1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  * Copyright (c) 2018, The Linux Foundation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_7nm.xml.h"
13 
14 /*
15  * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16  *
17  *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
18  *                              |                |
19  *                              |                |
20  *                 +---------+  |  +----------+  |  +----+
21  *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22  *                 +---------+  |  +----------+  |  +----+
23  *                              |                |
24  *                              |                |         dsi0_pll_by_2_bit_clk
25  *                              |                |          |
26  *                              |                |  +----+  |  |\  dsi0_pclk_mux
27  *                              |                |--| /2 |--o--| \   |
28  *                              |                |  +----+     |  \  |  +---------+
29  *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30  *                              |------------------------------|  /     +---------+
31  *                              |          +-----+             | /
32  *                              -----------| /4? |--o----------|/
33  *                                         +-----+  |           |
34  *                                                  |           |dsiclk_sel
35  *                                                  |
36  *                                                  dsi0_pll_post_out_div_clk
37  */
38 
39 #define VCO_REF_CLK_RATE		19200000
40 #define FRAC_BITS 18
41 
42 /* Hardware is V4.1 */
43 #define DSI_PHY_7NM_QUIRK_V4_1		BIT(0)
44 
45 struct dsi_pll_config {
46 	bool enable_ssc;
47 	bool ssc_center;
48 	u32 ssc_freq;
49 	u32 ssc_offset;
50 	u32 ssc_adj_per;
51 
52 	/* out */
53 	u32 decimal_div_start;
54 	u32 frac_div_start;
55 	u32 pll_clock_inverters;
56 	u32 ssc_stepsize;
57 	u32 ssc_div_per;
58 };
59 
60 struct pll_7nm_cached_state {
61 	unsigned long vco_rate;
62 	u8 bit_clk_div;
63 	u8 pix_clk_div;
64 	u8 pll_out_div;
65 	u8 pll_mux;
66 };
67 
68 struct dsi_pll_7nm {
69 	struct clk_hw clk_hw;
70 
71 	struct msm_dsi_phy *phy;
72 
73 	u64 vco_current_rate;
74 
75 	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
76 	spinlock_t postdiv_lock;
77 
78 	struct pll_7nm_cached_state cached_state;
79 
80 	struct dsi_pll_7nm *slave;
81 };
82 
83 #define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
84 
85 /*
86  * Global list of private DSI PLL struct pointers. We need this for bonded DSI
87  * mode, where the master PLL's clk_ops needs access the slave's private data
88  */
89 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
90 
91 static void dsi_pll_setup_config(struct dsi_pll_config *config)
92 {
93 	config->ssc_freq = 31500;
94 	config->ssc_offset = 4800;
95 	config->ssc_adj_per = 2;
96 
97 	/* TODO: ssc enable */
98 	config->enable_ssc = false;
99 	config->ssc_center = 0;
100 }
101 
102 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
103 {
104 	u64 fref = VCO_REF_CLK_RATE;
105 	u64 pll_freq;
106 	u64 divider;
107 	u64 dec, dec_multiple;
108 	u32 frac;
109 	u64 multiplier;
110 
111 	pll_freq = pll->vco_current_rate;
112 
113 	divider = fref * 2;
114 
115 	multiplier = 1 << FRAC_BITS;
116 	dec_multiple = div_u64(pll_freq * multiplier, divider);
117 	dec = div_u64_rem(dec_multiple, multiplier, &frac);
118 
119 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1))
120 		config->pll_clock_inverters = 0x28;
121 	else if (pll_freq <= 1000000000ULL)
122 		config->pll_clock_inverters = 0xa0;
123 	else if (pll_freq <= 2500000000ULL)
124 		config->pll_clock_inverters = 0x20;
125 	else if (pll_freq <= 3020000000ULL)
126 		config->pll_clock_inverters = 0x00;
127 	else
128 		config->pll_clock_inverters = 0x40;
129 
130 	config->decimal_div_start = dec;
131 	config->frac_div_start = frac;
132 }
133 
134 #define SSC_CENTER		BIT(0)
135 #define SSC_EN			BIT(1)
136 
137 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
138 {
139 	u32 ssc_per;
140 	u32 ssc_mod;
141 	u64 ssc_step_size;
142 	u64 frac;
143 
144 	if (!config->enable_ssc) {
145 		DBG("SSC not enabled\n");
146 		return;
147 	}
148 
149 	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
150 	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
151 	ssc_per -= ssc_mod;
152 
153 	frac = config->frac_div_start;
154 	ssc_step_size = config->decimal_div_start;
155 	ssc_step_size *= (1 << FRAC_BITS);
156 	ssc_step_size += frac;
157 	ssc_step_size *= config->ssc_offset;
158 	ssc_step_size *= (config->ssc_adj_per + 1);
159 	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
160 	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
161 
162 	config->ssc_div_per = ssc_per;
163 	config->ssc_stepsize = ssc_step_size;
164 
165 	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
166 		 config->decimal_div_start, frac, FRAC_BITS);
167 	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
168 		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
169 }
170 
171 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
172 {
173 	void __iomem *base = pll->phy->pll_base;
174 
175 	if (config->enable_ssc) {
176 		pr_debug("SSC is enabled\n");
177 
178 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
179 			  config->ssc_stepsize & 0xff);
180 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
181 			  config->ssc_stepsize >> 8);
182 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
183 			  config->ssc_div_per & 0xff);
184 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
185 			  config->ssc_div_per >> 8);
186 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
187 			  config->ssc_adj_per & 0xff);
188 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
189 			  config->ssc_adj_per >> 8);
190 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
191 			  SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
192 	}
193 }
194 
195 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
196 {
197 	void __iomem *base = pll->phy->pll_base;
198 	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
199 
200 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
201 		if (pll->vco_current_rate >= 3100000000ULL)
202 			analog_controls_five_1 = 0x03;
203 
