1 /* 2 * SPDX-License-Identifier: GPL-2.0 3 * Copyright (c) 2018, The Linux Foundation 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/clk-provider.h> 8 #include <linux/iopoll.h> 9 10 #include "dsi_phy.h" 11 #include "dsi.xml.h" 12 #include "dsi_phy_7nm.xml.h" 13 14 /* 15 * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram 16 * 17 * dsi0_pll_out_div_clk dsi0_pll_bit_clk 18 * | | 19 * | | 20 * +---------+ | +----------+ | +----+ 21 * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk 22 * +---------+ | +----------+ | +----+ 23 * | | 24 * | | dsi0_pll_by_2_bit_clk 25 * | | | 26 * | | +----+ | |\ dsi0_pclk_mux 27 * | |--| /2 |--o--| \ | 28 * | | +----+ | \ | +---------+ 29 * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk 30 * |------------------------------| / +---------+ 31 * | +-----+ | / 32 * -----------| /4? |--o----------|/ 33 * +-----+ | | 34 * | |dsiclk_sel 35 * | 36 * dsi0_pll_post_out_div_clk 37 */ 38 39 #define VCO_REF_CLK_RATE 19200000 40 #define FRAC_BITS 18 41 42 /* Hardware is V4.1 */ 43 #define DSI_PHY_7NM_QUIRK_V4_1 BIT(0) 44 45 struct dsi_pll_config { 46 bool enable_ssc; 47 bool ssc_center; 48 u32 ssc_freq; 49 u32 ssc_offset; 50 u32 ssc_adj_per; 51 52 /* out */ 53 u32 decimal_div_start; 54 u32 frac_div_start; 55 u32 pll_clock_inverters; 56 u32 ssc_stepsize; 57 u32 ssc_div_per; 58 }; 59 60 struct pll_7nm_cached_state { 61 unsigned long vco_rate; 62 u8 bit_clk_div; 63 u8 pix_clk_div; 64 u8 pll_out_div; 65 u8 pll_mux; 66 }; 67 68 struct dsi_pll_7nm { 69 struct clk_hw clk_hw; 70 71 struct msm_dsi_phy *phy; 72 73 u64 vco_current_rate; 74 75 /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */ 76 spinlock_t postdiv_lock; 77 78 struct pll_7nm_cached_state cached_state; 79 80 struct dsi_pll_7nm *slave; 81 }; 82 83 #define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw) 84 85 /* 86 * Global list of private DSI PLL struct pointers. We need this for bonded DSI 87 * mode, where the master PLL's clk_ops needs access the slave's private data 88 */ 89 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX]; 90 91 static void dsi_pll_setup_config(struct dsi_pll_config *config) 92 { 93 config->ssc_freq = 31500; 94 config->ssc_offset = 4800; 95 config->ssc_adj_per = 2; 96 97 /* TODO: ssc enable */ 98 config->enable_ssc = false; 99 config->ssc_center = 0; 100 } 101 102 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) 103 { 104 u64 fref = VCO_REF_CLK_RATE; 105 u64 pll_freq; 106 u64 divider; 107 u64 dec, dec_multiple; 108 u32 frac; 109 u64 multiplier; 110 111 pll_freq = pll->vco_current_rate; 112 113 divider = fref * 2; 114 115 multiplier = 1 << FRAC_BITS; 116 dec_multiple = div_u64(pll_freq * multiplier, divider); 117 dec = div_u64_rem(dec_multiple, multiplier, &frac); 118 119 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)) 120 config->pll_clock_inverters = 0x28; 121 else if (pll_freq <= 1000000000ULL) 122 config->pll_clock_inverters = 0xa0; 123 else if (pll_freq <= 2500000000ULL) 124 config->pll_clock_inverters = 0x20; 125 else if (pll_freq <= 3020000000ULL) 126 config->pll_clock_inverters = 0x00; 127 else 128 config->pll_clock_inverters = 0x40; 129 130 config->decimal_div_start = dec; 131 config->frac_div_start = frac; 132 } 133 134 #define SSC_CENTER BIT(0) 135 #define SSC_EN BIT(1) 136 137 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) 138 { 139 u32 ssc_per; 140 u32 ssc_mod; 141 u64 ssc_step_size; 142 u64 frac; 143 144 if (!config->enable_ssc) { 145 DBG("SSC not enabled\n"); 146 return; 147 } 148 149 ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1; 150 ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1); 151 ssc_per -= ssc_mod; 152 153 frac = config->frac_div_start; 154 ssc_step_size = config->decimal_div_start; 155 ssc_step_size *= (1 << FRAC_BITS); 156 ssc_step_size += frac; 157 ssc_step_size *= config->ssc_offset; 158 ssc_step_size *= (config->ssc_adj_per + 1); 159 ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1)); 160 ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000); 161 162 config->ssc_div_per = ssc_per; 163 config->ssc_stepsize = ssc_step_size; 164 165 pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n", 166 config->decimal_div_start, frac, FRAC_BITS); 167 pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n", 