1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/reset.h> 17 18 #include "msm_drv.h" 19 #include "msm_fence.h" 20 #include "msm_ringbuffer.h" 21 #include "msm_gem.h" 22 23 struct msm_gem_submit; 24 struct msm_gpu_perfcntr; 25 struct msm_gpu_state; 26 struct msm_file_private; 27 28 struct msm_gpu_config { 29 const char *ioname; 30 unsigned int nr_rings; 31 }; 32 33 /* So far, with hardware that I've seen to date, we can have: 34 * + zero, one, or two z180 2d cores 35 * + a3xx or a2xx 3d core, which share a common CP (the firmware 36 * for the CP seems to implement some different PM4 packet types 37 * but the basics of cmdstream submission are the same) 38 * 39 * Which means that the eventual complete "class" hierarchy, once 40 * support for all past and present hw is in place, becomes: 41 * + msm_gpu 42 * + adreno_gpu 43 * + a3xx_gpu 44 * + a2xx_gpu 45 * + z180_gpu 46 */ 47 struct msm_gpu_funcs { 48 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 49 uint32_t param, uint64_t *value, uint32_t *len); 50 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 51 uint32_t param, uint64_t value, uint32_t len); 52 int (*hw_init)(struct msm_gpu *gpu); 53 int (*pm_suspend)(struct msm_gpu *gpu); 54 int (*pm_resume)(struct msm_gpu *gpu); 55 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 56 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 57 irqreturn_t (*irq)(struct msm_gpu *irq); 58 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 59 void (*recover)(struct msm_gpu *gpu); 60 void (*destroy)(struct msm_gpu *gpu); 61 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 62 /* show GPU status in debugfs: */ 63 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 64 struct drm_printer *p); 65 /* for generation specific debugfs: */ 66 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 67 #endif 68 /* note: gpu_busy() can assume that we have been pm_resumed */ 69 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 70 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 71 int (*gpu_state_put)(struct msm_gpu_state *state); 72 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 73 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 74 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 75 bool suspended); 76 struct msm_gem_address_space *(*create_address_space) 77 (struct msm_gpu *gpu, struct platform_device *pdev); 78 struct msm_gem_address_space *(*create_private_address_space) 79 (struct msm_gpu *gpu); 80 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 81 82 /** 83 * progress: Has the GPU made progress? 84 * 85 * Return true if GPU position in cmdstream has advanced (or changed) 86 * since the last call. To avoid false negatives, this should account 87 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 88 */ 89 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 90 }; 91 92 /* Additional state for iommu faults: */ 93 struct msm_gpu_fault_info { 94 u64 ttbr0; 95 unsigned long iova; 96 int flags; 97 const char *type; 98 const char *block; 99 }; 100 101 /** 102 * struct msm_gpu_devfreq - devfreq related state 103 */ 104 struct msm_gpu_devfreq { 105 /** devfreq: devfreq instance */ 106 struct devfreq *devfreq; 107 108 /** lock: lock for "suspended", "busy_cycles", and "time" */ 109 struct mutex lock; 110 111 /** 112 * idle_freq: 113 * 114 * Shadow frequency used while the GPU is idle. From the PoV of 115 * the devfreq governor, we are continuing to sample busyness and 116 * adjust frequency while the GPU is idle, but we use this shadow 117 * value as the GPU is actually clamped to minimum frequency while 118 * it is inactive. 119 */ 120 unsigned long idle_freq; 121 122 /** 123 * boost_constraint: 124 * 125 * A PM QoS constraint to boost min freq for a period of time 126 * until the boost expires. 127 */ 128 struct dev_pm_qos_request boost_freq; 129 130 /** 131 * busy_cycles: Last busy counter value, for calculating elapsed busy 132 * cycles since last sampling period. 133 */ 134 u64 busy_cycles; 135 136 /** time: Time of last sampling period. */ 137 ktime_t time; 138 139 /** idle_time: Time of last transition to idle: */ 140 ktime_t idle_time; 141 142 /** 143 * idle_work: 144 * 145 * Used to delay clamping to idle freq on active->idle transition. 146 */ 147 struct msm_hrtimer_work idle_work; 148 149 /** 150 * boost_work: 151 * 152 * Used to reset the boost_constraint after the boost period has 153 * elapsed 154 */ 155 struct msm_hrtimer_work boost_work; 156 157 /** suspended: tracks if we're suspended */ 158 bool suspended; 159 }; 160 161 struct msm_gpu { 162 const char *name; 163 struct drm_device *dev; 164 struct platform_device *pdev; 165 const struct msm_gpu_funcs *funcs; 166 167 struct adreno_smmu_priv adreno_smmu; 168 169 /* performance counters (hw & sw): */ 170 spinlock_t perf_lock; 171 bool perfcntr_active; 172 struct { 173 bool active; 174 ktime_t time; 175 } last_sample; 176 uint32_t totaltime, activetime; /* sw counters */ 177 uint32_t last_cntrs[5]; /* hw counters */ 178 const struct msm_gpu_perfcntr *perfcntrs; 179 uint32_t num_perfcntrs; 180 181 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 182 int nr_rings; 183 184 /** 185 * sysprof_active: 186 * 187 * The count of contexts that have enabled system profiling. 