1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/reset.h> 17 18 #include "msm_drv.h" 19 #include "msm_fence.h" 20 #include "msm_ringbuffer.h" 21 #include "msm_gem.h" 22 23 struct msm_gem_submit; 24 struct msm_gpu_perfcntr; 25 struct msm_gpu_state; 26 struct msm_file_private; 27 28 struct msm_gpu_config { 29 const char *ioname; 30 unsigned int nr_rings; 31 }; 32 33 /* So far, with hardware that I've seen to date, we can have: 34 * + zero, one, or two z180 2d cores 35 * + a3xx or a2xx 3d core, which share a common CP (the firmware 36 * for the CP seems to implement some different PM4 packet types 37 * but the basics of cmdstream submission are the same) 38 * 39 * Which means that the eventual complete "class" hierarchy, once 40 * support for all past and present hw is in place, becomes: 41 * + msm_gpu 42 * + adreno_gpu 43 * + a3xx_gpu 44 * + a2xx_gpu 45 * + z180_gpu 46 */ 47 struct msm_gpu_funcs { 48 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 49 uint32_t param, uint64_t *value, uint32_t *len); 50 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 51 uint32_t param, uint64_t value, uint32_t len); 52 int (*hw_init)(struct msm_gpu *gpu); 53 int (*pm_suspend)(struct msm_gpu *gpu); 54 int (*pm_resume)(struct msm_gpu *gpu); 55 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 56 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 57 irqreturn_t (*irq)(struct msm_gpu *irq); 58 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 59 void (*recover)(struct msm_gpu *gpu); 60 void (*destroy)(struct msm_gpu *gpu); 61 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 62 /* show GPU status in debugfs: */ 63 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 64 struct drm_printer *p); 65 /* for generation specific debugfs: */ 66 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 67 #endif 68 /* note: gpu_busy() can assume that we have been pm_resumed */ 69 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 70 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 71 int (*gpu_state_put)(struct msm_gpu_state *state); 72 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 73 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 74 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 75 bool suspended); 76 struct msm_gem_address_space *(*create_address_space) 77 (struct msm_gpu *gpu, struct platform_device *pdev); 78 struct msm_gem_address_space *(*create_private_address_space) 79 (struct msm_gpu *gpu); 80 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 81 }; 82 83 /* Additional state for iommu faults: */ 84 struct msm_gpu_fault_info { 85 u64 ttbr0; 86 unsigned long iova; 87 int flags; 88 const char *type; 89 const char *block; 90 }; 91 92 /** 93 * struct msm_gpu_devfreq - devfreq related state 94 */ 95 struct msm_gpu_devfreq { 96 /** devfreq: devfreq instance */ 97 struct devfreq *devfreq; 98 99 /** lock: lock for "suspended", "busy_cycles", and "time" */ 100 struct mutex lock; 101 102 /** 103 * idle_constraint: 104 * 105 * A PM QoS constraint to limit max freq while the GPU is idle. 106 */ 107 struct dev_pm_qos_request idle_freq; 108 109 /** 110 * boost_constraint: 111 * 112 * A PM QoS constraint to boost min freq for a period of time 113 * until the boost expires. 114 */ 115 struct dev_pm_qos_request boost_freq; 116 117 /** 118 * busy_cycles: Last busy counter value, for calculating elapsed busy 119 * cycles since last sampling period. 120 */ 121 u64 busy_cycles; 122 123 /** time: Time of last sampling period. */ 124 ktime_t time; 125 126 /** idle_time: Time of last transition to idle: */ 127 ktime_t idle_time; 128 129 struct devfreq_dev_status average_status; 130 131 /** 132 * idle_work: 133 * 134 * Used to delay clamping to idle freq on active->idle transition. 135 */ 136 struct msm_hrtimer_work idle_work; 137 138 /** 139 * boost_work: 140 * 141 * Used to reset the boost_constraint after the boost period has 142 * elapsed 143 */ 144 struct msm_hrtimer_work boost_work; 145 146 /** suspended: tracks if we're suspended */ 147 bool suspended; 148 }; 149 150 struct msm_gpu { 151 const char *name; 152 struct drm_device *dev; 153 struct platform_device *pdev; 154 const struct msm_gpu_funcs *funcs; 155 156 struct adreno_smmu_priv adreno_smmu; 157 158 /* performance counters (hw & sw): */ 159 spinlock_t perf_lock; 160 bool perfcntr_active; 161 struct { 162 bool active; 163 ktime_t time; 164 } last_sample; 165 uint32_t totaltime, activetime; /* sw counters */ 166 uint32_t last_cntrs[5]; /* hw counters */ 167 const struct msm_gpu_perfcntr *perfcntrs; 168 uint32_t num_perfcntrs; 169 170 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 171 int nr_rings; 172 173 /** 174 * sysprof_active: 175 * 176 * The count of contexts that have enabled system profiling. 