xref: /openbmc/linux/drivers/gpu/drm/msm/msm_gpu.h (revision 85250a24)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/reset.h>
17 
18 #include "msm_drv.h"
19 #include "msm_fence.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gpu_perfcntr;
25 struct msm_gpu_state;
26 struct msm_file_private;
27 
28 struct msm_gpu_config {
29 	const char *ioname;
30 	unsigned int nr_rings;
31 };
32 
33 /* So far, with hardware that I've seen to date, we can have:
34  *  + zero, one, or two z180 2d cores
35  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
36  *    for the CP seems to implement some different PM4 packet types
37  *    but the basics of cmdstream submission are the same)
38  *
39  * Which means that the eventual complete "class" hierarchy, once
40  * support for all past and present hw is in place, becomes:
41  *  + msm_gpu
42  *    + adreno_gpu
43  *      + a3xx_gpu
44  *      + a2xx_gpu
45  *    + z180_gpu
46  */
47 struct msm_gpu_funcs {
48 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
49 			 uint32_t param, uint64_t *value, uint32_t *len);
50 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
51 			 uint32_t param, uint64_t value, uint32_t len);
52 	int (*hw_init)(struct msm_gpu *gpu);
53 	int (*pm_suspend)(struct msm_gpu *gpu);
54 	int (*pm_resume)(struct msm_gpu *gpu);
55 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
56 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
57 	irqreturn_t (*irq)(struct msm_gpu *irq);
58 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
59 	void (*recover)(struct msm_gpu *gpu);
60 	void (*destroy)(struct msm_gpu *gpu);
61 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
62 	/* show GPU status in debugfs: */
63 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
64 			struct drm_printer *p);
65 	/* for generation specific debugfs: */
66 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
67 #endif
68 	/* note: gpu_busy() can assume that we have been pm_resumed */
69 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
70 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
71 	int (*gpu_state_put)(struct msm_gpu_state *state);
72 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
73 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
74 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
75 			     bool suspended);
76 	struct msm_gem_address_space *(*create_address_space)
77 		(struct msm_gpu *gpu, struct platform_device *pdev);
78 	struct msm_gem_address_space *(*create_private_address_space)
79 		(struct msm_gpu *gpu);
80 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
81 };
82 
83 /* Additional state for iommu faults: */
84 struct msm_gpu_fault_info {
85 	u64 ttbr0;
86 	unsigned long iova;
87 	int flags;
88 	const char *type;
89 	const char *block;
90 };
91 
92 /**
93  * struct msm_gpu_devfreq - devfreq related state
94  */
95 struct msm_gpu_devfreq {
96 	/** devfreq: devfreq instance */
97 	struct devfreq *devfreq;
98 
99 	/** lock: lock for "suspended", "busy_cycles", and "time" */
100 	struct mutex lock;
101 
102 	/**
103 	 * idle_constraint:
104 	 *
105 	 * A PM QoS constraint to limit max freq while the GPU is idle.
106 	 */
107 	struct dev_pm_qos_request idle_freq;
108 
109 	/**
110 	 * boost_constraint:
111 	 *
112 	 * A PM QoS constraint to boost min freq for a period of time
113 	 * until the boost expires.
114 	 */
115 	struct dev_pm_qos_request boost_freq;
116 
117 	/**
118 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
119 	 * cycles since last sampling period.
120 	 */
121 	u64 busy_cycles;
122 
123 	/** time: Time of last sampling period. */
124 	ktime_t time;
125 
126 	/** idle_time: Time of last transition to idle: */
127 	ktime_t idle_time;
128 
129 	struct devfreq_dev_status average_status;
130 
131 	/**
132 	 * idle_work:
133 	 *
134 	 * Used to delay clamping to idle freq on active->idle transition.
