1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/interconnect.h> 13 #include <linux/pm_opp.h> 14 #include <linux/regulator/consumer.h> 15 16 #include "msm_drv.h" 17 #include "msm_fence.h" 18 #include "msm_ringbuffer.h" 19 #include "msm_gem.h" 20 21 struct msm_gem_submit; 22 struct msm_gpu_perfcntr; 23 struct msm_gpu_state; 24 25 struct msm_gpu_config { 26 const char *ioname; 27 unsigned int nr_rings; 28 }; 29 30 /* So far, with hardware that I've seen to date, we can have: 31 * + zero, one, or two z180 2d cores 32 * + a3xx or a2xx 3d core, which share a common CP (the firmware 33 * for the CP seems to implement some different PM4 packet types 34 * but the basics of cmdstream submission are the same) 35 * 36 * Which means that the eventual complete "class" hierarchy, once 37 * support for all past and present hw is in place, becomes: 38 * + msm_gpu 39 * + adreno_gpu 40 * + a3xx_gpu 41 * + a2xx_gpu 42 * + z180_gpu 43 */ 44 struct msm_gpu_funcs { 45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 46 int (*hw_init)(struct msm_gpu *gpu); 47 int (*pm_suspend)(struct msm_gpu *gpu); 48 int (*pm_resume)(struct msm_gpu *gpu); 49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 51 irqreturn_t (*irq)(struct msm_gpu *irq); 52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 53 void (*recover)(struct msm_gpu *gpu); 54 void (*destroy)(struct msm_gpu *gpu); 55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 56 /* show GPU status in debugfs: */ 57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 58 struct drm_printer *p); 59 /* for generation specific debugfs: */ 60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 61 #endif 62 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 64 int (*gpu_state_put)(struct msm_gpu_state *state); 65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp); 67 struct msm_gem_address_space *(*create_address_space) 68 (struct msm_gpu *gpu, struct platform_device *pdev); 69 struct msm_gem_address_space *(*create_private_address_space) 70 (struct msm_gpu *gpu); 71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 72 }; 73 74 /* Additional state for iommu faults: */ 75 struct msm_gpu_fault_info { 76 u64 ttbr0; 77 unsigned long iova; 78 int flags; 79 const char *type; 80 const char *block; 81 }; 82 83 /** 84 * struct msm_gpu_devfreq - devfreq related state 85 */ 86 struct msm_gpu_devfreq { 87 /** devfreq: devfreq instance */ 88 struct devfreq *devfreq; 89 90 /** 91 * busy_cycles: 92 * 93 * Used by implementation of gpu->gpu_busy() to track the last 94 * busy counter value, for calculating elapsed busy cycles since 95 * last sampling period. 96 */ 97 u64 busy_cycles; 98 99 /** time: Time of last sampling period. */ 100 ktime_t time; 101 102 /** idle_time: Time of last transition to idle: */ 103 ktime_t idle_time; 104 105 /** 106 * idle_freq: 107 * 108 * Shadow frequency used while the GPU is idle. From the PoV of 109 * the devfreq governor, we are continuing to sample busyness and 110 * adjust frequency while the GPU is idle, but we use this shadow 111 * value as the GPU is actually clamped to minimum frequency while 112 * it is inactive. 113 */ 114 unsigned long idle_freq; 115 }; 116 117 struct msm_gpu { 118 const char *name; 119 struct drm_device *dev; 120 struct platform_device *pdev; 121 const struct msm_gpu_funcs *funcs; 122 123 struct adreno_smmu_priv adreno_smmu; 124 125 /* performance counters (hw & sw): */ 126 spinlock_t perf_lock; 127 bool perfcntr_active; 128 struct { 129 bool active; 130 ktime_t time; 131 } last_sample; 132 uint32_t totaltime, activetime; /* sw counters */ 133 uint32_t last_cntrs[5]; /* hw counters */ 134 const struct msm_gpu_perfcntr *perfcntrs; 135 uint32_t num_perfcntrs; 136 137 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 138 int nr_rings; 139 140 /* 141 * List of GEM active objects on this gpu. Protected by 142 * msm_drm_private::mm_lock 143 */ 144 struct list_head active_list; 145 146 /** 147 * active_submits: 148 * 149 * The number of submitted but not yet retired submits, used to 150 * determine transitions