ 56 int (*ucode_load)(struct msm_gpu *gpu); 57 58 int (*pm_suspend)(struct msm_gpu *gpu); 59 int (*pm_resume)(struct msm_gpu *gpu); 60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 /* note: gpu_busy() can assume that we have been pm_resumed */ 74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 76 int (*gpu_state_put)(struct msm_gpu_state *state); 77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 78 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 80 bool suspended); 81 struct msm_gem_address_space *(*create_address_space) 82 (struct msm_gpu *gpu, struct platform_device *pdev); 83 struct msm_gem_address_space *(*create_private_address_space) 84 (struct msm_gpu *gpu); 85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 86 87 /** 88 * progress: Has the GPU made progress? 89 * 90 * Return true if GPU position in cmdstream has advanced (or changed) 91 * since the last call. To avoid false negatives, this should account 92 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 93 */ 94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 95 }; 96 97 /* Additional state for iommu faults: */ 98 struct msm_gpu_fault_info { 99 u64 ttbr0; 100 unsigned long iova; 101 int flags; 102 const char *type; 103 const char *block; 104 }; 105 106 /** 107 * struct msm_gpu_devfreq - devfreq related state 108 */ 109 struct msm_gpu_devfreq { 110 /** devfreq: devfreq instance */ 111 struct devfreq *devfreq; 112 113 /** lock: lock for "suspended", "busy_cycles", and "time" */ 114 struct mutex lock; 115 116 /** 117 * idle_freq: 118 * 119 * Shadow frequency used while the GPU is idle. From the PoV of 120 * the devfreq governor, we are continuing to sample busyness and 121 * adjust frequency while the GPU is idle, but we use this shadow 122 * value as the GPU is actually clamped to minimum frequency while 123 * it is inactive. 124 */ 125 unsigned long idle_freq; 126 127 /** 128 * boost_constraint: 129 * 130 * A PM QoS constraint to boost min freq for a period of time 131 * until the boost expires. 132 */ 133 struct dev_pm_qos_request boost_freq; 134 135 /** 136 * busy_cycles: Last busy counter value, for calculating elapsed busy 137 * cycles since last sampling period. 138 */ 139 u64 busy_cycles; 140 141 /** time: Time of last sampling period. */ 142 ktime_t time; 143 144 /** idle_time: Time of last transition to idle: */ 145 ktime_t idle_time; 146 147 /** 148 * idle_work: 149 * 150 * Used to delay clamping to idle freq on active->idle transition. 151 */ 152 struct msm_hrtimer_work idle_work; 153 154 /** 155 * boost_work: 156 * 157 * Used to reset the boost_constraint after the boost period has 158 * elapsed 159 */ 160 struct msm_hrtimer_work boost_work; 161 162 /** suspended: tracks if we're suspended */ 163 bool suspended; 164 }; 165 166 struct msm_gpu { 167 const char *name; 168 struct drm_device *dev; 169 struct platform_device *pdev; 170 const struct msm_gpu_funcs *funcs; 171 172 struct adreno_smmu_priv adreno_smmu; 173 174 /* performance counters (hw & sw): */ 175 spinlock_t perf_lock; 176 bool perfcntr_active; 177 struct { 178 bool active; 179 ktime_t time; 180 } last_sample; 181 uint32_t totaltime, activetime; /* sw counters */ 182 uint32_t last_cntrs[5]; /* hw counters */ 183 const struct msm_gpu_perfcntr *perfcntrs; 184 uint32_t num_perfcntrs; 185 186 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 187 int nr_rings; 188 189 /** 190 * sysprof_active: 191 * 192 * The count of contexts that have enabled system profiling. 193 */ 194 refcount_t sysprof_active; 195 196 /** 197 * cur_ctx_seqno: 198 * 199 * The ctx->seqno value of the last context to submit rendering, 200 * and the one with current pgtables installed (for generations 201 * that support per-context pgtables). Tracked by seqno rather 202 * than pointer value to avoid dangling pointers, and cases where 203 * a ctx can be freed and a new one created with the same address. 204 */ 205 int cur_ctx_seqno; 206 207 /** 208 * lock: 209 * 210 * General lock for serializing all the gpu things. 