135 	 */
136 	struct msm_hrtimer_work idle_work;
137 
138 	/**
139 	 * boost_work:
140 	 *
141 	 * Used to reset the boost_constraint after the boost period has
142 	 * elapsed
143 	 */
144 	struct msm_hrtimer_work boost_work;
145 
146 	/** suspended: tracks if we're suspended */
147 	bool suspended;
148 };
149 
150 struct msm_gpu {
151 	const char *name;
152 	struct drm_device *dev;
153 	struct platform_device *pdev;
154 	const struct msm_gpu_funcs *funcs;
155 
156 	struct adreno_smmu_priv adreno_smmu;
157 
158 	/* performance counters (hw & sw): */
159 	spinlock_t perf_lock;
160 	bool perfcntr_active;
161 	struct {
162 		bool active;
163 		ktime_t time;
164 	} last_sample;
165 	uint32_t totaltime, activetime;    /* sw counters */
166 	uint32_t last_cntrs[5];            /* hw counters */
167 	const struct msm_gpu_perfcntr *perfcntrs;
168 	uint32_t num_perfcntrs;
169 
170 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
171 	int nr_rings;
172 
173 	/**
174 	 * sysprof_active:
175 	 *
176 	 * The count of contexts that have enabled system profiling.
177 	 */
178 	refcount_t sysprof_active;
179 
180 	/**
181 	 * cur_ctx_seqno:
182 	 *
183 	 * The ctx->seqno value of the last context to submit rendering,
184 	 * and the one with current pgtables installed (for generations
185 	 * that support per-context pgtables).  Tracked by seqno rather
186 	 * than pointer value to avoid dangling pointers, and cases where
187 	 * a ctx can be freed and a new one created with the same address.
188 	 */
189 	int cur_ctx_seqno;
190 
191 	/**
192 	 * lock:
193 	 *
194 	 * General lock for serializing all the gpu things.
195 	 *
196 	 * TODO move to per-ring locking where feasible (ie. submit/retire
197 	 * path, etc)
198 	 */
199 	struct mutex lock;
200 
201 	/**
202 	 * active_submits:
203 	 *
204 	 * The number of submitted but not yet retired submits, used to
205 	 * determine transitions between active and idle.
206 	 *
207 	 * Protected by active_lock
208 	 */
209 	int active_submits;
210 
211 	/** lock: protects active_submits and idle/active transitions */
212 	struct mutex active_lock;
213 
214 	/* does gpu need hw_init? */
215 	bool needs_hw_init;
216 
217 	/**
218 	 * global_faults: number of GPU hangs not attributed to a particular
219 	 * address space
220 	 */
221 	int global_faults;
222 
223 	void __iomem *mmio;
224 	int irq;
225 
226 	struct msm_gem_address_space *aspace;
227 
228 	/* Power Control: */
229 	struct regulator *gpu_reg, *gpu_cx;
230 	struct clk_bulk_data *grp_clks;
231 	int nr_clocks;
232 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
233 	uint32_t fast_rate;
234 
235 	/* Hang and Inactivity Detection:
236 	 */
237 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
238 
239 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
240 	struct timer_list hangcheck_timer;
241 
242 	/* Fault info for most recent iova fault: */
243 	struct msm_gpu_fault_info fault_info;
244 
245 	/* work for handling GPU ioval faults: */
246 	struct kthread_work fault_work;
247 
248 	/* work for handling GPU recovery: */
249 	struct kthread_work recover_work;
250 
251 	/** retire_event: notified when submits are retired: */
252 	wait_queue_head_t retire_event;
253 
254 	/* work for handling active-list retiring: */
255 	struct kthread_work retire_work;
256 
257 	/* worker for retire/recover: */
258 	struct kthread_worker *worker;
259 
260 	struct drm_gem_object *memptrs_bo;
261 
262 	struct msm_gpu_devfreq devfreq;
263 
264 	uint32_t suspend_count;
265 
266 	struct msm_gpu_state *crashstate;
267 
268 	/* Enable clamping to idle freq when inactive: */
269 	bool clamp_to_idle;
270 
271 	/* True if the hardware supports expanded apriv (a650 and newer) */
272 	bool hw_apriv;
273 
274 	struct thermal_cooling_device *cooling;
275 
276 	/* To poll for cx gdsc collapse during gpu recovery */
277 	struct reset_control *cx_collapse;