168 ssc_per, (u32)ssc_step_size, config->ssc_adj_per); 169 } 170 171 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) 172 { 173 void __iomem *base = pll->phy->pll_base; 174 175 if (config->enable_ssc) { 176 pr_debug("SSC is enabled\n"); 177 178 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1, 179 config->ssc_stepsize & 0xff); 180 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1, 181 config->ssc_stepsize >> 8); 182 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1, 183 config->ssc_div_per & 0xff); 184 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1, 185 config->ssc_div_per >> 8); 186 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1, 187 config->ssc_adj_per & 0xff); 188 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1, 189 config->ssc_adj_per >> 8); 190 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL, 191 SSC_EN | (config->ssc_center ? SSC_CENTER : 0)); 192 } 193 } 194 195 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll) 196 { 197 void __iomem *base = pll->phy->pll_base; 198 u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00; 199 200 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) { 201 if (pll->vco_current_rate >= 3100000000ULL) 202 analog_controls_five_1 = 0x03; 203 204 if (pll->vco_current_rate < 1520000000ULL) 205 vco_config_1 = 0x08; 206 else if (pll->vco_current_rate < 2990000000ULL) 207 vco_config_1 = 0x01; 208 } 209 210 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1, 211 analog_controls_five_1); 212 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1); 213 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01); 214 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03); 215 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00); 216 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00); 217 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e); 218 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40); 219 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba); 220 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c); 221 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00); 222 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00); 223 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08); 224 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a); 225 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0); 226 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84); 227 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82); 228 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c); 229 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80); 230 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29); 231 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f); 232 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a); 233 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 234 pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22); 235 236 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) { 237 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22); 238 if (pll->slave) 239 dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22); 240 } 241 } 242 243 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config) 244 { 245 void __iomem *base = pll->phy->pll_base; 246 247 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12); 248 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start); 249 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1, 250 config->frac_div_start & 0xff); 251 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1, 252 (config->frac_div_start & 0xff00) >> 8); 253 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1, 254 (config->frac_div_start & 0x30000) >> 16); 255 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40); 256 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06); 257 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, pll->phy->cphy_mode ? 