188 */ 189 refcount_t sysprof_active; 190 191 /** 192 * cur_ctx_seqno: 193 * 194 * The ctx->seqno value of the last context to submit rendering, 195 * and the one with current pgtables installed (for generations 196 * that support per-context pgtables). Tracked by seqno rather 197 * than pointer value to avoid dangling pointers, and cases where 198 * a ctx can be freed and a new one created with the same address. 199 */ 200 int cur_ctx_seqno; 201 202 /** 203 * lock: 204 * 205 * General lock for serializing all the gpu things. 206 * 207 * TODO move to per-ring locking where feasible (ie. submit/retire 208 * path, etc) 209 */ 210 struct mutex lock; 211 212 /** 213 * active_submits: 214 * 215 * The number of submitted but not yet retired submits, used to 216 * determine transitions between active and idle. 217 * 218 * Protected by active_lock 219 */ 220 int active_submits; 221 222 /** lock: protects active_submits and idle/active transitions */ 223 struct mutex active_lock; 224 225 /* does gpu need hw_init? */ 226 bool needs_hw_init; 227 228 /** 229 * global_faults: number of GPU hangs not attributed to a particular 230 * address space 231 */ 232 int global_faults; 233 234 void __iomem *mmio; 235 int irq; 236 237 struct msm_gem_address_space *aspace; 238 239 /* Power Control: */ 240 struct regulator *gpu_reg, *gpu_cx; 241 struct clk_bulk_data *grp_clks; 242 int nr_clocks; 243 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 244 uint32_t fast_rate; 245 246 /* Hang and Inactivity Detection: 247 */ 248 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 249 250 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 251 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 252 struct timer_list hangcheck_timer; 253 254 /* Fault info for most recent iova fault: */ 255 struct msm_gpu_fault_info fault_info; 256 257 /* work for handling GPU ioval faults: */ 258 struct kthread_work fault_work; 259 260 /* work for handling GPU recovery: */ 261 struct kthread_work recover_work; 262 263 /** retire_event: notified when submits are retired: */ 264 wait_queue_head_t retire_event; 265 266 /* work for handling active-list retiring: */ 267 struct kthread_work retire_work; 268 269 /* worker for retire/recover: */ 270 struct kthread_worker *worker; 271 272 struct drm_gem_object *memptrs_bo; 273 274 struct msm_gpu_devfreq devfreq; 275 276 uint32_t suspend_count; 277 278 struct msm_gpu_state *crashstate; 279 280 /* True if the hardware supports expanded apriv (a650 and newer) */ 281 bool hw_apriv; 282 283 struct thermal_cooling_device *cooling; 284 285 /* To poll for cx gdsc collapse during gpu recovery */ 286 struct reset_control *cx_collapse; 287 }; 288 289 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 290 { 291 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 292 293 if (!adreno_smmu) 294 return NULL; 295 296 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 297 } 298 299 /* It turns out that all targets use the same ringbuffer size */ 300 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 301 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 302 303 #define MSM_GPU_RB_CNTL_DEFAULT \ 304 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 305 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 306 307 static inline bool msm_gpu_active(struct msm_gpu *gpu) 308 { 309 int i; 310 311 for (i = 0; i < gpu->nr_rings; i++) { 312 struct msm_ringbuffer *ring = gpu->rb[i]; 313 314 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 315 return true; 316 } 317 318 return false; 319 } 320 321 /* Perf-Counters: 322 * The select_reg and select_val are just there for the benefit of the child 323 * class that actually enables the perf counter.. but msm_gpu base class 324 * will handle sampling/displaying the counters. 325 */ 326 327 struct msm_gpu_perfcntr { 328 uint32_t select_reg; 329 uint32_t sample_reg; 330 uint32_t select_val; 331 const char *name; 332 }; 333 334 /* 335 * The number of priority levels provided by drm gpu scheduler. The 336 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 337 * cases, so we don't use it (no need for kernel generated jobs). 338 */ 339 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 340 341 /** 342 * struct msm_file_private - per-drm_file context 343 * 344 * @queuelock: synchronizes access to submitqueues list 345 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 346 * @queueid: counter incremented each time a submitqueue is created, 347 * used to assign &msm_gpu_submitqueue.id 348 * @aspace: the per-process GPU address-space 349 * @ref: reference count 350 * @seqno: unique per process seqno 351 */ 352 struct msm_file_private { 353 rwlock_t queuelock; 354 struct list_head submitqueues; 355 int queueid; 356 struct msm_gem_address_space *aspace; 357 struct kref ref; 358 int seqno; 359 360 /** 361 * sysprof: 362 * 363 * The value of MSM_PARAM_SYSPROF set by userspace. This is 364 * intended to be used by system profiling tools like Mesa's 365 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 366 * 367 * Setting a value of 1 will preserve performance counters across 368 * context switches. Setting a value of 2 will in addition 369 * suppress suspend. (Performance counters lose state across 370 * power collapse, which is undesirable for profiling in some 371 * cases.) 