177 */ 178 refcount_t sysprof_active; 179 180 /** 181 * cur_ctx_seqno: 182 * 183 * The ctx->seqno value of the last context to submit rendering, 184 * and the one with current pgtables installed (for generations 185 * that support per-context pgtables). Tracked by seqno rather 186 * than pointer value to avoid dangling pointers, and cases where 187 * a ctx can be freed and a new one created with the same address. 188 */ 189 int cur_ctx_seqno; 190 191 /** 192 * lock: 193 * 194 * General lock for serializing all the gpu things. 195 * 196 * TODO move to per-ring locking where feasible (ie. submit/retire 197 * path, etc) 198 */ 199 struct mutex lock; 200 201 /** 202 * active_submits: 203 * 204 * The number of submitted but not yet retired submits, used to 205 * determine transitions between active and idle. 206 * 207 * Protected by active_lock 208 */ 209 int active_submits; 210 211 /** lock: protects active_submits and idle/active transitions */ 212 struct mutex active_lock; 213 214 /* does gpu need hw_init? */ 215 bool needs_hw_init; 216 217 /** 218 * global_faults: number of GPU hangs not attributed to a particular 219 * address space 220 */ 221 int global_faults; 222 223 void __iomem *mmio; 224 int irq; 225 226 struct msm_gem_address_space *aspace; 227 228 /* Power Control: */ 229 struct regulator *gpu_reg, *gpu_cx; 230 struct clk_bulk_data *grp_clks; 231 int nr_clocks; 232 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 233 uint32_t fast_rate; 234 235 /* Hang and Inactivity Detection: 236 */ 237 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 238 239 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 240 struct timer_list hangcheck_timer; 241 242 /* Fault info for most recent iova fault: */ 243 struct msm_gpu_fault_info fault_info; 244 245 /* work for handling GPU ioval faults: */ 246 struct kthread_work fault_work; 247 248 /* work for handling GPU recovery: */ 249 struct kthread_work recover_work; 250 251 /** retire_event: notified when submits are retired: */ 252 wait_queue_head_t retire_event; 253 254 /* work for handling active-list retiring: */ 255 struct kthread_work retire_work; 256 257 /* worker for retire/recover: */ 258 struct kthread_worker *worker; 259 260 struct drm_gem_object *memptrs_bo; 261 262 struct msm_gpu_devfreq devfreq; 263 264 uint32_t suspend_count; 265 266 struct msm_gpu_state *crashstate; 267 268 /* Enable clamping to idle freq when inactive: */ 269 bool clamp_to_idle; 270 271 /* True if the hardware supports expanded apriv (a650 and newer) */ 272 bool hw_apriv; 273 274 struct thermal_cooling_device *cooling; 275 276 /* To poll for cx gdsc collapse during gpu recovery */ 277 struct reset_control *cx_collapse; 278 }; 279 280 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 281 { 282 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 283 284 if (!adreno_smmu) 285 return NULL; 286 287 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 288 } 289 290 /* It turns out that all targets use the same ringbuffer size */ 291 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 292 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 293 294 #define MSM_GPU_RB_CNTL_DEFAULT \ 295 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 296 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 297 298 static inline bool msm_gpu_active(struct msm_gpu *gpu) 299 { 300 int i; 301 302 for (i = 0; i < gpu->nr_rings; i++) { 303 struct msm_ringbuffer *ring = gpu->rb[i]; 304 305 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 306 return true; 307 } 308 309 return false; 310 } 311 312 /* Perf-Counters: 313 * The select_reg and select_val are just there for the benefit of the child 314 * class that actually enables the perf counter.. but msm_gpu base class 315 * will handle sampling/displaying the counters. 316 */ 317 318 struct msm_gpu_perfcntr { 319 uint32_t select_reg; 320 uint32_t sample_reg; 321 uint32_t select_val; 322 const char *name; 323 }; 324 325 /* 326 * The number of priority levels provided by drm gpu scheduler. The 327 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 328 * cases, so we don't use it (no need for kernel generated jobs). 329 */ 330 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 331 332 /** 333 * struct msm_file_private - per-drm_file context 334 * 335 * @queuelock: synchronizes access to submitqueues list 336 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 337 * @queueid: counter incremented each time a submitqueue is created, 338 * used to assign &msm_gpu_submitqueue.id 339 * @aspace: the per-process GPU address-space 340 * @ref: reference count 341 * @seqno: unique per process seqno 342 */ 343 struct msm_file_private { 344 rwlock_t queuelock; 345 struct list_head submitqueues; 346 int queueid; 347 struct msm_gem_address_space *aspace; 348 struct kref ref; 349 int seqno; 350 351 /** 352 * sysprof: 353 * 354 * The value of MSM_PARAM_SYSPROF set by userspace. This is 355 * intended to be used by system profiling tools like Mesa's 356 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 357 * 358 * Setting a value of 1 will preserve performance counters across 359 * context switches. Setting a value of 2 will in addition 360 * suppress suspend. (Performance counters lose state across 361 * power collapse, which is undesirable for profiling in some 362 * cases.) 