0x00 : 0x10); 258 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters); 259 } 260 261 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, 262 unsigned long parent_rate) 263 { 264 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); 265 struct dsi_pll_config config; 266 267 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate, 268 parent_rate); 269 270 pll_7nm->vco_current_rate = rate; 271 272 dsi_pll_setup_config(&config); 273 274 dsi_pll_calc_dec_frac(pll_7nm, &config); 275 276 dsi_pll_calc_ssc(pll_7nm, &config); 277 278 dsi_pll_commit(pll_7nm, &config); 279 280 dsi_pll_config_hzindep_reg(pll_7nm); 281 282 dsi_pll_ssc_commit(pll_7nm, &config); 283 284 /* flush, ensure all register writes are done*/ 285 wmb(); 286 287 return 0; 288 } 289 290 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll) 291 { 292 int rc; 293 u32 status = 0; 294 u32 const delay_us = 100; 295 u32 const timeout_us = 5000; 296 297 rc = readl_poll_timeout_atomic(pll->phy->pll_base + 298 REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE, 299 status, 300 ((status & BIT(0)) > 0), 301 delay_us, 302 timeout_us); 303 if (rc) 304 pr_err("DSI PLL(%d) lock failed, status=0x%08x\n", 305 pll->phy->id, status); 306 307 return rc; 308 } 309 310 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll) 311 { 312 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0); 313 314 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0); 315 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5)); 316 ndelay(250); 317 } 318 319 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll) 320 { 321 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0); 322 323 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5)); 324 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0); 325 ndelay(250); 326 } 327 328 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll) 329 { 330 u32 data; 331 332 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); 333 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5)); 334 } 335 336 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll) 337 { 338 u32 data; 339 340 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04); 341 342 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); 343 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, 344 data | BIT(5) | BIT(4)); 345 } 346 347 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll) 348 { 349 /* 350 * Reset the PHY digital domain. This would be needed when 351 * coming out of a CX or analog rail power collapse while 352 * ensuring that the pads maintain LP00 or LP11 state 353 */ 354 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0)); 355 wmb(); /* Ensure that the reset is deasserted */ 356 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0); 357 wmb(); /* Ensure that the reset is deasserted */ 358 } 359 360 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw) 361 { 362 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); 363 int rc; 364 365 dsi_pll_enable_pll_bias(pll_7nm); 366 if (pll_7nm->slave) 367 dsi_pll_enable_pll_bias(pll_7nm->slave); 368 369 /* Start PLL */ 370 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01); 371 372 /* 373 * ensure all PLL configurations are written prior to checking 374 * for PLL lock. 375 */ 376 wmb(); 377 378 /* Check for PLL lock */ 379 rc = dsi_pll_7nm_lock_status(pll_7nm); 380 if (rc) { 381 pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id); 382 goto error; 383 } 384 385 pll_7nm->phy->pll_on = true; 386 387 /* 388 * assert power on reset for PHY digital in case the PLL is 389 * enabled after CX of analog domain power collapse. This needs 390 * to be done before enabling the global clk. 391 */ 392 dsi_pll_phy_dig_reset(pll_7nm); 393 if (pll_7nm->slave) 394 dsi_pll_phy_dig_reset(pll_7nm->slave); 395 396 dsi_pll_enable_global_clk(pll_7nm); 397 if (pll_7nm->slave) 398 dsi_pll_enable_global_clk(pll_7nm->slave); 399 400 error: 401 return rc; 402 } 403 404 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll) 405 { 406 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0); 407 dsi_pll_disable_pll_bias(pll); 408 } 409 410 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw) 411 { 412 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); 413 414 /* 415 * To avoid any stray glitches while abruptly powering down the PLL 416 * make sure to gate the clock using the clock enable bit before 417 * powering down the PLL 418 */ 419 dsi_pll_disable_global_clk(pll_7nm); 420 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0); 421 dsi_pll_disable_sub(pll_7nm); 422 if (pll_7nm->slave) { 423 dsi_pll_disable_global_clk(pll_7nm->slave); 