1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  * Copyright (c) 2018, The Linux Foundation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_7nm.xml.h"
13 
14 /*
15  * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16  *
17  *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
18  *                              |                |
19  *                              |                |
20  *                 +---------+  |  +----------+  |  +----+
21  *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22  *                 +---------+  |  +----------+  |  +----+
23  *                              |                |
24  *                              |                |         dsi0_pll_by_2_bit_clk
25  *                              |                |          |
26  *                              |                |  +----+  |  |\  dsi0_pclk_mux
27  *                              |                |--| /2 |--o--| \   |
28  *                              |                |  +----+     |  \  |  +---------+
29  *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30  *                              |------------------------------|  /     +---------+
31  *                              |          +-----+             | /
32  *                              -----------| /4? |--o----------|/
33  *                                         +-----+  |           |
34  *                                                  |           |dsiclk_sel
35  *                                                  |
36  *                                                  dsi0_pll_post_out_div_clk
37  */
38 
39 #define VCO_REF_CLK_RATE		19200000
40 #define FRAC_BITS 18
41 
42 /* Hardware is V4.1 */
43 #define DSI_PHY_7NM_QUIRK_V4_1		BIT(0)
44 
45 struct dsi_pll_config {
46 	bool enable_ssc;
47 	bool ssc_center;
48 	u32 ssc_freq;
49 	u32 ssc_offset;
50 	u32 ssc_adj_per;
51 
52 	/* out */
53 	u32 decimal_div_start;
54 	u32 frac_div_start;
55 	u32 pll_clock_inverters;
56 	u32 ssc_stepsize;
57 	u32 ssc_div_per;
58 };
59 
60 struct pll_7nm_cached_state {
61 	unsigned long vco_rate;
62 	u8 bit_clk_div;
63 	u8 pix_clk_div;
64 	u8 pll_out_div;
65 	u8 pll_mux;
66 };
67 
68 struct dsi_pll_7nm {
69 	struct clk_hw clk_hw;
70 
71 	struct msm_dsi_phy *phy;
72 
73 	u64 vco_current_rate;
74 
75 	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
76 	spinlock_t postdiv_lock;
77 
78 	struct pll_7nm_cached_state cached_state;
79 
80 	struct dsi_pll_7nm *slave;
81 };
82 
83 #define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
84 
85 /*
86  * Global list of private DSI PLL struct pointers. We need this for bonded DSI
87  * mode, where the master PLL's clk_ops needs access the slave's private data
88  */
89 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
90 
91 static void dsi_pll_setup_config(struct dsi_pll_config *config)
92 {
93 	config->ssc_freq = 31500;
94 	config->ssc_offset = 4800;
95 	config->ssc_adj_per = 2;
96 
97 	/* TODO: ssc enable */
98 	config->enable_ssc = false;
99 	config->ssc_center = 0;
100 }
101 
102 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
103 {
104 	u64 fref = VCO_REF_CLK_RATE;
105 	u64 pll_freq;
106 	u64 divider;
107 	u64 dec, dec_multiple;
108 	u32 frac;
109 	u64 multiplier;
110 
111 	pll_freq = pll->vco_current_rate;
112 
113 	divider = fref * 2;
114 
115 	multiplier = 1 << FRAC_BITS;
116 	dec_multiple = div_u64(pll_freq * multiplier, divider);
117 	dec = div_u64_rem(dec_multiple, multiplier, &frac);
118 
119 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1))
120 		config->pll_clock_inverters = 0x28;
121 	else if (pll_freq <= 1000000000ULL)
122 		config->pll_clock_inverters = 0xa0;
123 	else if (pll_freq <= 2500000000ULL)
124 		config->pll_clock_inverters = 0x20;
125 	else if (pll_freq <= 3020000000ULL)
126 		config->pll_clock_inverters = 0x00;
127 	else
128 		config->pll_clock_inverters = 0x40;
129 
130 	config->decimal_div_start = dec;
131 	config->frac_div_start = frac;
132 }
133 
134 #define SSC_CENTER		BIT(0)
135 #define SSC_EN			BIT(1)
136 
137 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
138 {
139 	u32 ssc_per;
140 	u32 ssc_mod;
141 	u64 ssc_step_size;
142 	u64 frac;
143 
144 	if (!config->enable_ssc) {
145 		DBG("SSC not enabled\n");
146 		return;
147 	}
148 
149 	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
150 	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
151 	ssc_per -= ssc_mod;
152 
153 	frac = config->frac_div_start;
154 	ssc_step_size = config->decimal_div_start;
155 	ssc_step_size *= (1 << FRAC_BITS);
156 	ssc_step_size += frac;
157 	ssc_step_size *= config->ssc_offset;
158 	ssc_step_size *= (config->ssc_adj_per + 1);
159 	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
160 	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
161 
162 	config->ssc_div_per = ssc_per;
163 	config->ssc_stepsize = ssc_step_size;
164 
165 	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
166 		 config->decimal_div_start, frac, FRAC_BITS);
167 	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
168 		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
169 }
170 
171 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
172 {
173 	void __iomem *base = pll->phy->pll_base;
174 
175 	if (config->enable_ssc) {
176 		pr_debug("SSC is enabled\n");
177 
178 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
179 			      config->ssc_stepsize & 0xff);
180 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
181 			      config->ssc_stepsize >> 8);
182 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
183 			      config->ssc_div_per & 0xff);
184 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
185 			      config->ssc_div_per >> 8);
186 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
187 			      config->ssc_adj_per & 0xff);
188 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
189 			      config->ssc_adj_per >> 8);
190 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
191 			      SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
192 	}
193 }
194 
195 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
196 {
197 	void __iomem *base = pll->phy->pll_base;
198 	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
