1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/interconnect.h> 13 #include <linux/pm_opp.h> 14 #include <linux/regulator/consumer.h> 15 16 #include "msm_drv.h" 17 #include "msm_fence.h" 18 #include "msm_ringbuffer.h" 19 #include "msm_gem.h" 20 21 struct msm_gem_submit; 22 struct msm_gpu_perfcntr; 23 struct msm_gpu_state; 24 25 struct msm_gpu_config { 26 const char *ioname; 27 unsigned int nr_rings; 28 }; 29 30 /* So far, with hardware that I've seen to date, we can have: 31 * + zero, one, or two z180 2d cores 32 * + a3xx or a2xx 3d core, which share a common CP (the firmware 33 * for the CP seems to implement some different PM4 packet types 34 * but the basics of cmdstream submission are the same) 35 * 36 * Which means that the eventual complete "class" hierarchy, once 37 * support for all past and present hw is in place, becomes: 38 * + msm_gpu 39 * + adreno_gpu 40 * + a3xx_gpu 41 * + a2xx_gpu 42 * + z180_gpu 43 */ 44 struct msm_gpu_funcs { 45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 46 int (*hw_init)(struct msm_gpu *gpu); 47 int (*pm_suspend)(struct msm_gpu *gpu); 48 int (*pm_resume)(struct msm_gpu *gpu); 49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 51 irqreturn_t (*irq)(struct msm_gpu *irq); 52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 53 void (*recover)(struct msm_gpu *gpu); 54 void (*destroy)(struct msm_gpu *gpu); 55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 56 /* show GPU status in debugfs: */ 57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 58 struct drm_printer *p); 59 /* for generation specific debugfs: */ 60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 61 #endif 62 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 64 int (*gpu_state_put)(struct msm_gpu_state *state); 65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 67 struct msm_gem_address_space *(*create_address_space) 68 (struct msm_gpu *gpu, struct platform_device *pdev); 69 struct msm_gem_address_space *(*create_private_address_space) 70 (struct msm_gpu *gpu); 71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 72 }; 73 74 /* Additional state for iommu faults: */ 75 struct msm_gpu_fault_info { 76 u64 ttbr0; 77 unsigned long iova; 78 int flags; 79 const char *type; 80 const char *block; 81 }; 82 83 /** 84 * struct msm_gpu_devfreq - devfreq related state 85 */ 86 struct msm_gpu_devfreq { 87 /** devfreq: devfreq instance */ 88 struct devfreq *devfreq; 89 90 /** 91 * busy_cycles: 92 * 93 * Used by implementation of gpu->gpu_busy() to track the last 94 * busy counter value, for calculating elapsed busy cycles since 95 * last sampling period. 96 */ 97 u64 busy_cycles; 98 99 /** time: Time of last sampling period. */ 100 ktime_t time; 101 102 /** idle_time: Time of last transition to idle: */ 103 ktime_t idle_time; 104 105 /** 106 * idle_freq: 107 * 108 * Shadow frequency used while the GPU is idle. From the PoV of 109 * the devfreq governor, we are continuing to sample busyness and 110 * adjust frequency while the GPU is idle, but we use this shadow 111 * value as the GPU is actually clamped to minimum frequency while 112 * it is inactive. 113 */ 114 unsigned long idle_freq; 115 }; 116 117 struct msm_gpu { 118 const char *name; 119 struct drm_device *dev; 120 struct platform_device *pdev; 121 const struct msm_gpu_funcs *funcs; 122 123 struct adreno_smmu_priv adreno_smmu; 124 125 /* performance counters (hw & sw): */ 126 spinlock_t perf_lock; 127 bool perfcntr_active; 128 struct { 129 bool active; 130 ktime_t time; 131 } last_sample; 132 uint32_t totaltime, activetime; /* sw counters */ 133 uint32_t last_cntrs[5]; /* hw counters */ 134 const struct msm_gpu_perfcntr *perfcntrs; 135 uint32_t num_perfcntrs; 136 137 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 138 int nr_rings; 139 140 /* 141 * List of GEM active objects on this gpu. Protected by 142 * msm_drm_private::mm_lock 143 */ 144 struct list_head active_list; 145 146 /** 147 * active_submits: 148 * 149 * The number of submitted but not yet retired submits, used to 150 * determine transitions between active and