between active and idle. 151 * 152 * Protected by lock 153 */ 154 int active_submits; 155 156 /** lock: protects active_submits and idle/active transitions */ 157 struct mutex active_lock; 158 159 /* does gpu need hw_init? */ 160 bool needs_hw_init; 161 162 /* number of GPU hangs (for all contexts) */ 163 int global_faults; 164 165 void __iomem *mmio; 166 int irq; 167 168 struct msm_gem_address_space *aspace; 169 170 /* Power Control: */ 171 struct regulator *gpu_reg, *gpu_cx; 172 struct clk_bulk_data *grp_clks; 173 int nr_clocks; 174 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 175 uint32_t fast_rate; 176 177 /* Hang and Inactivity Detection: 178 */ 179 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 180 181 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 182 struct timer_list hangcheck_timer; 183 184 /* Fault info for most recent iova fault: */ 185 struct msm_gpu_fault_info fault_info; 186 187 /* work for handling GPU ioval faults: */ 188 struct kthread_work fault_work; 189 190 /* work for handling GPU recovery: */ 191 struct kthread_work recover_work; 192 193 /* work for handling active-list retiring: */ 194 struct kthread_work retire_work; 195 196 /* worker for retire/recover: */ 197 struct kthread_worker *worker; 198 199 struct drm_gem_object *memptrs_bo; 200 201 struct msm_gpu_devfreq devfreq; 202 203 uint32_t suspend_count; 204 205 struct msm_gpu_state *crashstate; 206 /* True if the hardware supports expanded apriv (a650 and newer) */ 207 bool hw_apriv; 208 209 struct thermal_cooling_device *cooling; 210 }; 211 212 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 213 { 214 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 215 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 216 } 217 218 /* It turns out that all targets use the same ringbuffer size */ 219 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 220 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 221 222 #define MSM_GPU_RB_CNTL_DEFAULT \ 223 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 224 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 225 226 static inline bool msm_gpu_active(struct msm_gpu *gpu) 227 { 228 int i; 229 230 for (i = 0; i < gpu->nr_rings; i++) { 231 struct msm_ringbuffer *ring = gpu->rb[i]; 232 233 if (ring->seqno > ring->memptrs->fence) 234 return true; 235 } 236 237 return false; 238 } 239 240 /* Perf-Counters: 241 * The select_reg and select_val are just there for the benefit of the child 242 * class that actually enables the perf counter.. but msm_gpu base class 243 * will handle sampling/displaying the counters. 244 */ 245 246 struct msm_gpu_perfcntr { 247 uint32_t select_reg; 248 uint32_t sample_reg; 249 uint32_t select_val; 250 const char *name; 251 }; 252 253 /* 254 * The number of priority levels provided by drm gpu scheduler. The 255 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 256 * cases, so we don't use it (no need for kernel generated jobs). 257 */ 258 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN) 259 260 /** 261 * struct msm_file_private - per-drm_file context 262 * 263 * @queuelock: synchronizes access to submitqueues list 264 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 265 * @queueid: counter incremented each time a submitqueue is created, 266 * used to assign &msm_gpu_submitqueue.id 267 * @aspace: the per-process GPU address-space 268 * @ref: reference count 269 * @seqno: unique per process seqno 270 */ 271 struct msm_file_private { 272 rwlock_t queuelock; 273 struct list_head submitqueues; 274 int queueid; 275 struct msm_gem_address_space *aspace; 276 struct kref ref; 277 int seqno; 278 279 /** 280 * entities: 281 * 282 * Table of per-priority-level sched entities used by submitqueues 283 * associated with this &drm_file. Because some userspace apps 284 * make assumptions about rendering from multiple gl contexts 285 * (of the same priority) within the process happening in FIFO 286 * order without requiring any fencing beyond MakeCurrent(), we 287 * create at most one &drm_sched_entity per-process per-priority- 288 * level. 