204 		if (pll->vco_current_rate < 1520000000ULL)
205 			vco_config_1 = 0x08;
206 		else if (pll->vco_current_rate < 2990000000ULL)
207 			vco_config_1 = 0x01;
208 	}
209 
210 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
211 		  analog_controls_five_1);
212 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
213 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
214 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
215 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
216 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
217 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
218 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
219 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
220 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
221 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
222 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
223 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
224 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
225 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
226 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
227 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
228 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
229 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
230 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
231 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
232 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
233 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
234 		  pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22);
235 
236 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
237 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
238 		if (pll->slave)
239 			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
240 	}
241 }
242 
243 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
244 {
245 	void __iomem *base = pll->phy->pll_base;
246 
247 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
248 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start);
249 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
250 		  config->frac_div_start & 0xff);
251 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
252 		  (config->frac_div_start & 0xff00) >> 8);
253 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
254 		  (config->frac_div_start & 0x30000) >> 16);
255 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
256 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
257 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, pll->phy->cphy_mode ? 0x00 : 0x10);
258 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters);
259 }
260 
261 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
262 				     unsigned long parent_rate)
263 {
264 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
265 	struct dsi_pll_config config;
266 
267 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
268 	    parent_rate);
269 
270 	pll_7nm->vco_current_rate = rate;
271 
272 	dsi_pll_setup_config(&config);
273 
274 	dsi_pll_calc_dec_frac(pll_7nm, &config);
275 
276 	dsi_pll_calc_ssc(pll_7nm, &config);
277 
278 	dsi_pll_commit(pll_7nm, &config);
279 
280 	dsi_pll_config_hzindep_reg(pll_7nm);
281 
282 	dsi_pll_ssc_commit(pll_7nm, &config);
283 
284 	/* flush, ensure all register writes are done*/
285 	wmb();
286 
287 	return 0;
288 }
289 
290 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
291 {
292 	int rc;
293 	u32 status = 0;
294 	u32 const delay_us = 100;
295 	u32 const timeout_us = 5000;
296 
297 	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
298 				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
299 				       status,
300 				       ((status & BIT(0)) > 0),
301 				       delay_us,
302 				       timeout_us);
303 	if (rc)
304 		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
305 		       pll->phy->id, status);
306 
307 	return rc;
308 }
309 
310 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
311 {
312 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
313 
314 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
315 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
316 	ndelay(250);
317 }
318 
319 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
320 {
321 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
322 
323 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
324 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
325 	ndelay(250);
326 }
327 
328 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
329 {
330 	u32 data;
331 
332 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
333 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
334 }
335 
336 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
337 {
338 	u32 data;
339 
340 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
341 
342 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
343 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
344 		  data | BIT(5) | BIT(4));
345 }
346 
347 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
348 {
349 	/*
350 	 * Reset the PHY digital domain. This would be needed when
351 	 * coming out of a CX or analog rail power collapse while
352 	 * ensuring that the pads maintain LP00 or LP11 state
353 	 */
354 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
355 	wmb(); /* Ensure that the reset is deasserted */
356 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
357 	wmb(); /* Ensure that the reset is deasserted */
358 }
359 
360 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
361 {
362 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
363 	int rc;
364 
365 	dsi_pll_enable_pll_bias(pll_7nm);
366 	if (pll_7nm->slave)
367 		dsi_pll_enable_pll_bias(pll_7nm->slave);
368 
369 	/* Start PLL */
370 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
371 
372 	/*
373 	 * ensure all PLL configurations are written prior to checking
374 	 * for PLL lock.
375 	 */
376 	wmb();
377 
378 	/* Check for PLL lock */
379 	rc = dsi_pll_7nm_lock_status(pll_7nm);
380 	if (rc) {
381 		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
382 		goto error;
383 	}
384 
385 	pll_7nm->phy->pll_on = true;
386 
387 	/*
388 	 * assert power on reset for PHY digital in case the PLL is
389 	 * enabled after CX of analog domain power collapse. This needs
390 	 * to be done before enabling the global clk.