278 };
279 
280 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
281 {
282 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
283 
284 	if (!adreno_smmu)
285 		return NULL;
286 
287 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
288 }
289 
290 /* It turns out that all targets use the same ringbuffer size */
291 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
292 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
293 
294 #define MSM_GPU_RB_CNTL_DEFAULT \
295 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
296 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
297 
298 static inline bool msm_gpu_active(struct msm_gpu *gpu)
299 {
300 	int i;
301 
302 	for (i = 0; i < gpu->nr_rings; i++) {
303 		struct msm_ringbuffer *ring = gpu->rb[i];
304 
305 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
306 			return true;
307 	}
308 
309 	return false;
310 }
311 
312 /* Perf-Counters:
313  * The select_reg and select_val are just there for the benefit of the child
314  * class that actually enables the perf counter..  but msm_gpu base class
315  * will handle sampling/displaying the counters.
316  */
317 
318 struct msm_gpu_perfcntr {
319 	uint32_t select_reg;
320 	uint32_t sample_reg;
321 	uint32_t select_val;
322 	const char *name;
323 };
324 
325 /*
326  * The number of priority levels provided by drm gpu scheduler.  The
327  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
328  * cases, so we don't use it (no need for kernel generated jobs).
329  */
330 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
331 
332 /**
333  * struct msm_file_private - per-drm_file context
334  *
335  * @queuelock:    synchronizes access to submitqueues list
336  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
337  * @queueid:      counter incremented each time a submitqueue is created,
338  *                used to assign &msm_gpu_submitqueue.id
339  * @aspace:       the per-process GPU address-space
340  * @ref:          reference count
341  * @seqno:        unique per process seqno
342  */
343 struct msm_file_private {
344 	rwlock_t queuelock;
345 	struct list_head submitqueues;
346 	int queueid;
347 	struct msm_gem_address_space *aspace;
348 	struct kref ref;
349 	int seqno;
350 
351 	/**
352 	 * sysprof:
353 	 *
354 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
355 	 * intended to be used by system profiling tools like Mesa's
356 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
357 	 *
358 	 * Setting a value of 1 will preserve performance counters across
359 	 * context switches.  Setting a value of 2 will in addition
360 	 * suppress suspend.  (Performance counters lose state across
361 	 * power collapse, which is undesirable for profiling in some
362 	 * cases.)
363 	 *
364 	 * The value automatically reverts to zero when the drm device
365 	 * file is closed.
366 	 */
367 	int sysprof;
368 
369 	/** comm: Overridden task comm, see MSM_PARAM_COMM */
370 	char *comm;
371 
372 	/** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */
373 	char *cmdline;
374 
375 	/**
376 	 * elapsed:
377 	 *
378 	 * The total (cumulative) elapsed time GPU was busy with rendering
379 	 * from this context in ns.
380 	 */
381 	uint64_t elapsed_ns;
382 
383 	/**
384 	 * cycles:
385 	 *
386 	 * The total (cumulative) GPU cycles elapsed attributed to this
387 	 * context.
388 	 */
389 	uint64_t cycles;
390 
391 	/**
392 	 * entities:
393 	 *
394 	 * Table of per-priority-level sched entities used by submitqueues
395 	 * associated with this &drm_file.  Because some userspace apps
396 	 * make assumptions about rendering from multiple gl contexts
397 	 * (of the same priority) within the process happening in FIFO
398 	 * order without requiring any fencing beyond MakeCurrent(), we
399 	 * create at most one &drm_sched_entity per-process per-priority-
400 	 * level.