211 * 212 * TODO move to per-ring locking where feasible (ie. submit/retire 213 * path, etc) 214 */ 215 struct mutex lock; 216 217 /** 218 * active_submits: 219 * 220 * The number of submitted but not yet retired submits, used to 221 * determine transitions between active and idle. 222 * 223 * Protected by active_lock 224 */ 225 int active_submits; 226 227 /** lock: protects active_submits and idle/active transitions */ 228 struct mutex active_lock; 229 230 /* does gpu need hw_init? */ 231 bool needs_hw_init; 232 233 /** 234 * global_faults: number of GPU hangs not attributed to a particular 235 * address space 236 */ 237 int global_faults; 238 239 void __iomem *mmio; 240 int irq; 241 242 struct msm_gem_address_space *aspace; 243 244 /* Power Control: */ 245 struct regulator *gpu_reg, *gpu_cx; 246 struct clk_bulk_data *grp_clks; 247 int nr_clocks; 248 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 249 uint32_t fast_rate; 250 251 /* Hang and Inactivity Detection: 252 */ 253 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 254 255 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 256 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 257 struct timer_list hangcheck_timer; 258 259 /* Fault info for most recent iova fault: */ 260 struct msm_gpu_fault_info fault_info; 261 262 /* work for handling GPU ioval faults: */ 263 struct kthread_work fault_work; 264 265 /* work for handling GPU recovery: */ 266 struct kthread_work recover_work; 267 268 /** retire_event: notified when submits are retired: */ 269 wait_queue_head_t retire_event; 270 271 /* work for handling active-list retiring: */ 272 struct kthread_work retire_work; 273 274 /* worker for retire/recover: */ 275 struct kthread_worker *worker; 276 277 struct drm_gem_object *memptrs_bo; 278 279 struct msm_gpu_devfreq devfreq; 280 281 uint32_t suspend_count; 282 283 struct msm_gpu_state *crashstate; 284 285 /* True if the hardware supports expanded apriv (a650 and newer) */ 286 bool hw_apriv; 287 288 struct thermal_cooling_device *cooling; 289 }; 290 291 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 292 { 293 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 294 295 if (!adreno_smmu) 296 return NULL; 297 298 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 299 } 300 301 /* It turns out that all targets use the same ringbuffer size */ 302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 304 305 #define MSM_GPU_RB_CNTL_DEFAULT \ 306 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 307 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 308 309 static inline bool msm_gpu_active(struct msm_gpu *gpu) 310 { 311 int i; 312 313 for (i = 0; i < gpu->nr_rings; i++) { 314 struct msm_ringbuffer *ring = gpu->rb[i]; 315 316 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 317 return true; 318 } 319 320 return false; 321 } 322 323 /* Perf-Counters: 324 * The select_reg and select_val are just there for the benefit of the child 325 * class that actually enables the perf counter.. but msm_gpu base class 326 * will handle sampling/displaying the counters. 327 */ 328 329 struct msm_gpu_perfcntr { 330 uint32_t select_reg; 331 uint32_t sample_reg; 332 uint32_t select_val; 333 const char *name; 334 }; 335 336 /* 337 * The number of priority levels provided by drm gpu scheduler. The 338 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 339 * cases, so we don't use it (no need for kernel generated jobs). 340 */ 341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 342 343 /** 344 * struct msm_file_private - per-drm_file context 345 * 346 * @queuelock: synchronizes access to submitqueues list 347 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 348 * @queueid: counter incremented each time a submitqueue is created, 349 * used to assign &msm_gpu_submitqueue.id 350 * @aspace: the per-process GPU address-space 351 * @ref: reference count 352 * @seqno: unique per process seqno 353 */ 354 struct msm_file_private { 355 rwlock_t queuelock; 356 struct list_head submitqueues; 357 int queueid; 358 struct msm_gem_address_space *aspace; 359 struct kref ref; 360 int seqno; 361 362 /** 363 * sysprof: 364 * 365 * The value of MSM_PARAM_SYSPROF set by userspace. This is 366 * intended to be used by system profiling tools like Mesa's 367 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 368 * 369 * Setting a value of 1 will preserve performance counters across 370 * context switches. Setting a value of 2 will in addition 371 * suppress suspend. (Performance counters lose state across 372 * power collapse, which is undesirable for profiling in some 373 * cases.) 374 * 375 * The value automatically reverts to zero when the drm device 376 * file is closed. 377 */ 378 int sysprof; 379 380 /** 381 * comm: Overridden task comm, see MSM_PARAM_COMM 382 * 383 * Accessed under msm_gpu::lock 384 */ 385 char *comm; 386 387 /** 388 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 389 * 390 * Accessed under msm_gpu::lock 391 */ 392 char *cmdline; 393 394 /** 395 * elapsed: 396 * 397 * The total (cumulative) elapsed time GPU was busy with rendering 398 * from this context in ns. 399 */ 400 uint64_t elapsed_ns; 401 402 /** 403 * cycles: 404 * 405 * The total (cumulative) GPU cycles elapsed attributed to this 406 * context. 