idle. 151 * 152 * Protected by lock 153 */ 154 int active_submits; 155 156 /** lock: protects active_submits and idle/active transitions */ 157 struct mutex active_lock; 158 159 /* does gpu need hw_init? */ 160 bool needs_hw_init; 161 162 /* number of GPU hangs (for all contexts) */ 163 int global_faults; 164 165 void __iomem *mmio; 166 int irq; 167 168 struct msm_gem_address_space *aspace; 169 170 /* Power Control: */ 171 struct regulator *gpu_reg, *gpu_cx; 172 struct clk_bulk_data *grp_clks; 173 int nr_clocks; 174 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 175 uint32_t fast_rate; 176 177 /* Hang and Inactivity Detection: 178 */ 179 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 180 181 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 182 struct timer_list hangcheck_timer; 183 184 /* Fault info for most recent iova fault: */ 185 struct msm_gpu_fault_info fault_info; 186 187 /* work for handling GPU ioval faults: */ 188 struct kthread_work fault_work; 189 190 /* work for handling GPU recovery: */ 191 struct kthread_work recover_work; 192 193 /* work for handling active-list retiring: */ 194 struct kthread_work retire_work; 195 196 /* worker for retire/recover: */ 197 struct kthread_worker *worker; 198 199 struct drm_gem_object *memptrs_bo; 200 201 struct msm_gpu_devfreq devfreq; 202 203 uint32_t suspend_count; 204 205 struct msm_gpu_state *crashstate; 206 207 /* Enable clamping to idle freq when inactive: */ 208 bool clamp_to_idle; 209 210 /* True if the hardware supports expanded apriv (a650 and newer) */ 211 bool hw_apriv; 212 213 struct thermal_cooling_device *cooling; 214 }; 215 216 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 217 { 218 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 219 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 220 } 221 222 /* It turns out that all targets use the same ringbuffer size */ 223 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 224 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 225 226 #define MSM_GPU_RB_CNTL_DEFAULT \ 227 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 228 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 229 230 static inline bool msm_gpu_active(struct msm_gpu *gpu) 231 { 232 int i; 233 234 for (i = 0; i < gpu->nr_rings; i++) { 235 struct msm_ringbuffer *ring = gpu->rb[i]; 236 237 if (ring->seqno > ring->memptrs->fence) 238 return true; 239 } 240 241 return false; 242 } 243 244 /* Perf-Counters: 245 * The select_reg and select_val are just there for the benefit of the child 246 * class that actually enables the perf counter.. but msm_gpu base class 247 * will handle sampling/displaying the counters. 248 */ 249 250 struct msm_gpu_perfcntr { 251 uint32_t select_reg; 252 uint32_t sample_reg; 253 uint32_t select_val; 254 const char *name; 255 }; 256 257 /* 258 * The number of priority levels provided by drm gpu scheduler. The 259 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 260 * cases, so we don't use it (no need for kernel generated jobs). 261 */ 262 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 263 264 /** 265 * struct msm_file_private - per-drm_file context 266 * 267 * @queuelock: synchronizes access to submitqueues list 268 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 269 * @queueid: counter incremented each time a submitqueue is created, 270 * used to assign &msm_gpu_submitqueue.id 271 * @aspace: the per-process GPU address-space 272 * @ref: reference count 273 * @seqno: unique per process seqno 274 */ 275 struct msm_file_private { 276 rwlock_t queuelock; 277 struct list_head submitqueues; 278 int queueid; 279 struct msm_gem_address_space *aspace; 280 struct kref ref; 281 int seqno; 282 283 /** 284 * entities: 285 * 286 * Table of per-priority-level sched entities used by submitqueues 287 * associated with this &drm_file. Because some userspace apps 288 * make assumptions about rendering from multiple gl contexts 289 * (of the same priority) within the process happening in FIFO 290 * order without requiring any fencing beyond MakeCurrent(), we 291 * create at most one &drm_sched_entity per-process per-priority- 292 * level. 