401 	 */
402 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
403 };
404 
405 /**
406  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
407  *
408  * @gpu:        the gpu instance
409  * @prio:       the userspace priority level
410  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
411  * @sched_prio: [out] the gpu scheduler priority level which the userspace
412  *              priority maps to
413  *
414  * With drm/scheduler providing it's own level of prioritization, our total
415  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
416  * Each ring is associated with it's own scheduler instance.  However, our
417  * UABI is that lower numerical values are higher priority.  So mapping the
418  * single userspace priority level into ring_nr and sched_prio takes some
419  * care.  The userspace provided priority (when a submitqueue is created)
420  * is mapped to ring nr and scheduler priority as such:
421  *
422  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
423  *   sched_prio = NR_SCHED_PRIORITIES -
424  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
425  *
426  * This allows generations without preemption (nr_rings==1) to have some
427  * amount of prioritization, and provides more priority levels for gens
428  * that do have preemption.
429  */
430 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
431 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
432 {
433 	unsigned rn, sp;
434 
435 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
436 
437 	/* invert sched priority to map to higher-numeric-is-higher-
438 	 * priority convention
439 	 */
440 	sp = NR_SCHED_PRIORITIES - sp - 1;
441 
442 	if (rn >= gpu->nr_rings)
443 		return -EINVAL;
444 
445 	*ring_nr = rn;
446 	*sched_prio = sp;
447 
448 	return 0;
449 }
450 
451 /**
452  * struct msm_gpu_submitqueues - Userspace created context.
453  *
454  * A submitqueue is associated with a gl context or vk queue (or equiv)
455  * in userspace.
456  *
457  * @id:        userspace id for the submitqueue, unique within the drm_file
458  * @flags:     userspace flags for the submitqueue, specified at creation
459  *             (currently unusued)
460  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
461  *             by the submitqueue's priority
462  * @faults:    the number of GPU hangs associated with this submitqueue
463  * @last_fence: the sequence number of the last allocated fence (for error
464  *             checking)
465  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
466  *             which set of pgtables do submits jobs associated with the
467  *             submitqueue use)
468  * @node:      node in the context's list of submitqueues
469  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
470  *             seqno, protected by submitqueue lock
471  * @idr_lock:  for serializing access to fence_idr
472  * @lock:      submitqueue lock for serializing submits on a queue
473  * @ref:       reference count
474  * @entity:    the submit job-queue
475  */
476 struct msm_gpu_submitqueue {
477 	int id;
478 	u32 flags;
479 	u32 ring_nr;
480 	int faults;
481 	uint32_t last_fence;
482 	struct msm_file_private *ctx;
483 	struct list_head node;
484 	struct idr fence_idr;
485 	struct mutex idr_lock;
486 	struct mutex lock;
487 	struct kref ref;
488 	struct drm_sched_entity *entity;
489 };
490 
491 struct msm_gpu_state_bo {
492 	u64 iova;
493 	size_t size;
494 	void *data;
495 	bool encoded;
496 	char name[32];
497 };
498 
499 struct msm_gpu_state {
500 	struct kref ref;
501 	struct timespec64 time;
502 
503 	struct {
504 		u64 iova;
505 		u32 fence;
506 		u32 seqno;
507 		u32 rptr;
508 		u32 wptr;
509 		void *data;
510 		int data_size;
511 		bool encoded;
512 	} ring[MSM_GPU_MAX_RINGS];
513 
514 	int nr_registers;
515 	u32 *registers;
516 
517 	u32 rbbm_status;
518 
519 	char *comm;
520 	char *cmd;
521 
522 	struct msm_gpu_fault_info fault_info;
523 
524 	int nr_bos;
525 	struct msm_gpu_state_bo *bos;
526 };
527 
528 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
529 {
530 	msm_writel(data, gpu->mmio + (reg << 2));
531 }
532 
533 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
534 {
535 	return msm_readl(gpu->mmio + (reg << 2));
536 }
537 
538 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
539 {
540 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
541 }
542 
543 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
544 {
545 	u64 val;
546 
547 	/*
548 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
549 	 * not quad word aligned and 2) the GPU hardware designers have a bit
550 	 * of a history of putting registers where they fit, especially in
551 	 * spins. The longer a GPU family goes the higher the chance that
552 	 * we'll get burned.  We could do a series of validity checks if we
553 	 * wanted to, but really is a readq() that much better? Nah.