424 dsi_pll_disable_sub(pll_7nm->slave); 425 } 426 /* flush, ensure all register writes are done */ 427 wmb(); 428 pll_7nm->phy->pll_on = false; 429 } 430 431 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw, 432 unsigned long parent_rate) 433 { 434 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); 435 void __iomem *base = pll_7nm->phy->pll_base; 436 u64 ref_clk = VCO_REF_CLK_RATE; 437 u64 vco_rate = 0x0; 438 u64 multiplier; 439 u32 frac; 440 u32 dec; 441 u64 pll_freq, tmp64; 442 443 dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1); 444 dec &= 0xff; 445 446 frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1); 447 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) & 448 0xff) << 8); 449 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) & 450 0x3) << 16); 451 452 /* 453 * TODO: 454 * 1. Assumes prescaler is disabled 455 */ 456 multiplier = 1 << FRAC_BITS; 457 pll_freq = dec * (ref_clk * 2); 458 tmp64 = (ref_clk * 2 * frac); 459 pll_freq += div_u64(tmp64, multiplier); 460 461 vco_rate = pll_freq; 462 pll_7nm->vco_current_rate = vco_rate; 463 464 DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x", 465 pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac); 466 467 return (unsigned long)vco_rate; 468 } 469 470 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw, 471 unsigned long rate, unsigned long *parent_rate) 472 { 473 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw); 474 475 if (rate < pll_7nm->phy->cfg->min_pll_rate) 476 return pll_7nm->phy->cfg->min_pll_rate; 477 else if (rate > pll_7nm->phy->cfg->max_pll_rate) 478 return pll_7nm->phy->cfg->max_pll_rate; 479 else 480 return rate; 481 } 482 483 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = { 484 .round_rate = dsi_pll_7nm_clk_round_rate, 485 .set_rate = dsi_pll_7nm_vco_set_rate, 486 .recalc_rate = dsi_pll_7nm_vco_recalc_rate, 487 .prepare = dsi_pll_7nm_vco_prepare, 488 .unprepare = dsi_pll_7nm_vco_unprepare, 489 }; 490 491 /* 492 * PLL Callbacks 493 */ 494 495 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy) 496 { 497 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); 498 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state; 499 void __iomem *phy_base = pll_7nm->phy->base; 500 u32 cmn_clk_cfg0, cmn_clk_cfg1; 501 502 cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base + 503 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE); 504 cached->pll_out_div &= 0x3; 505 506 cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0); 507 cached->bit_clk_div = cmn_clk_cfg0 & 0xf; 508 cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4; 509 510 cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); 511 cached->pll_mux = cmn_clk_cfg1 & 0x3; 512 513 DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x", 514 pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div, 515 cached->pix_clk_div, cached->pll_mux); 516 } 517 518 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy) 519 { 520 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); 521 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state; 522 void __iomem *phy_base = pll_7nm->phy->base; 523 u32 val; 524 int ret; 525 526 val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE); 527 val &= ~0x3; 528 val |= cached->pll_out_div; 529 dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val); 530 531 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0, 532 cached->bit_clk_div | (cached->pix_clk_div << 4)); 533 534 val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); 535 val &= ~0x3; 536 val |= cached->pll_mux; 537 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val); 538 539 ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw, 540 pll_7nm->vco_current_rate, 541 VCO_REF_CLK_RATE); 542 if (ret) { 543 DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev, 544 "restore vco rate failed. ret=%d\n", ret); 545 return ret; 546 } 547 548 DBG("DSI PLL%d", pll_7nm->phy->id); 549 550 return 0; 551 } 552 553 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy) 554 { 555 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw); 556 void __iomem *base = phy->base; 557 u32 data = 0x0; /* internal PLL */ 558 559 DBG("DSI PLL%d", pll_7nm->phy->id); 560 561 switch (phy->usecase) { 562 case