199 
200 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
201 		if (pll->vco_current_rate >= 3100000000ULL)
202 			analog_controls_five_1 = 0x03;
203 
204 		if (pll->vco_current_rate < 1520000000ULL)
205 			vco_config_1 = 0x08;
206 		else if (pll->vco_current_rate < 2990000000ULL)
207 			vco_config_1 = 0x01;
208 	}
209 
210 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
211 		      analog_controls_five_1);
212 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
213 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
214 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
215 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
216 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
217 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
218 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
219 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
220 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
221 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
222 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
223 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
224 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
225 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
226 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
227 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
228 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
229 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
230 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
231 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
232 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
233 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
234 		  pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22);
235 
236 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
237 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
238 		if (pll->slave)
239 			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
240 	}
241 }
242 
243 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
244 {
245 	void __iomem *base = pll->phy->pll_base;
246 
247 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
248 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
249 		      config->decimal_div_start);
250 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
251 		      config->frac_div_start & 0xff);
252 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
253 		      (config->frac_div_start & 0xff00) >> 8);
254 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
255 		      (config->frac_div_start & 0x30000) >> 16);
256 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
257 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
258 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1,
259 		      pll->phy->cphy_mode ? 0x00 : 0x10);
260 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
261 		      config->pll_clock_inverters);
262 }
263 
264 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
265 				     unsigned long parent_rate)
266 {
267 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
268 	struct dsi_pll_config config;
269 
270 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
271 	    parent_rate);
272 
273 	pll_7nm->vco_current_rate = rate;
274 
275 	dsi_pll_setup_config(&config);
276 
277 	dsi_pll_calc_dec_frac(pll_7nm, &config);
278 
279 	dsi_pll_calc_ssc(pll_7nm, &config);
280 
281 	dsi_pll_commit(pll_7nm, &config);
282 
283 	dsi_pll_config_hzindep_reg(pll_7nm);
284 
285 	dsi_pll_ssc_commit(pll_7nm, &config);
286 
287 	/* flush, ensure all register writes are done*/
288 	wmb();
289 
290 	return 0;
291 }
292 
293 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
294 {
295 	int rc;
296 	u32 status = 0;
297 	u32 const delay_us = 100;
298 	u32 const timeout_us = 5000;
299 
300 	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
301 				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
302 				       status,
303 				       ((status & BIT(0)) > 0),
304 				       delay_us,
305 				       timeout_us);
306 	if (rc)
307 		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
308 		       pll->phy->id, status);
309 
310 	return rc;
311 }
312 
313 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
314 {
315 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
316 
317 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
318 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
319 	ndelay(250);
320 }
321 
322 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
323 {
324 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
325 
326 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
327 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
328 	ndelay(250);
329 }
330 
331 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
332 {
333 	u32 data;
334 
335 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
336 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
337 }
338 
339 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
340 {
341 	u32 data;
342 
343 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
344 
345 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
346 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
347 		      data | BIT(5) | BIT(4));
348 }
349 
350 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
351 {
352 	/*
353 	 * Reset the PHY digital domain. This would be needed when
354 	 * coming out of a CX or analog rail power collapse while
355 	 * ensuring that the pads maintain LP00 or LP11 state
356 	 */
357 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
358 	wmb(); /* Ensure that the reset is deasserted */
359 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
360 	wmb(); /* Ensure that the reset is deasserted */
361 }
362 
363 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
364 {
365 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
366 	int rc;
367 
368 	dsi_pll_enable_pll_bias(pll_7nm);
369 	if (pll_7nm->slave)
370 		dsi_pll_enable_pll_bias(pll_7nm->slave);
371 
372 	/* Start PLL */
373 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
374 
375 	/*
376 	 * ensure all PLL configurations are written prior to checking
377 	 * for PLL lock.