289 */ 290 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 291 }; 292 293 /** 294 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 295 * 296 * @gpu: the gpu instance 297 * @prio: the userspace priority level 298 * @ring_nr: [out] the ringbuffer the userspace priority maps to 299 * @sched_prio: [out] the gpu scheduler priority level which the userspace 300 * priority maps to 301 * 302 * With drm/scheduler providing it's own level of prioritization, our total 303 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 304 * Each ring is associated with it's own scheduler instance. However, our 305 * UABI is that lower numerical values are higher priority. So mapping the 306 * single userspace priority level into ring_nr and sched_prio takes some 307 * care. The userspace provided priority (when a submitqueue is created) 308 * is mapped to ring nr and scheduler priority as such: 309 * 310 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 311 * sched_prio = NR_SCHED_PRIORITIES - 312 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 313 * 314 * This allows generations without preemption (nr_rings==1) to have some 315 * amount of prioritization, and provides more priority levels for gens 316 * that do have preemption. 317 */ 318 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 319 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 320 { 321 unsigned rn, sp; 322 323 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 324 325 /* invert sched priority to map to higher-numeric-is-higher- 326 * priority convention 327 */ 328 sp = NR_SCHED_PRIORITIES - sp - 1; 329 330 if (rn >= gpu->nr_rings) 331 return -EINVAL; 332 333 *ring_nr = rn; 334 *sched_prio = sp; 335 336 return 0; 337 } 338 339 /** 340 * struct msm_gpu_submitqueues - Userspace created context. 341 * 342 * A submitqueue is associated with a gl context or vk queue (or equiv) 343 * in userspace. 344 * 345 * @id: userspace id for the submitqueue, unique within the drm_file 346 * @flags: userspace flags for the submitqueue, specified at creation 347 * (currently unusued) 348 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 349 * by the submitqueue's priority 350 * @faults: the number of GPU hangs associated with this submitqueue 351 * @ctx: the per-drm_file context associated with the submitqueue (ie. 352 * which set of pgtables do submits jobs associated with the 353 * submitqueue use) 354 * @node: node in the context's list of submitqueues 355 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 356 * seqno, protected by submitqueue lock 357 * @lock: submitqueue lock 358 * @ref: reference count 359 * @entity: the submit job-queue 360 */ 361 struct msm_gpu_submitqueue { 362 int id; 363 u32 flags; 364 u32 ring_nr; 365 int faults; 366 struct msm_file_private *ctx; 367 struct list_head node; 368 struct idr fence_idr; 369 struct mutex lock; 370 struct kref ref; 371 struct drm_sched_entity *entity; 372 }; 373 374 struct msm_gpu_state_bo { 375 u64 iova; 376 size_t size; 377 void *data; 378 bool encoded; 379 }; 380 381 struct msm_gpu_state { 382 struct kref ref; 383 struct timespec64 time; 384 385 struct { 386 u64 iova; 387 u32 fence; 388 u32 seqno; 389 u32 rptr; 390 u32 wptr; 391 void *data; 392 int data_size; 393 bool encoded; 394 } ring[MSM_GPU_MAX_RINGS]; 395 396 int nr_registers; 397 u32 *registers; 398 399 u32 rbbm_status; 400 401 char *comm; 402 char *cmd; 403 404 struct msm_gpu_fault_info fault_info; 405 406 int nr_bos; 407 struct msm_gpu_state_bo *bos; 408 }; 409 410 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 411 { 412 msm_writel(data, gpu->mmio + (reg << 2)); 413 } 414 415 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 416 { 417 return msm_readl(gpu->mmio + (reg << 2)); 418 } 419 420 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 421 { 422 msm_rmw(gpu->mmio + (reg << 2), mask, or); 423 } 424 425 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 426 { 427 u64 val; 428 429 /* 430 * Why not a readq here? Two reasons: 1) many of the LO registers are 431 * not quad word