MSM_DSI_PHY_STANDALONE: 563 break; 564 case MSM_DSI_PHY_MASTER: 565 pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX]; 566 break; 567 case MSM_DSI_PHY_SLAVE: 568 data = 0x1; /* external PLL */ 569 break; 570 default: 571 return -EINVAL; 572 } 573 574 /* set PLL src */ 575 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2)); 576 577 return 0; 578 } 579 580 /* 581 * The post dividers and mux clocks are created using the standard divider and 582 * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux 583 * state to follow the master PLL's divider/mux state. Therefore, we don't 584 * require special clock ops that also configure the slave PLL registers 585 */ 586 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks) 587 { 588 char clk_name[32], parent[32], vco_name[32]; 589 char parent2[32], parent3[32], parent4[32]; 590 struct clk_init_data vco_init = { 591 .parent_data = &(const struct clk_parent_data) { 592 .fw_name = "ref", 593 }, 594 .num_parents = 1, 595 .name = vco_name, 596 .flags = CLK_IGNORE_UNUSED, 597 .ops = &clk_ops_dsi_pll_7nm_vco, 598 }; 599 struct device *dev = &pll_7nm->phy->pdev->dev; 600 struct clk_hw *hw; 601 int ret; 602 603 DBG("DSI%d", pll_7nm->phy->id); 604 605 snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->phy->id); 606 pll_7nm->clk_hw.init = &vco_init; 607 608 ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw); 609 if (ret) 610 return ret; 611 612 snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id); 613 snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->phy->id); 614 615 hw = devm_clk_hw_register_divider(dev, clk_name, 616 parent, CLK_SET_RATE_PARENT, 617 pll_7nm->phy->pll_base + 618 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, 619 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL); 620 if (IS_ERR(hw)) { 621 ret = PTR_ERR(hw); 622 goto fail; 623 } 624 625 snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id); 626 snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id); 627 628 /* BIT CLK: DIV_CTRL_3_0 */ 629 hw = devm_clk_hw_register_divider(dev, clk_name, parent, 630 CLK_SET_RATE_PARENT, 631 pll_7nm->phy->base + 632 REG_DSI_7nm_PHY_CMN_CLK_CFG0, 633 0, 4, CLK_DIVIDER_ONE_BASED, 634 &pll_7nm->postdiv_lock); 635 if (IS_ERR(hw)) { 636 ret = PTR_ERR(hw); 637 goto fail; 638 } 639 640 snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id); 641 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id); 642 643 /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */ 644 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 645 CLK_SET_RATE_PARENT, 1, 646 pll_7nm->phy->cphy_mode ? 7 : 8); 647 if (IS_ERR(hw)) { 648 ret = PTR_ERR(hw); 649 goto fail; 650 } 651 652 provided_clocks[DSI_BYTE_PLL_CLK] = hw; 653 654 snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id); 655 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id); 656 657 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 658 0, 1, 2); 659 if (IS_ERR(hw)) { 660 ret = PTR_ERR(hw); 661 goto fail; 662 } 663 664 snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id); 665 snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id); 666 667 if (pll_7nm->phy->cphy_mode) 668 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 2, 7); 669 else 670 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 4); 671 if (IS_ERR(hw)) { 672 ret = PTR_ERR(hw); 673 goto fail; 674 } 675 676 /* in CPHY mode, pclk_mux will always have post_out_div as parent 677 * don't register a pclk_mux clock and just use post_out_div instead 678 */ 679 if (pll_7nm->phy->cphy_mode) { 680 u32 data; 681 682 data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1); 683 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3); 684 685 snprintf(parent, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id); 686 } else { 687 snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->phy->id); 688 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id); 689 snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id); 690 snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id); 691 snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id); 692 693 hw = devm_clk_hw_register_mux(dev, clk_name, 694 ((const char *[]){ 695 parent, parent2, parent3, parent4 696 }), 4, 0, pll_7nm->phy->base + 697 