378 	 */
379 	wmb();
380 
381 	/* Check for PLL lock */
382 	rc = dsi_pll_7nm_lock_status(pll_7nm);
383 	if (rc) {
384 		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
385 		goto error;
386 	}
387 
388 	pll_7nm->phy->pll_on = true;
389 
390 	/*
391 	 * assert power on reset for PHY digital in case the PLL is
392 	 * enabled after CX of analog domain power collapse. This needs
393 	 * to be done before enabling the global clk.
394 	 */
395 	dsi_pll_phy_dig_reset(pll_7nm);
396 	if (pll_7nm->slave)
397 		dsi_pll_phy_dig_reset(pll_7nm->slave);
398 
399 	dsi_pll_enable_global_clk(pll_7nm);
400 	if (pll_7nm->slave)
401 		dsi_pll_enable_global_clk(pll_7nm->slave);
402 
403 error:
404 	return rc;
405 }
406 
407 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
408 {
409 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
410 	dsi_pll_disable_pll_bias(pll);
411 }
412 
413 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
414 {
415 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
416 
417 	/*
418 	 * To avoid any stray glitches while abruptly powering down the PLL
419 	 * make sure to gate the clock using the clock enable bit before
420 	 * powering down the PLL
421 	 */
422 	dsi_pll_disable_global_clk(pll_7nm);
423 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
424 	dsi_pll_disable_sub(pll_7nm);
425 	if (pll_7nm->slave) {
426 		dsi_pll_disable_global_clk(pll_7nm->slave);
427 		dsi_pll_disable_sub(pll_7nm->slave);
428 	}
429 	/* flush, ensure all register writes are done */
430 	wmb();
431 	pll_7nm->phy->pll_on = false;
432 }
433 
434 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
435 						  unsigned long parent_rate)
436 {
437 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
438 	void __iomem *base = pll_7nm->phy->pll_base;
439 	u64 ref_clk = VCO_REF_CLK_RATE;
440 	u64 vco_rate = 0x0;
441 	u64 multiplier;
442 	u32 frac;
443 	u32 dec;
444 	u64 pll_freq, tmp64;
445 
446 	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
447 	dec &= 0xff;
448 
449 	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
450 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
451 		  0xff) << 8);
452 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
453 		  0x3) << 16);
454 
455 	/*
456 	 * TODO:
457 	 *	1. Assumes prescaler is disabled
458 	 */
459 	multiplier = 1 << FRAC_BITS;
460 	pll_freq = dec * (ref_clk * 2);
461 	tmp64 = (ref_clk * 2 * frac);
462 	pll_freq += div_u64(tmp64, multiplier);
463 
464 	vco_rate = pll_freq;
465 	pll_7nm->vco_current_rate = vco_rate;
466 
467 	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
468 	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
469 
470 	return (unsigned long)vco_rate;
471 }
472 
473 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
474 		unsigned long rate, unsigned long *parent_rate)
475 {
476 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
477 
478 	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
479 		return  pll_7nm->phy->cfg->min_pll_rate;
480 	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
481 		return  pll_7nm->phy->cfg->max_pll_rate;
482 	else
483 		return rate;
484 }
485 
486 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
487 	.round_rate = dsi_pll_7nm_clk_round_rate,
488 	.set_rate = dsi_pll_7nm_vco_set_rate,
489 	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
490 	.prepare = dsi_pll_7nm_vco_prepare,
491 	.unprepare = dsi_pll_7nm_vco_unprepare,
492 };
493 
494 /*
495  * PLL Callbacks
496  */
497 
498 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
499 {
500 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
501 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
502 	void __iomem *phy_base = pll_7nm->phy->base;
503 	u32 cmn_clk_cfg0, cmn_clk_cfg1;
504 
505 	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
506 			REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
507 	cached->pll_out_div &= 0x3;
508 
509 	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
510 	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
511 	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
512 
513 	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
514 	cached->pll_mux = cmn_clk_cfg1 & 0x3;
515 
516 	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
517 	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
518 	    cached->pix_clk_div, cached->pll_mux);
519 }
520 
521 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
522 {
523 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
524 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
525 	void __iomem *phy_base = pll_7nm->phy->base;
526 	u32 val;
527 	int ret;