aligned and 2) the GPU hardware designers have a bit 432 * of a history of putting registers where they fit, especially in 433 * spins. The longer a GPU family goes the higher the chance that 434 * we'll get burned. We could do a series of validity checks if we 435 * wanted to, but really is a readq() that much better? Nah. 436 */ 437 438 /* 439 * For some lo/hi registers (like perfcounters), the hi value is latched 440 * when the lo is read, so make sure to read the lo first to trigger 441 * that 442 */ 443 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 444 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 445 446 return val; 447 } 448 449 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 450 { 451 /* Why not a writeq here? Read the screed above */ 452 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 453 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 454 } 455 456 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 457 int msm_gpu_pm_resume(struct msm_gpu *gpu); 458 459 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 460 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 461 u32 id); 462 int msm_submitqueue_create(struct drm_device *drm, 463 struct msm_file_private *ctx, 464 u32 prio, u32 flags, u32 *id); 465 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 466 struct drm_msm_submitqueue_query *args); 467 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 468 void msm_submitqueue_close(struct msm_file_private *ctx); 469 470 void msm_submitqueue_destroy(struct kref *kref); 471 472 void __msm_file_private_destroy(struct kref *kref); 473 474 static inline void msm_file_private_put(struct msm_file_private *ctx) 475 { 476 kref_put(&ctx->ref, __msm_file_private_destroy); 477 } 478 479 static inline struct msm_file_private *msm_file_private_get( 480 struct msm_file_private *ctx) 481 { 482 kref_get(&ctx->ref); 483 return ctx; 484 } 485 486 void msm_devfreq_init(struct msm_gpu *gpu); 487 void msm_devfreq_cleanup(struct msm_gpu *gpu); 488 void msm_devfreq_resume(struct msm_gpu *gpu); 489 void msm_devfreq_suspend(struct msm_gpu *gpu); 490 void msm_devfreq_active(struct msm_gpu *gpu); 491 void msm_devfreq_idle(struct msm_gpu *gpu); 492 493 int msm_gpu_hw_init(struct msm_gpu *gpu); 494 495 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 496 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 497 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 498 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 499 500 void msm_gpu_retire(struct msm_gpu *gpu); 501 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 502 503 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 504 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 505 const char *name, struct msm_gpu_config *config); 506 507 struct msm_gem_address_space * 508 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 509 510 void msm_gpu_cleanup(struct msm_gpu *gpu); 511 512 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 513 void __init adreno_register(void); 514 void __exit adreno_unregister(void); 515 516 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 517 { 518 if (queue) 519 kref_put(&queue->ref, msm_submitqueue_destroy); 520 } 521 522 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 523 { 524 struct msm_gpu_state *state = NULL; 525 526 mutex_lock(&gpu->dev->struct_mutex); 527 528 if (gpu->crashstate) { 529 kref_get(&gpu->crashstate->ref); 530 state = gpu->crashstate; 531 } 532 533 mutex_unlock(&gpu->dev->struct_mutex); 534 535 return state; 536 } 537 538 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 539 { 540 mutex_lock(&gpu->dev->struct_mutex); 541 542 if (gpu->crashstate) { 543 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 544 gpu->crashstate = NULL; 545 } 546 547 mutex_unlock(&gpu->dev->struct_mutex); 548 } 549 550 /* 551 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 552 * support expanded privileges 553 */ 554 #define check_apriv(gpu, flags) \ 555 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 556 557 558 #endif /* __MSM_GPU_H__ */ 559