REG_DSI_7nm_PHY_CMN_CLK_CFG1, 698 0, 2, 0, NULL); 699 if (IS_ERR(hw)) { 700 ret = PTR_ERR(hw); 701 goto fail; 702 } 703 704 snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->phy->id); 705 } 706 707 snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id); 708 709 /* PIX CLK DIV : DIV_CTRL_7_4*/ 710 hw = devm_clk_hw_register_divider(dev, clk_name, parent, 711 0, pll_7nm->phy->base + 712 REG_DSI_7nm_PHY_CMN_CLK_CFG0, 713 4, 4, CLK_DIVIDER_ONE_BASED, 714 &pll_7nm->postdiv_lock); 715 if (IS_ERR(hw)) { 716 ret = PTR_ERR(hw); 717 goto fail; 718 } 719 720 provided_clocks[DSI_PIXEL_PLL_CLK] = hw; 721 722 return 0; 723 724 fail: 725 726 return ret; 727 } 728 729 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy) 730 { 731 struct platform_device *pdev = phy->pdev; 732 struct dsi_pll_7nm *pll_7nm; 733 int ret; 734 735 pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL); 736 if (!pll_7nm) 737 return -ENOMEM; 738 739 DBG("DSI PLL%d", phy->id); 740 741 pll_7nm_list[phy->id] = pll_7nm; 742 743 spin_lock_init(&pll_7nm->postdiv_lock); 744 745 pll_7nm->phy = phy; 746 747 ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws); 748 if (ret) { 749 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); 750 return ret; 751 } 752 753 phy->vco_hw = &pll_7nm->clk_hw; 754 755 /* TODO: Remove this when we have proper display handover support */ 756 msm_dsi_phy_pll_save_state(phy); 757 758 return 0; 759 } 760 761 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy) 762 { 763 void __iomem *base = phy->base; 764 u32 data = 0; 765 766 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL); 767 mb(); /* make sure read happened */ 768 769 return (data & BIT(0)); 770 } 771 772 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable) 773 { 774 void __iomem *lane_base = phy->lane_base; 775 int phy_lane_0 = 0; /* TODO: Support all lane swap configs */ 776 777 /* 778 * LPRX and CDRX need to enabled only for physical data lane 779 * corresponding to the logical data lane 0 780 */ 781 if (enable) 782 dsi_phy_write(lane_base + 783 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3); 784 else 785 dsi_phy_write(lane_base + 786 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0); 787 } 788 789 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy) 790 { 791 int i; 792 const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 }; 793 const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 }; 794 const u8 *tx_dctrl = tx_dctrl_0; 795 void __iomem *lane_base = phy->lane_base; 796 797 if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) 798 tx_dctrl = tx_dctrl_1; 799 800 /* Strength ctrl settings */ 801 for (i = 0; i < 5; i++) { 802 /* 803 * Disable LPRX and CDRX for all lanes. And later on, it will 804 * be only enabled for the physical data lane corresponding 805 * to the logical data lane 0 806 */ 807 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0); 808 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0); 809 } 810 811 dsi_phy_hw_v4_0_config_lpcdrx(phy, true); 812 813 /* other settings */ 814 for (i = 0; i < 5; i++) { 815 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0); 816 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0); 817 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa); 818 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]); 819 } 820 } 821 822 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy, 823 struct msm_dsi_phy_clk_request *clk_req) 824 { 825 int ret; 826 u32 status; 827 u32 const delay_us = 5; 828 u32 const timeout_us = 1000; 829 struct msm_dsi_dphy_timing *timing = &phy->timing; 830 void __iomem *base = phy->base; 831 bool less_than_1500_mhz; 832 u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0; 833 u32 glbl_pemph_ctrl_0; 834 u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0; 835 u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl; 836 u32 data; 837 838 DBG(""); 839 840 if (phy->cphy_mode) 841 ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req); 842 else 843 ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req); 844 if (ret) { 845 DRM_DEV_ERROR(&phy->pdev->dev, 846 "%s: PHY timing calculation failed\n", __func__); 847 return -EINVAL; 848 } 849 850 if (dsi_phy_hw_v4_0_is_pll_on(phy)) 851 pr_warn("PLL turned on before