528 
529 	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
530 	val &= ~0x3;
531 	val |= cached->pll_out_div;
532 	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
533 
534 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
535 		      cached->bit_clk_div | (cached->pix_clk_div << 4));
536 
537 	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
538 	val &= ~0x3;
539 	val |= cached->pll_mux;
540 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
541 
542 	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
543 			pll_7nm->vco_current_rate,
544 			VCO_REF_CLK_RATE);
545 	if (ret) {
546 		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
547 			"restore vco rate failed. ret=%d\n", ret);
548 		return ret;
549 	}
550 
551 	DBG("DSI PLL%d", pll_7nm->phy->id);
552 
553 	return 0;
554 }
555 
556 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
557 {
558 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
559 	void __iomem *base = phy->base;
560 	u32 data = 0x0;	/* internal PLL */
561 
562 	DBG("DSI PLL%d", pll_7nm->phy->id);
563 
564 	switch (phy->usecase) {
565 	case MSM_DSI_PHY_STANDALONE:
566 		break;
567 	case MSM_DSI_PHY_MASTER:
568 		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
569 		break;
570 	case MSM_DSI_PHY_SLAVE:
571 		data = 0x1; /* external PLL */
572 		break;
573 	default:
574 		return -EINVAL;
575 	}
576 
577 	/* set PLL src */
578 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
579 
580 	return 0;
581 }
582 
583 /*
584  * The post dividers and mux clocks are created using the standard divider and
585  * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
586  * state to follow the master PLL's divider/mux state. Therefore, we don't
587  * require special clock ops that also configure the slave PLL registers
588  */
589 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
590 {
591 	char clk_name[32];
592 	struct clk_init_data vco_init = {
593 		.parent_data = &(const struct clk_parent_data) {
594 			.fw_name = "ref",
595 		},
596 		.num_parents = 1,
597 		.name = clk_name,
598 		.flags = CLK_IGNORE_UNUSED,
599 		.ops = &clk_ops_dsi_pll_7nm_vco,
600 	};
601 	struct device *dev = &pll_7nm->phy->pdev->dev;
602 	struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
603 	struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
604 	int ret;
605 
606 	DBG("DSI%d", pll_7nm->phy->id);
607 
608 	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
609 	pll_7nm->clk_hw.init = &vco_init;
610 
611 	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
612 	if (ret)
613 		return ret;
614 
615 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
616 
617 	pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
618 			&pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
619 			pll_7nm->phy->pll_base +
620 				REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
621 			0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
622 	if (IS_ERR(pll_out_div)) {
623 		ret = PTR_ERR(pll_out_div);
624 		goto fail;
625 	}
626 
627 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
628 
629 	/* BIT CLK: DIV_CTRL_3_0 */
630 	pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
631 			pll_out_div, CLK_SET_RATE_PARENT,
632 			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
633 			0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
634 	if (IS_ERR(pll_bit)) {
635 		ret = PTR_ERR(pll_bit);
636 		goto fail;
637 	}
638 
639 	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
640 
641 	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
642 	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
643 			pll_bit, CLK_SET_RATE_PARENT, 1,
644 			pll_7nm->phy->cphy_mode ? 7 : 8);
645 	if (IS_ERR(hw)) {
646 		ret = PTR_ERR(hw);
647 		goto fail;
648 	}
649 
650 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
651 
652 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
653 
654 	pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
655 			clk_name, pll_bit, 0, 1, 2);
656 	if (IS_ERR(pll_by_2_bit)) {
657 		ret = PTR_ERR(pll_by_2_bit);
658 		goto fail;
659 	}
660 
661 	snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
662 
663 	if (pll_7nm->phy->cphy_mode)
664 		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
665 				dev, clk_name, pll_out_div, 0, 2, 7);
666 	else
667 		pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
668 				dev, clk_name, pll_out_div, 0, 1, 4);
669 	if (IS_ERR(pll_post_out_div)) {
670 		ret = PTR_ERR(pll_post_out_div);
671 		goto fail;
672 	}
673 
674 	/* in CPHY mode, pclk_mux will always have post_out_div as parent
675 	 * don't register a pclk_mux clock and just use post_out_div instead