293 */ 294 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 295 }; 296 297 /** 298 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 299 * 300 * @gpu: the gpu instance 301 * @prio: the userspace priority level 302 * @ring_nr: [out] the ringbuffer the userspace priority maps to 303 * @sched_prio: [out] the gpu scheduler priority level which the userspace 304 * priority maps to 305 * 306 * With drm/scheduler providing it's own level of prioritization, our total 307 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 308 * Each ring is associated with it's own scheduler instance. However, our 309 * UABI is that lower numerical values are higher priority. So mapping the 310 * single userspace priority level into ring_nr and sched_prio takes some 311 * care. The userspace provided priority (when a submitqueue is created) 312 * is mapped to ring nr and scheduler priority as such: 313 * 314 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 315 * sched_prio = NR_SCHED_PRIORITIES - 316 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 317 * 318 * This allows generations without preemption (nr_rings==1) to have some 319 * amount of prioritization, and provides more priority levels for gens 320 * that do have preemption. 321 */ 322 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 323 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 324 { 325 unsigned rn, sp; 326 327 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 328 329 /* invert sched priority to map to higher-numeric-is-higher- 330 * priority convention 331 */ 332 sp = NR_SCHED_PRIORITIES - sp - 1; 333 334 if (rn >= gpu->nr_rings) 335 return -EINVAL; 336 337 *ring_nr = rn; 338 *sched_prio = sp; 339 340 return 0; 341 } 342 343 /** 344 * struct msm_gpu_submitqueues - Userspace created context. 345 * 346 * A submitqueue is associated with a gl context or vk queue (or equiv) 347 * in userspace. 348 * 349 * @id: userspace id for the submitqueue, unique within the drm_file 350 * @flags: userspace flags for the submitqueue, specified at creation 351 * (currently unusued) 352 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 353 * by the submitqueue's priority 354 * @faults: the number of GPU hangs associated with this submitqueue 355 * @ctx: the per-drm_file context associated with the submitqueue (ie. 356 * which set of pgtables do submits jobs associated with the 357 * submitqueue use) 358 * @node: node in the context's list of submitqueues 359 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 360 * seqno, protected by submitqueue lock 361 * @lock: submitqueue lock 362 * @ref: reference count 363 * @entity: the submit job-queue 364 */ 365 struct msm_gpu_submitqueue { 366 int id; 367 u32 flags; 368 u32 ring_nr; 369 int faults; 370 struct msm_file_private *ctx; 371 struct list_head node; 372 struct idr fence_idr; 373 struct mutex lock; 374 struct kref ref; 375 struct drm_sched_entity *entity; 376 }; 377 378 struct msm_gpu_state_bo { 379 u64 iova; 380 size_t size; 381 void *data; 382 bool encoded; 383 }; 384 385 struct msm_gpu_state { 386 struct kref ref; 387 struct timespec64 time; 388 389 struct { 390 u64 iova; 391 u32 fence; 392 u32 seqno; 393 u32 rptr; 394 u32 wptr; 395 void *data; 396 int data_size; 397 bool encoded; 398 } ring[MSM_GPU_MAX_RINGS]; 399 400 int nr_registers; 401 u32 *registers; 402 403 u32 rbbm_status; 404 405 char *comm; 406 char *cmd; 407 408 struct msm_gpu_fault_info fault_info; 409 410 int nr_bos; 411 struct msm_gpu_state_bo *bos; 412 }; 413 414 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 415 { 416 msm_writel(data, gpu->mmio + (reg << 2)); 417 } 418 419 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 420 { 421 return msm_readl(gpu->mmio + (reg << 2)); 422 } 423 424 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 425 { 426 msm_rmw(gpu->mmio + (reg << 2), mask, or); 427 } 428 429 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 430 { 431 u64 val; 432 433 /* 434 * Why not a readq here? Two reasons: 1) many of the LO registers are 