configuring PHY\n"); 852 853 /* wait for REFGEN READY */ 854 ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS, 855 status, (status & BIT(0)), 856 delay_us, timeout_us); 857 if (ret) { 858 pr_err("Ref gen not ready. Aborting\n"); 859 return -EINVAL; 860 } 861 862 /* TODO: CPHY enable path (this is for DPHY only) */ 863 864 /* Alter PHY configurations if data rate less than 1.5GHZ*/ 865 less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000); 866 867 if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) { 868 vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52; 869 if (phy->cphy_mode) { 870 glbl_rescode_top_ctrl = 0x00; 871 glbl_rescode_bot_ctrl = 0x3c; 872 } else { 873 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00; 874 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c; 875 } 876 glbl_str_swi_cal_sel_ctrl = 0x00; 877 glbl_hstx_str_ctrl_0 = 0x88; 878 } else { 879 vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59; 880 if (phy->cphy_mode) { 881 glbl_str_swi_cal_sel_ctrl = 0x03; 882 glbl_hstx_str_ctrl_0 = 0x66; 883 } else { 884 glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00; 885 glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88; 886 } 887 glbl_rescode_top_ctrl = 0x03; 888 glbl_rescode_bot_ctrl = 0x3c; 889 } 890 891 if (phy->cphy_mode) { 892 vreg_ctrl_0 = 0x51; 893 vreg_ctrl_1 = 0x55; 894 glbl_pemph_ctrl_0 = 0x11; 895 lane_ctrl0 = 0x17; 896 } else { 897 vreg_ctrl_1 = 0x5c; 898 glbl_pemph_ctrl_0 = 0x00; 899 lane_ctrl0 = 0x1f; 900 } 901 902 /* de-assert digital and pll power down */ 903 data = BIT(6) | BIT(5); 904 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data); 905 906 /* Assert PLL core reset */ 907 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00); 908 909 /* turn off resync FIFO */ 910 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00); 911 912 /* program CMN_CTRL_4 for minor_ver 2 chipsets*/ 913 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0); 914 data = data & (0xf0); 915 if (data == 0x20) 916 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04); 917 918 /* Configure PHY lane swap (TODO: we need to calculate this) */ 919 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21); 920 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84); 921 922 if (phy->cphy_mode) 923 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6)); 924 925 /* Enable LDO */ 926 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0); 927 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1); 928 929 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00); 930 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL, 931 glbl_str_swi_cal_sel_ctrl); 932 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0, 933 glbl_hstx_str_ctrl_0); 934 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0, 935 glbl_pemph_ctrl_0); 936 if (phy->cphy_mode) 937 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01); 938 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL, 939 glbl_rescode_top_ctrl); 940 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL, 941 glbl_rescode_bot_ctrl); 942 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55); 943 944 /* Remove power down from all blocks */ 945 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f); 946 947 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0); 948 949 /* Select full-rate mode */ 950 if (!phy->cphy_mode) 951 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40); 952 953 ret = dsi_7nm_set_usecase(phy); 954 if (ret) { 955 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n", 956 __func__, ret); 957 return ret; 958 } 959 960 /* DSI PHY timings */ 961 if (phy->cphy_mode) { 962 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00); 963 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit); 964 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, 965 timing->shared_timings.clk_pre); 966 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare); 967 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, 968 timing->shared_timings.clk_post); 969 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst); 970 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02); 971 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04); 972 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00); 