372 * 373 * The value automatically reverts to zero when the drm device 374 * file is closed. 375 */ 376 int sysprof; 377 378 /** 379 * comm: Overridden task comm, see MSM_PARAM_COMM 380 * 381 * Accessed under msm_gpu::lock 382 */ 383 char *comm; 384 385 /** 386 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 387 * 388 * Accessed under msm_gpu::lock 389 */ 390 char *cmdline; 391 392 /** 393 * elapsed: 394 * 395 * The total (cumulative) elapsed time GPU was busy with rendering 396 * from this context in ns. 397 */ 398 uint64_t elapsed_ns; 399 400 /** 401 * cycles: 402 * 403 * The total (cumulative) GPU cycles elapsed attributed to this 404 * context. 405 */ 406 uint64_t cycles; 407 408 /** 409 * entities: 410 * 411 * Table of per-priority-level sched entities used by submitqueues 412 * associated with this &drm_file. Because some userspace apps 413 * make assumptions about rendering from multiple gl contexts 414 * (of the same priority) within the process happening in FIFO 415 * order without requiring any fencing beyond MakeCurrent(), we 416 * create at most one &drm_sched_entity per-process per-priority- 417 * level. 418 */ 419 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 420 }; 421 422 /** 423 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 424 * 425 * @gpu: the gpu instance 426 * @prio: the userspace priority level 427 * @ring_nr: [out] the ringbuffer the userspace priority maps to 428 * @sched_prio: [out] the gpu scheduler priority level which the userspace 429 * priority maps to 430 * 431 * With drm/scheduler providing it's own level of prioritization, our total 432 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 433 * Each ring is associated with it's own scheduler instance. However, our 434 * UABI is that lower numerical values are higher priority. So mapping the 435 * single userspace priority level into ring_nr and sched_prio takes some 436 * care. The userspace provided priority (when a submitqueue is created) 437 * is mapped to ring nr and scheduler priority as such: 438 * 439 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 440 * sched_prio = NR_SCHED_PRIORITIES - 441 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 442 * 443 * This allows generations without preemption (nr_rings==1) to have some 444 * amount of prioritization, and provides more priority levels for gens 445 * that do have preemption. 446 */ 447 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 448 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 449 { 450 unsigned rn, sp; 451 452 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 453 454 /* invert sched priority to map to higher-numeric-is-higher- 455 * priority convention 456 */ 457 sp = NR_SCHED_PRIORITIES - sp - 1; 458 459 if (rn >= gpu->nr_rings) 460 return -EINVAL; 461 462 *ring_nr = rn; 463 *sched_prio = sp; 464 465 return 0; 466 } 467 468 /** 469 * struct msm_gpu_submitqueues - Userspace created context. 470 * 471 * A submitqueue is associated with a gl context or vk queue (or equiv) 472 * in userspace. 473 * 474 * @id: userspace id for the submitqueue, unique within the drm_file 475 * @flags: userspace flags for the submitqueue, specified at creation 476 * (currently unusued) 477 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 478 * by the submitqueue's priority 479 * @faults: the number of GPU hangs associated with this submitqueue 480 * @last_fence: the sequence number of the last allocated fence (for error 481 * checking) 482 * @ctx: the per-drm_file context associated with the submitqueue (ie. 483 * which set of pgtables do submits jobs associated with the 484 * submitqueue use) 485 * @node: node in the context's list of submitqueues 486 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 487 * seqno, protected by submitqueue lock 488 * @idr_lock: for serializing access to fence_idr 489 * @lock: submitqueue lock for serializing submits on a queue 490 * @ref: reference count 491 * @entity: the submit job-queue 492 */ 493 struct msm_gpu_submitqueue { 494 int id; 495 u32 flags; 496 u32 ring_nr; 497 int faults; 498 uint32_t last_fence; 499 struct msm_file_private *ctx; 500 struct list_head node; 501 struct idr fence_idr; 502 struct mutex idr_lock; 503 struct mutex lock; 504 struct kref ref; 505 struct drm_sched_entity *entity; 506 }; 507 508 struct msm_gpu_state_bo { 509 u64 iova; 510 size_t size; 511 void *data; 512 bool encoded; 513 char name[32]; 514 }; 515 516 struct msm_gpu_state { 517 struct kref ref; 518 struct timespec64 time; 519 520 struct { 521 u64 iova; 522 u32 fence; 523 u32 seqno; 524 u32 rptr; 525 u32 wptr; 526 void *data; 527 int data_size; 528 