407 */ 408 uint64_t cycles; 409 410 /** 411 * entities: 412 * 413 * Table of per-priority-level sched entities used by submitqueues 414 * associated with this &drm_file. Because some userspace apps 415 * make assumptions about rendering from multiple gl contexts 416 * (of the same priority) within the process happening in FIFO 417 * order without requiring any fencing beyond MakeCurrent(), we 418 * create at most one &drm_sched_entity per-process per-priority- 419 * level. 420 */ 421 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 422 }; 423 424 /** 425 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 426 * 427 * @gpu: the gpu instance 428 * @prio: the userspace priority level 429 * @ring_nr: [out] the ringbuffer the userspace priority maps to 430 * @sched_prio: [out] the gpu scheduler priority level which the userspace 431 * priority maps to 432 * 433 * With drm/scheduler providing it's own level of prioritization, our total 434 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 435 * Each ring is associated with it's own scheduler instance. However, our 436 * UABI is that lower numerical values are higher priority. So mapping the 437 * single userspace priority level into ring_nr and sched_prio takes some 438 * care. The userspace provided priority (when a submitqueue is created) 439 * is mapped to ring nr and scheduler priority as such: 440 * 441 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 442 * sched_prio = NR_SCHED_PRIORITIES - 443 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 444 * 445 * This allows generations without preemption (nr_rings==1) to have some 446 * amount of prioritization, and provides more priority levels for gens 447 * that do have preemption. 448 */ 449 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 450 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 451 { 452 unsigned rn, sp; 453 454 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 455 456 /* invert sched priority to map to higher-numeric-is-higher- 457 * priority convention 458 */ 459 sp = NR_SCHED_PRIORITIES - sp - 1; 460 461 if (rn >= gpu->nr_rings) 462 return -EINVAL; 463 464 *ring_nr = rn; 465 *sched_prio = sp; 466 467 return 0; 468 } 469 470 /** 471 * struct msm_gpu_submitqueues - Userspace created context. 472 * 473 * A submitqueue is associated with a gl context or vk queue (or equiv) 474 * in userspace. 475 * 476 * @id: userspace id for the submitqueue, unique within the drm_file 477 * @flags: userspace flags for the submitqueue, specified at creation 478 * (currently unusued) 479 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 480 * by the submitqueue's priority 481 * @faults: the number of GPU hangs associated with this submitqueue 482 * @last_fence: the sequence number of the last allocated fence (for error 483 * checking) 484 * @ctx: the per-drm_file context associated with the submitqueue (ie. 485 * which set of pgtables do submits jobs associated with the 486 * submitqueue use) 487 * @node: node in the context's list of submitqueues 488 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 489 * seqno, protected by submitqueue lock 490 * @idr_lock: for serializing access to fence_idr 491 * @lock: submitqueue lock for serializing submits on a queue 492 * @ref: reference count 493 * @entity: the submit job-queue 494 */ 495 struct msm_gpu_submitqueue { 496 int id; 497 u32 flags; 498 u32 ring_nr; 499 int faults; 500 uint32_t last_fence; 501 struct msm_file_private *ctx; 502 struct list_head node; 503 struct idr fence_idr; 504 struct spinlock idr_lock; 505 struct mutex lock; 506 struct kref ref; 507 struct drm_sched_entity *entity; 508 }; 509 510 struct msm_gpu_state_bo { 511 u64 iova; 512 size_t size; 513 void *data; 514 bool encoded; 515 char name[32]; 516 }; 517 518 struct msm_gpu_state { 519 struct kref ref; 520 struct timespec64 time; 521 522 struct { 523 u64 iova; 524 u32 fence; 525 u32 seqno; 526 u32 rptr; 527 u32 wptr; 528 void *data; 529 int data_size; 530 bool encoded; 531 } ring[MSM_GPU_MAX_RINGS]; 532 533 int nr_registers; 534 u32 *registers; 535 536 u32 rbbm_status; 537 538 char *comm; 539 char *cmd; 540 541 struct msm_gpu_fault_info fault_info; 542 543 int nr_bos; 544 struct msm_gpu_state_bo *bos; 545 }; 546 547 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 548 { 549 msm_writel(data, gpu->mmio + (reg << 2)); 550 } 551 552 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 553 { 554 return msm_readl(gpu->mmio + (reg << 2)); 555 } 556 557 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 558 { 559 msm_rmw(gpu->mmio + (reg << 2), mask, or); 560 } 561 562 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 563 { 564 u64 val; 565 566 /* 567 * Why not a readq here? Two reasons: 1) many of the LO registers are 568 * not quad word aligned and 2) the GPU hardware designers have a bit 569 * of a history of putting registers where they fit, especially in 570 * spins. The longer a GPU family goes the higher the chance that 571 * we'll get burned. We could do a series of validity checks if we 572 * wanted to, but really is a readq() that much better? Nah. 573 */ 574 575 /* 576 * For some lo/hi registers (like perfcounters), the hi value is latched 577 * when the lo is read, so make sure to read the lo first to trigger 578 * that 579 */ 580 val = (u64) msm_readl(gpu->mmio + (reg << 2)); 581 val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32); 582 583 return val; 584 } 585 586 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 587 { 588 /* Why not a writeq here? Read the screed above */ 589 msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 590 msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 591 } 592 593 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 594 int msm_gpu_pm_resume(struct msm_gpu *gpu); 595 596 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 597 struct drm_printer *p); 598 599 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 600 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 601 u32 id); 602 int msm_submitqueue_create(struct drm_device *drm, 603 struct msm_file_private *ctx, 604 u32 prio, u32 flags, u32 *id); 605 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 606 struct drm_msm_submitqueue_query *args); 607 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 608 void msm_submitqueue_close(struct msm_file_private *ctx); 609 610 void msm_submitqueue_destroy(struct kref *kref); 611 612 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 613 struct msm_gpu *gpu, int sysprof); 614 void __msm_file_private_destroy(struct kref *kref); 615 616 static inline void msm_file_private_put(struct msm_file_private *ctx) 617 { 618 kref_put(&ctx->ref, __msm_file_private_destroy); 619 } 620 621 static inline struct msm_file_private *msm_file_private_get( 622 struct msm_file_private *ctx) 623 { 624 kref_get(&ctx->ref); 625 return ctx; 626 } 627 628 void msm_devfreq_init(struct msm_gpu *gpu); 629 void msm_devfreq_cleanup(struct msm_gpu *gpu); 630 void msm_devfreq_resume(struct msm_gpu *gpu); 631 void msm_devfreq_suspend(struct msm_gpu *gpu); 632 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 633 void msm_devfreq_active(struct msm_gpu *gpu); 634 void msm_devfreq_idle(struct msm_gpu *gpu); 635 636 int msm_gpu_hw_init(struct msm_gpu *gpu); 637 638 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 639 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 640 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 641 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 642 643 void msm_gpu_retire(struct msm_gpu *gpu); 644 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 645 646 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 647 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 648 const char *name, struct msm_gpu_config *config); 649 650 struct msm_gem_address_space * 651 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 652 653 void msm_gpu_cleanup(struct msm_gpu *gpu); 654 655 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 656 void __init adreno_register(void); 657 void __exit adreno_unregister(void); 658 659 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 660 { 661 if (queue) 662 kref_put(&queue->ref, msm_submitqueue_destroy); 663 } 664 665 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 666 { 667 struct msm_gpu_state *state = NULL; 668 669 mutex_lock(&gpu->lock); 670 671 if (gpu->crashstate) { 672 kref_get(&gpu->crashstate->ref); 673 state = gpu->crashstate; 674 } 675 676 mutex_unlock(&gpu->lock); 677 678 return state; 679 } 680 681 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 682 { 683 mutex_lock(&gpu->lock); 684 685 if (gpu->crashstate) { 686 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 687 gpu->crashstate = NULL; 688 } 689 690 mutex_unlock(&gpu->lock); 691 } 692 693 /* 694 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 695 * support expanded privileges 696 */ 697 #define check_apriv(gpu, flags) \ 698 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 699 700 701 #endif /* __MSM_GPU_H__ */ 702