973 } else { 974 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00); 975 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero); 976 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare); 977 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail); 978 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit); 979 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero); 980 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare); 981 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail); 982 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst); 983 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02); 984 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04); 985 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00); 986 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12, 987 timing->shared_timings.clk_pre); 988 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13, 989 timing->shared_timings.clk_post); 990 } 991 992 /* DSI lane settings */ 993 dsi_phy_hw_v4_0_lane_settings(phy); 994 995 DBG("DSI%d PHY enabled", phy->id); 996 997 return 0; 998 } 999 1000 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable) 1001 { 1002 void __iomem *base = phy->base; 1003 u32 data; 1004 1005 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1); 1006 if (enable) 1007 data |= BIT(5) | BIT(6); 1008 else 1009 data &= ~(BIT(5) | BIT(6)); 1010 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data); 1011 1012 return enable; 1013 } 1014 1015 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy) 1016 { 1017 void __iomem *base = phy->base; 1018 u32 data; 1019 1020 DBG(""); 1021 1022 if (dsi_phy_hw_v4_0_is_pll_on(phy)) 1023 pr_warn("Turning OFF PHY while PLL is on\n"); 1024 1025 dsi_phy_hw_v4_0_config_lpcdrx(phy, false); 1026 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0); 1027 1028 /* disable all lanes */ 1029 data &= ~0x1F; 1030 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data); 1031 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0); 1032 1033 /* Turn off all PHY blocks */ 1034 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00); 1035 /* make sure phy is turned off */ 1036 wmb(); 1037 1038 DBG("DSI%d PHY disabled", phy->id); 1039 } 1040 1041 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = { 1042 .has_phy_lane = true, 1043 .reg_cfg = { 1044 .num = 1, 1045 .regs = { 1046 {"vdds", 36000, 32}, 1047 }, 1048 }, 1049 .ops = { 1050 .enable = dsi_7nm_phy_enable, 1051 .disable = dsi_7nm_phy_disable, 1052 .pll_init = dsi_pll_7nm_init, 1053 .save_pll_state = dsi_7nm_pll_save_state, 1054 .restore_pll_state = dsi_7nm_pll_restore_state, 1055 .set_continuous_clock = dsi_7nm_set_continuous_clock, 1056 }, 1057 .min_pll_rate = 600000000UL, 1058 #ifdef CONFIG_64BIT 1059 .max_pll_rate = 5000000000UL, 1060 #else 1061 .max_pll_rate = ULONG_MAX, 1062 #endif 1063 .io_start = { 0xae94400, 0xae96400 }, 1064 .num_dsi_phy = 2, 1065 .quirks = DSI_PHY_7NM_QUIRK_V4_1, 1066 }; 1067 1068 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = { 1069 .has_phy_lane = true, 1070 .reg_cfg = { 1071 .num = 1, 1072 .regs = { 1073 {"vdds", 36000, 32}, 1074 }, 1075 }, 1076 .ops = { 1077 .enable = dsi_7nm_phy_enable, 1078 .disable = dsi_7nm_phy_disable, 1079 .pll_init = dsi_pll_7nm_init, 1080 .save_pll_state = dsi_7nm_pll_save_state, 1081 .restore_pll_state = dsi_7nm_pll_restore_state, 1082 .set_continuous_clock = dsi_7nm_set_continuous_clock, 1083 }, 1084 .min_pll_rate = 1000000000UL, 1085 .max_pll_rate = 3500000000UL, 1086 .io_start = { 0xae94400, 0xae96400 }, 1087 .num_dsi_phy = 2, 1088 }; 1089 1090 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = { 1091 .has_phy_lane = true, 1092 .reg_cfg = { 1093 .num = 1, 1094 .regs = { 1095 {"vdds", 37550, 0}, 1096 }, 1097 }, 1098 .ops = { 1099 .enable = dsi_7nm_phy_enable, 1100 .disable = dsi_7nm_phy_disable, 1101 .pll_init = dsi_pll_7nm_init, 1102 .save_pll_state = dsi_7nm_pll_save_state, 1103 .restore_pll_state = dsi_7nm_pll_restore_state, 1104 }, 1105 .min_pll_rate = 600000000UL, 1106 #ifdef CONFIG_64BIT 1107 .max_pll_rate = 5000000000ULL, 1108 #else 1109 .max_pll_rate = ULONG_MAX, 1110 #endif 1111 .io_start = { 0xae94400 }, 1112 .num_dsi_phy = 1, 1113 .quirks = DSI_PHY_7NM_QUIRK_V4_1, 1114 }; 1115