bool encoded; 529 } ring[MSM_GPU_MAX_RINGS]; 530 531 int nr_registers; 532 u32 *registers; 533 534 u32 rbbm_status; 535 536 char *comm; 537 char *cmd; 538 539 struct msm_gpu_fault_info fault_info; 540 541 int nr_bos; 542 struct msm_gpu_state_bo *bos; 543 }; 544 545 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 546 { 547 msm_writel(data, gpu->mmio + (reg << 2)); 548 } 549 550 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 551 { 552 return msm_readl(gpu->mmio + (reg << 2)); 553 } 554 555 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 556 { 557 msm_rmw(gpu->mmio + (reg << 2), mask, or); 558 } 559 560 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 561 { 562 u64 val; 563 564 /* 565 * Why not a readq here? Two reasons: 1) many of the LO registers are 566 * not quad word aligned and 2) the GPU hardware designers have a bit 567 * of a history of putting registers where they fit, especially in 568 * spins. The longer a GPU family goes the higher the chance that 569 * we'll get burned. We could do a series of validity checks if we 570 * wanted to, but really is a readq() that much better? Nah. 571 */ 572 573 /* 574 * For some lo/hi registers (like perfcounters), the hi value is latched 575 * when the lo is read, so make sure to read the lo first to trigger 576 * that 577 */ 578 val = (u64) msm_readl(gpu->mmio + (reg << 2)); 579 val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32); 580 581 return val; 582 } 583 584 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 585 { 586 /* Why not a writeq here? Read the screed above */ 587 msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 588 msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 589 } 590 591 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 592 int msm_gpu_pm_resume(struct msm_gpu *gpu); 593 594 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 595 struct drm_printer *p); 596 597 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 598 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 599 u32 id); 600 int msm_submitqueue_create(struct drm_device *drm, 601 struct msm_file_private *ctx, 602 u32 prio, u32 flags, u32 *id); 603 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 604 struct drm_msm_submitqueue_query *args); 605 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 606 void msm_submitqueue_close(struct msm_file_private *ctx); 607 608 void msm_submitqueue_destroy(struct kref *kref); 609 610 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 611 struct msm_gpu *gpu, int sysprof); 612 void __msm_file_private_destroy(struct kref *kref); 613 614 static inline void msm_file_private_put(struct msm_file_private *ctx) 615 { 616 kref_put(&ctx->ref, __msm_file_private_destroy); 617 } 618 619 static inline struct msm_file_private *msm_file_private_get( 620 struct msm_file_private *ctx) 621 { 622 kref_get(&ctx->ref); 623 return ctx; 624 } 625 626 void msm_devfreq_init(struct msm_gpu *gpu); 627 void msm_devfreq_cleanup(struct msm_gpu *gpu); 628 void msm_devfreq_resume(struct msm_gpu *gpu); 629 void msm_devfreq_suspend(struct msm_gpu *gpu); 630 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 631 void msm_devfreq_active(struct msm_gpu *gpu); 632 void msm_devfreq_idle(struct msm_gpu *gpu); 633 634 int msm_gpu_hw_init(struct msm_gpu *gpu); 635 636 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 637 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 638 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 639 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 640 641 void msm_gpu_retire(struct msm_gpu *gpu); 642 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 643 644 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 645 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 646 const char *name, struct msm_gpu_config *config); 647 648 struct msm_gem_address_space * 649 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 650 651 void msm_gpu_cleanup(struct msm_gpu *gpu); 652 653 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 654 void __init adreno_register(void); 655 void __exit adreno_unregister(void); 656 657 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 658 { 659 if (queue) 660 kref_put(&queue->ref, msm_submitqueue_destroy); 661 } 662 663 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 664 { 665 struct msm_gpu_state *state = NULL; 666 667 mutex_lock(&gpu->lock); 668 669 if (gpu->crashstate) { 670 kref_get(&gpu->crashstate->ref); 671 state = gpu->crashstate; 672 } 673 674 mutex_unlock(&gpu->lock); 675 676 return state; 677 } 678 679 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 680 { 681 mutex_lock(&gpu->lock); 682 683 if (gpu->crashstate) { 684 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 685 gpu->crashstate = NULL; 686 } 687 688 mutex_unlock(&gpu->lock); 689 } 690 691 /* 692 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 693 * support expanded privileges 694 */ 695 #define check_apriv(gpu, flags) \ 696 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 697 698 699 #endif /* __MSM_GPU_H__ */ 700