554 	 */
555 
556 	/*
557 	 * For some lo/hi registers (like perfcounters), the hi value is latched
558 	 * when the lo is read, so make sure to read the lo first to trigger
559 	 * that
560 	 */
561 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
562 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
563 
564 	return val;
565 }
566 
567 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
568 {
569 	/* Why not a writeq here? Read the screed above */
570 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
571 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
572 }
573 
574 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
575 int msm_gpu_pm_resume(struct msm_gpu *gpu);
576 
577 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
578 			 struct drm_printer *p);
579 
580 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
581 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
582 		u32 id);
583 int msm_submitqueue_create(struct drm_device *drm,
584 		struct msm_file_private *ctx,
585 		u32 prio, u32 flags, u32 *id);
586 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
587 		struct drm_msm_submitqueue_query *args);
588 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
589 void msm_submitqueue_close(struct msm_file_private *ctx);
590 
591 void msm_submitqueue_destroy(struct kref *kref);
592 
593 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
594 				 struct msm_gpu *gpu, int sysprof);
595 void __msm_file_private_destroy(struct kref *kref);
596 
597 static inline void msm_file_private_put(struct msm_file_private *ctx)
598 {
599 	kref_put(&ctx->ref, __msm_file_private_destroy);
600 }
601 
602 static inline struct msm_file_private *msm_file_private_get(
603 	struct msm_file_private *ctx)
604 {
605 	kref_get(&ctx->ref);
606 	return ctx;
607 }
608 
609 void msm_devfreq_init(struct msm_gpu *gpu);
610 void msm_devfreq_cleanup(struct msm_gpu *gpu);
611 void msm_devfreq_resume(struct msm_gpu *gpu);
612 void msm_devfreq_suspend(struct msm_gpu *gpu);
613 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
614 void msm_devfreq_active(struct msm_gpu *gpu);
615 void msm_devfreq_idle(struct msm_gpu *gpu);
616 
617 int msm_gpu_hw_init(struct msm_gpu *gpu);
618 
619 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
620 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
621 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
622 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
623 
624 void msm_gpu_retire(struct msm_gpu *gpu);
625 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
626 
627 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
628 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
629 		const char *name, struct msm_gpu_config *config);
630 
631 struct msm_gem_address_space *
632 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
633 
634 void msm_gpu_cleanup(struct msm_gpu *gpu);
635 
636 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
637 void __init adreno_register(void);
638 void __exit adreno_unregister(void);
639 
640 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
641 {
642 	if (queue)
643 		kref_put(&queue->ref, msm_submitqueue_destroy);
644 }
645 
646 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
647 {
648 	struct msm_gpu_state *state = NULL;
649 
650 	mutex_lock(&gpu->lock);
651 
652 	if (gpu->crashstate) {
653 		kref_get(&gpu->crashstate->ref);
654 		state = gpu->crashstate;
655 	}
656 
657 	mutex_unlock(&gpu->lock);
658 
659 	return state;
660 }
661 
662 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
663 {
664 	mutex_lock(&gpu->lock);
665 
666 	if (gpu->crashstate) {
667 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
668 			gpu->crashstate = NULL;
669 	}
670 
671 	mutex_unlock(&gpu->lock);
672 }
673 
674 /*
675  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
676  * support expanded privileges
677  */
678 #define check_apriv(gpu, flags) \
679 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
680 
681 
682 #endif /* __MSM_GPU_H__ */
683