676 	 */
677 	if (pll_7nm->phy->cphy_mode) {
678 		u32 data;
679 
680 		data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
681 		dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
682 
683 		phy_pll_out_dsi_parent = pll_post_out_div;
684 	} else {
685 		snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
686 
687 		hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
688 				((const struct clk_hw *[]){
689 					pll_bit,
690 					pll_by_2_bit,
691 				}), 2, 0, pll_7nm->phy->base +
692 					REG_DSI_7nm_PHY_CMN_CLK_CFG1,
693 				0, 1, 0, NULL);
694 		if (IS_ERR(hw)) {
695 			ret = PTR_ERR(hw);
696 			goto fail;
697 		}
698 
699 		phy_pll_out_dsi_parent = hw;
700 	}
701 
702 	snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
703 
704 	/* PIX CLK DIV : DIV_CTRL_7_4*/
705 	hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
706 			phy_pll_out_dsi_parent, 0,
707 			pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
708 			4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
709 	if (IS_ERR(hw)) {
710 		ret = PTR_ERR(hw);
711 		goto fail;
712 	}
713 
714 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
715 
716 	return 0;
717 
718 fail:
719 
720 	return ret;
721 }
722 
723 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
724 {
725 	struct platform_device *pdev = phy->pdev;
726 	struct dsi_pll_7nm *pll_7nm;
727 	int ret;
728 
729 	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
730 	if (!pll_7nm)
731 		return -ENOMEM;
732 
733 	DBG("DSI PLL%d", phy->id);
734 
735 	pll_7nm_list[phy->id] = pll_7nm;
736 
737 	spin_lock_init(&pll_7nm->postdiv_lock);
738 
739 	pll_7nm->phy = phy;
740 
741 	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
742 	if (ret) {
743 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
744 		return ret;
745 	}
746 
747 	phy->vco_hw = &pll_7nm->clk_hw;
748 
749 	/* TODO: Remove this when we have proper display handover support */
750 	msm_dsi_phy_pll_save_state(phy);
751 
752 	return 0;
753 }
754 
755 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
756 {
757 	void __iomem *base = phy->base;
758 	u32 data = 0;
759 
760 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
761 	mb(); /* make sure read happened */
762 
763 	return (data & BIT(0));
764 }
765 
766 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
767 {
768 	void __iomem *lane_base = phy->lane_base;
769 	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
770 
771 	/*
772 	 * LPRX and CDRX need to enabled only for physical data lane
773 	 * corresponding to the logical data lane 0
774 	 */
775 	if (enable)
776 		dsi_phy_write(lane_base +
777 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
778 	else
779 		dsi_phy_write(lane_base +
780 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
781 }
782 
783 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
784 {
785 	int i;
786 	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
787 	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
788 	const u8 *tx_dctrl = tx_dctrl_0;
789 	void __iomem *lane_base = phy->lane_base;
790 
791 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)
792 		tx_dctrl = tx_dctrl_1;
793 
794 	/* Strength ctrl settings */
795 	for (i = 0; i < 5; i++) {
796 		/*
797 		 * Disable LPRX and CDRX for all lanes. And later on, it will
798 		 * be only enabled for the physical data lane corresponding
799 		 * to the logical data lane 0
800 		 */
801 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
802 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
803 	}
804 
805 	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
806 
807 	/* other settings */
808 	for (i = 0; i < 5; i++) {
809 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
810 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
811 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
812 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
813 	}
814 }
815 
816 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
817 			      struct msm_dsi_phy_clk_request *clk_req)
818 {
819 	int ret;
820 	u32 status;
821 	u32 const delay_us = 5;
822 	u32 const timeout_us = 1000;
823 	struct msm_dsi_dphy_timing *timing = &phy->timing;
824 	void __iomem *base = phy->base;
825 	bool less_than_1500_mhz;
826 	u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
827 	u32 glbl_pemph_ctrl_0;
828 	u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
829 	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
830 	u32 data;
831 
832 	DBG("");
833 
834 	if (phy->cphy_mode)
835 		ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
836 	else