363 * 364 * The value automatically reverts to zero when the drm device 365 * file is closed. 366 */ 367 int sysprof; 368 369 /** comm: Overridden task comm, see MSM_PARAM_COMM */ 370 char *comm; 371 372 /** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */ 373 char *cmdline; 374 375 /** 376 * elapsed: 377 * 378 * The total (cumulative) elapsed time GPU was busy with rendering 379 * from this context in ns. 380 */ 381 uint64_t elapsed_ns; 382 383 /** 384 * cycles: 385 * 386 * The total (cumulative) GPU cycles elapsed attributed to this 387 * context. 388 */ 389 uint64_t cycles; 390 391 /** 392 * entities: 393 * 394 * Table of per-priority-level sched entities used by submitqueues 395 * associated with this &drm_file. Because some userspace apps 396 * make assumptions about rendering from multiple gl contexts 397 * (of the same priority) within the process happening in FIFO 398 * order without requiring any fencing beyond MakeCurrent(), we 399 * create at most one &drm_sched_entity per-process per-priority- 400 * level. 401 */ 402 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 403 }; 404 405 /** 406 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 407 * 408 * @gpu: the gpu instance 409 * @prio: the userspace priority level 410 * @ring_nr: [out] the ringbuffer the userspace priority maps to 411 * @sched_prio: [out] the gpu scheduler priority level which the userspace 412 * priority maps to 413 * 414 * With drm/scheduler providing it's own level of prioritization, our total 415 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 416 * Each ring is associated with it's own scheduler instance. However, our 417 * UABI is that lower numerical values are higher priority. So mapping the 418 * single userspace priority level into ring_nr and sched_prio takes some 419 * care. The userspace provided priority (when a submitqueue is created) 420 * is mapped to ring nr and scheduler priority as such: 421 * 422 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 423 * sched_prio = NR_SCHED_PRIORITIES - 424 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 425 * 426 * This allows generations without preemption (nr_rings==1) to have some 427 * amount of prioritization, and provides more priority levels for gens 428 * that do have preemption. 429 */ 430 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 431 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 432 { 433 unsigned rn, sp; 434 435 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 436 437 /* invert sched priority to map to higher-numeric-is-higher- 438 * priority convention 439 */ 440 sp = NR_SCHED_PRIORITIES - sp - 1; 441 442 if (rn >= gpu->nr_rings) 443 return -EINVAL; 444 445 *ring_nr = rn; 446 *sched_prio = sp; 447 448 return 0; 449 } 450 451 /** 452 * struct msm_gpu_submitqueues - Userspace created context. 453 * 454 * A submitqueue is associated with a gl context or vk queue (or equiv) 455 * in userspace. 456 * 457 * @id: userspace id for the submitqueue, unique within the drm_file 458 * @flags: userspace flags for the submitqueue, specified at creation 459 * (currently unusued) 460 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 461 * by the submitqueue's priority 462 * @faults: the number of GPU hangs associated with this submitqueue 463 * @last_fence: the sequence number of the last allocated fence (for error 464 * checking) 465 * @ctx: the per-drm_file context associated with the submitqueue (ie. 466 * which set of pgtables do submits jobs associated with the 467 * submitqueue use) 468 * @node: node in the context's list of submitqueues 469 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 470 * seqno, protected by submitqueue lock 471 * @idr_lock: for serializing access to fence_idr 472 * @lock: submitqueue lock for serializing submits on a queue 473 * @ref: reference count 474 * @entity: the submit job-queue 475 */ 476 struct msm_gpu_submitqueue { 477 int id; 478 u32 flags; 479 u32 ring_nr; 480 int faults; 481 uint32_t last_fence; 482 struct msm_file_private *ctx; 483 struct list_head node; 484 struct idr fence_idr; 485 struct mutex idr_lock; 486 struct mutex lock; 487 struct kref ref; 488 struct drm_sched_entity *entity; 489 }; 490 491 struct msm_gpu_state_bo { 492 u64 iova; 493 size_t size; 494 void *data; 495 bool encoded; 496 char name[32]; 497 }; 498 499 struct msm_gpu_state { 500 struct kref ref; 501 struct timespec64 time; 502 503 struct { 504 u64 iova; 505 u32 fence; 506 u32 seqno; 507 u32 rptr; 508 u32 wptr; 509 void *data; 510 int data_size; 511 bool encoded; 512 } ring[MSM_GPU_MAX_RINGS]; 513 514 int nr_registers; 515 u32 *registers; 516 517 u32 rbbm_status; 518 519 char *comm; 