435 * not quad word aligned and 2) the GPU hardware designers have a bit 436 * of a history of putting registers where they fit, especially in 437 * spins. The longer a GPU family goes the higher the chance that 438 * we'll get burned. We could do a series of validity checks if we 439 * wanted to, but really is a readq() that much better? Nah. 440 */ 441 442 /* 443 * For some lo/hi registers (like perfcounters), the hi value is latched 444 * when the lo is read, so make sure to read the lo first to trigger 445 * that 446 */ 447 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 448 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 449 450 return val; 451 } 452 453 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 454 { 455 /* Why not a writeq here? Read the screed above */ 456 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 457 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 458 } 459 460 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 461 int msm_gpu_pm_resume(struct msm_gpu *gpu); 462 463 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 464 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 465 u32 id); 466 int msm_submitqueue_create(struct drm_device *drm, 467 struct msm_file_private *ctx, 468 u32 prio, u32 flags, u32 *id); 469 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 470 struct drm_msm_submitqueue_query *args); 471 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 472 void msm_submitqueue_close(struct msm_file_private *ctx); 473 474 void msm_submitqueue_destroy(struct kref *kref); 475 476 void __msm_file_private_destroy(struct kref *kref); 477 478 static inline void msm_file_private_put(struct msm_file_private *ctx) 479 { 480 kref_put(&ctx->ref, __msm_file_private_destroy); 481 } 482 483 static inline struct msm_file_private *msm_file_private_get( 484 struct msm_file_private *ctx) 485 { 486 kref_get(&ctx->ref); 487 return ctx; 488 } 489 490 void msm_devfreq_init(struct msm_gpu *gpu); 491 void msm_devfreq_cleanup(struct msm_gpu *gpu); 492 void msm_devfreq_resume(struct msm_gpu *gpu); 493 void msm_devfreq_suspend(struct msm_gpu *gpu); 494 void msm_devfreq_active(struct msm_gpu *gpu); 495 void msm_devfreq_idle(struct msm_gpu *gpu); 496 497 int msm_gpu_hw_init(struct msm_gpu *gpu); 498 499 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 500 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 501 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 502 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 503 504 void msm_gpu_retire(struct msm_gpu *gpu); 505 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 506 507 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 508 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 509 const char *name, struct msm_gpu_config *config); 510 511 struct msm_gem_address_space * 512 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 513 514 void msm_gpu_cleanup(struct msm_gpu *gpu); 515 516 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 517 void __init adreno_register(void); 518 void __exit adreno_unregister(void); 519 520 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 521 { 522 if (queue) 523 kref_put(&queue->ref, msm_submitqueue_destroy); 524 } 525 526 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 527 { 528 struct msm_gpu_state *state = NULL; 529 530 mutex_lock(&gpu->dev->struct_mutex); 531 532 if (gpu->crashstate) { 533 kref_get(&gpu->crashstate->ref); 534 state = gpu->crashstate; 535 } 536 537 mutex_unlock(&gpu->dev->struct_mutex); 538 539 return state; 540 } 541 542 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 543 { 544 mutex_lock(&gpu->dev->struct_mutex); 545 546 if (gpu->crashstate) { 547 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 548 gpu->crashstate = NULL; 549 } 550 551 mutex_unlock(&gpu->dev->struct_mutex); 552 } 553 554 /* 555 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 556 * support expanded privileges 557 */ 558 #define check_apriv(gpu, flags) \ 559 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 560 561 562 #endif /* __MSM_GPU_H__ */ 563