837 		ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
838 	if (ret) {
839 		DRM_DEV_ERROR(&phy->pdev->dev,
840 			      "%s: PHY timing calculation failed\n", __func__);
841 		return -EINVAL;
842 	}
843 
844 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
845 		pr_warn("PLL turned on before configuring PHY\n");
846 
847 	/* wait for REFGEN READY */
848 	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
849 					status, (status & BIT(0)),
850 					delay_us, timeout_us);
851 	if (ret) {
852 		pr_err("Ref gen not ready. Aborting\n");
853 		return -EINVAL;
854 	}
855 
856 	/* TODO: CPHY enable path (this is for DPHY only) */
857 
858 	/* Alter PHY configurations if data rate less than 1.5GHZ*/
859 	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
860 
861 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
862 		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
863 		if (phy->cphy_mode) {
864 			glbl_rescode_top_ctrl = 0x00;
865 			glbl_rescode_bot_ctrl = 0x3c;
866 		} else {
867 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
868 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
869 		}
870 		glbl_str_swi_cal_sel_ctrl = 0x00;
871 		glbl_hstx_str_ctrl_0 = 0x88;
872 	} else {
873 		vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
874 		if (phy->cphy_mode) {
875 			glbl_str_swi_cal_sel_ctrl = 0x03;
876 			glbl_hstx_str_ctrl_0 = 0x66;
877 		} else {
878 			glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
879 			glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
880 		}
881 		glbl_rescode_top_ctrl = 0x03;
882 		glbl_rescode_bot_ctrl = 0x3c;
883 	}
884 
885 	if (phy->cphy_mode) {
886 		vreg_ctrl_0 = 0x51;
887 		vreg_ctrl_1 = 0x55;
888 		glbl_pemph_ctrl_0 = 0x11;
889 		lane_ctrl0 = 0x17;
890 	} else {
891 		vreg_ctrl_1 = 0x5c;
892 		glbl_pemph_ctrl_0 = 0x00;
893 		lane_ctrl0 = 0x1f;
894 	}
895 
896 	/* de-assert digital and pll power down */
897 	data = BIT(6) | BIT(5);
898 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
899 
900 	/* Assert PLL core reset */
901 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
902 
903 	/* turn off resync FIFO */
904 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
905 
906 	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
907 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0);
908 	data = data & (0xf0);
909 	if (data == 0x20)
910 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
911 
912 	/* Configure PHY lane swap (TODO: we need to calculate this) */
913 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
914 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
915 
916 	if (phy->cphy_mode)
917 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
918 
919 	/* Enable LDO */
920 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
921 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
922 
923 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
924 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
925 		      glbl_str_swi_cal_sel_ctrl);
926 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
927 		      glbl_hstx_str_ctrl_0);
928 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
929 		      glbl_pemph_ctrl_0);
930 	if (phy->cphy_mode)
931 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
932 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
933 		      glbl_rescode_top_ctrl);
934 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
935 		      glbl_rescode_bot_ctrl);
936 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
937 
938 	/* Remove power down from all blocks */
939 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
940 
941 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
942 
943 	/* Select full-rate mode */
944 	if (!phy->cphy_mode)
945 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
946 
947 	ret = dsi_7nm_set_usecase(phy);
948 	if (ret) {
949 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
950 			__func__, ret);
951 		return ret;
952 	}
953 
954 	/* DSI PHY timings */
955 	if (phy->cphy_mode) {
956 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
957 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
958 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
959 			      timing->shared_timings.clk_pre);
960 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
961 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
962 			      timing->shared_timings.clk_post);
963 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
964 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
965 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
966 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