520 char *cmd; 521 522 struct msm_gpu_fault_info fault_info; 523 524 int nr_bos; 525 struct msm_gpu_state_bo *bos; 526 }; 527 528 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 529 { 530 msm_writel(data, gpu->mmio + (reg << 2)); 531 } 532 533 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 534 { 535 return msm_readl(gpu->mmio + (reg << 2)); 536 } 537 538 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 539 { 540 msm_rmw(gpu->mmio + (reg << 2), mask, or); 541 } 542 543 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 544 { 545 u64 val; 546 547 /* 548 * Why not a readq here? Two reasons: 1) many of the LO registers are 549 * not quad word aligned and 2) the GPU hardware designers have a bit 550 * of a history of putting registers where they fit, especially in 551 * spins. The longer a GPU family goes the higher the chance that 552 * we'll get burned. We could do a series of validity checks if we 553 * wanted to, but really is a readq() that much better? Nah. 554 */ 555 556 /* 557 * For some lo/hi registers (like perfcounters), the hi value is latched 558 * when the lo is read, so make sure to read the lo first to trigger 559 * that 560 */ 561 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 562 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 563 564 return val; 565 } 566 567 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 568 { 569 /* Why not a writeq here? Read the screed above */ 570 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 571 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 572 } 573 574 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 575 int msm_gpu_pm_resume(struct msm_gpu *gpu); 576 577 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 578 struct drm_printer *p); 579 580 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 581 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 582 u32 id); 583 int msm_submitqueue_create(struct drm_device *drm, 584 struct msm_file_private *ctx, 585 u32 prio, u32 flags, u32 *id); 586 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 587 struct drm_msm_submitqueue_query *args); 588 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 589 void msm_submitqueue_close(struct msm_file_private *ctx); 590 591 void msm_submitqueue_destroy(struct kref *kref); 592 593 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 594 struct msm_gpu *gpu, int sysprof); 595 void __msm_file_private_destroy(struct kref *kref); 596 597 static inline void msm_file_private_put(struct msm_file_private *ctx) 598 { 599 kref_put(&ctx->ref, __msm_file_private_destroy); 600 } 601 602 static inline struct msm_file_private *msm_file_private_get( 603 struct msm_file_private *ctx) 604 { 605 kref_get(&ctx->ref); 606 return ctx; 607 } 608 609 void msm_devfreq_init(struct msm_gpu *gpu); 610 void msm_devfreq_cleanup(struct msm_gpu *gpu); 611 void msm_devfreq_resume(struct msm_gpu *gpu); 612 void msm_devfreq_suspend(struct msm_gpu *gpu); 613 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 614 void msm_devfreq_active(struct msm_gpu *gpu); 615 void msm_devfreq_idle(struct msm_gpu *gpu); 616 617 int msm_gpu_hw_init(struct msm_gpu *gpu); 618 619 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 620 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 621 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 622 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 623 624 void msm_gpu_retire(struct msm_gpu *gpu); 625 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 626 627 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 628 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 629 const char *name, struct msm_gpu_config *config); 630 631 struct msm_gem_address_space * 632 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 633 634 void msm_gpu_cleanup(struct msm_gpu *gpu); 635 636 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 637 void __init adreno_register(void); 638 void __exit adreno_unregister(void); 639 640 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 641 { 642 if (queue) 643 kref_put(&queue->ref, msm_submitqueue_destroy); 644 } 645 646 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 647 { 648 struct msm_gpu_state *state = NULL; 649 650 mutex_lock(&gpu->lock); 651 652 if (gpu->crashstate) { 653 kref_get(&gpu->crashstate->ref); 654 state = gpu->crashstate; 655 } 656 657 mutex_unlock(&gpu->lock); 658 659 return state; 660 } 661 662 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 663 { 664 mutex_lock(&gpu->lock); 665 666 if (gpu->crashstate) { 667 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 668 gpu->crashstate = NULL; 669 } 670 671 mutex_unlock(&gpu->lock); 672 } 673 674 /* 675 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 676 * support expanded privileges 677 */ 678 #define check_apriv(gpu, flags) \ 679 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 680 681 682 #endif /* __MSM_GPU_H__ */ 683