967 	} else {
968 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
969 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
970 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
971 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
972 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
973 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
974 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
975 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
976 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
977 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
978 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
979 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
980 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
981 			      timing->shared_timings.clk_pre);
982 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
983 			      timing->shared_timings.clk_post);
984 	}
985 
986 	/* DSI lane settings */
987 	dsi_phy_hw_v4_0_lane_settings(phy);
988 
989 	DBG("DSI%d PHY enabled", phy->id);
990 
991 	return 0;
992 }
993 
994 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
995 {
996 	void __iomem *base = phy->base;
997 	u32 data;
998 
999 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1000 	if (enable)
1001 		data |= BIT(5) | BIT(6);
1002 	else
1003 		data &= ~(BIT(5) | BIT(6));
1004 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
1005 
1006 	return enable;
1007 }
1008 
1009 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1010 {
1011 	void __iomem *base = phy->base;
1012 	u32 data;
1013 
1014 	DBG("");
1015 
1016 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
1017 		pr_warn("Turning OFF PHY while PLL is on\n");
1018 
1019 	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1020 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1021 
1022 	/* disable all lanes */
1023 	data &= ~0x1F;
1024 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
1025 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
1026 
1027 	/* Turn off all PHY blocks */
1028 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
1029 	/* make sure phy is turned off */
1030 	wmb();
1031 
1032 	DBG("DSI%d PHY disabled", phy->id);
1033 }
1034 
1035 static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
1036 	{ .supply = "vdds", .init_load_uA = 36000 },
1037 };
1038 
1039 static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
1040 	{ .supply = "vdds", .init_load_uA = 37550 },
1041 };
1042 
1043 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1044 	.has_phy_lane = true,
1045 	.regulator_data = dsi_phy_7nm_36mA_regulators,
1046 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1047 	.ops = {
1048 		.enable = dsi_7nm_phy_enable,
1049 		.disable = dsi_7nm_phy_disable,
1050 		.pll_init = dsi_pll_7nm_init,
1051 		.save_pll_state = dsi_7nm_pll_save_state,
1052 		.restore_pll_state = dsi_7nm_pll_restore_state,
1053 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1054 	},
1055 	.min_pll_rate = 600000000UL,
1056 #ifdef CONFIG_64BIT
1057 	.max_pll_rate = 5000000000UL,
1058 #else
1059 	.max_pll_rate = ULONG_MAX,
1060 #endif
1061 	.io_start = { 0xae94400, 0xae96400 },
1062 	.num_dsi_phy = 2,
1063 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1064 };
1065 
1066 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1067 	.has_phy_lane = true,
1068 	.regulator_data = dsi_phy_7nm_36mA_regulators,
1069 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1070 	.ops = {
1071 		.enable = dsi_7nm_phy_enable,
1072 		.disable = dsi_7nm_phy_disable,
1073 		.pll_init = dsi_pll_7nm_init,
1074 		.save_pll_state = dsi_7nm_pll_save_state,
1075 		.restore_pll_state = dsi_7nm_pll_restore_state,
1076 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1077 	},
1078 	.min_pll_rate = 1000000000UL,
1079 	.max_pll_rate = 3500000000UL,
1080 	.io_start = { 0xae94400, 0xae96400 },
1081 	.num_dsi_phy = 2,
1082 };
1083 
1084 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1085 	.has_phy_lane = true,
1086 	.regulator_data = dsi_phy_7nm_37750uA_regulators,
1087 	.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1088 	.ops = {
1089 		.enable = dsi_7nm_phy_enable,
1090 		.disable = dsi_7nm_phy_disable,
1091 		.pll_init = dsi_pll_7nm_init,
1092 		.save_pll_state = dsi_7nm_pll_save_state,
1093 		.restore_pll_state = dsi_7nm_pll_restore_state,
1094 	},
1095 	.min_pll_rate = 600000000UL,
1096 #ifdef CONFIG_64BIT
1097 	.max_pll_rate = 5000000000ULL,
1098 #else
1099 	.max_pll_rate = ULONG_MAX,
1100 #endif
1101 	.io_start = { 0xae94400 },
1102 	.num_dsi_phy = 1,
1103 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1104 };
1105