391 	 */
392 	dsi_pll_phy_dig_reset(pll_7nm);
393 	if (pll_7nm->slave)
394 		dsi_pll_phy_dig_reset(pll_7nm->slave);
395 
396 	dsi_pll_enable_global_clk(pll_7nm);
397 	if (pll_7nm->slave)
398 		dsi_pll_enable_global_clk(pll_7nm->slave);
399 
400 error:
401 	return rc;
402 }
403 
404 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
405 {
406 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
407 	dsi_pll_disable_pll_bias(pll);
408 }
409 
410 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
411 {
412 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
413 
414 	/*
415 	 * To avoid any stray glitches while abruptly powering down the PLL
416 	 * make sure to gate the clock using the clock enable bit before
417 	 * powering down the PLL
418 	 */
419 	dsi_pll_disable_global_clk(pll_7nm);
420 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
421 	dsi_pll_disable_sub(pll_7nm);
422 	if (pll_7nm->slave) {
423 		dsi_pll_disable_global_clk(pll_7nm->slave);
424 		dsi_pll_disable_sub(pll_7nm->slave);
425 	}
426 	/* flush, ensure all register writes are done */
427 	wmb();
428 	pll_7nm->phy->pll_on = false;
429 }
430 
431 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
432 						  unsigned long parent_rate)
433 {
434 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
435 	void __iomem *base = pll_7nm->phy->pll_base;
436 	u64 ref_clk = VCO_REF_CLK_RATE;
437 	u64 vco_rate = 0x0;
438 	u64 multiplier;
439 	u32 frac;
440 	u32 dec;
441 	u64 pll_freq, tmp64;
442 
443 	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
444 	dec &= 0xff;
445 
446 	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
447 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
448 		  0xff) << 8);
449 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
450 		  0x3) << 16);
451 
452 	/*
453 	 * TODO:
454 	 *	1. Assumes prescaler is disabled
455 	 */
456 	multiplier = 1 << FRAC_BITS;
457 	pll_freq = dec * (ref_clk * 2);
458 	tmp64 = (ref_clk * 2 * frac);
459 	pll_freq += div_u64(tmp64, multiplier);
460 
461 	vco_rate = pll_freq;
462 	pll_7nm->vco_current_rate = vco_rate;
463 
464 	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
465 	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
466 
467 	return (unsigned long)vco_rate;
468 }
469 
470 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
471 		unsigned long rate, unsigned long *parent_rate)
472 {
473 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
474 
475 	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
476 		return  pll_7nm->phy->cfg->min_pll_rate;
477 	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
478 		return  pll_7nm->phy->cfg->max_pll_rate;
479 	else
480 		return rate;
481 }
482 
483 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
484 	.round_rate = dsi_pll_7nm_clk_round_rate,
485 	.set_rate = dsi_pll_7nm_vco_set_rate,
486 	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
487 	.prepare = dsi_pll_7nm_vco_prepare,
488 	.unprepare = dsi_pll_7nm_vco_unprepare,
489 };
490 
491 /*
492  * PLL Callbacks
493  */
494 
495 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
496 {
497 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
498 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
499 	void __iomem *phy_base = pll_7nm->phy->base;
500 	u32 cmn_clk_cfg0, cmn_clk_cfg1;
501 
502 	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
503 				       REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
504 	cached->pll_out_div &= 0x3;
505 
506 	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
507 	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
508 	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
509 
510 	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
511 	cached->pll_mux = cmn_clk_cfg1 & 0x3;
512 
513 	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
514 	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
515 	    cached->pix_clk_div, cached->pll_mux);
516 }
517 
518 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
519 {
520 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
521 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
522 	void __iomem *phy_base = pll_7nm->phy->base;
523 	u32 val;
524 	int ret;
525 
526 	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
527 	val &= ~0x3;
528 	val |= cached->pll_out_div;
529 	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
530 
531 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
532 		  cached->bit_clk_div | (cached->pix_clk_div << 4));
533 
534 	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
535 	val &= ~0x3;
536 	val |= cached->pll_mux;
537 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
538 
539 	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
540 			pll_7nm->vco_current_rate,
541 			VCO_REF_CLK_RATE);
542 	if (ret) {
543 		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
544 			"restore vco rate failed. ret=%d\n", ret);
545 		return ret;
546 	}
547 
548 	DBG("DSI PLL%d", pll_7nm->phy->id);
549 
550 	return 0;
551 }
552 
553 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
554 {
555 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
556 	void __iomem *base = phy->base;
557 	u32 data = 0x0;	/* internal PLL */
558 
559 	DBG("DSI PLL%d", pll_7nm->phy->id);
560 
561 	switch (phy->usecase) {
562 	case MSM_DSI_PHY_STANDALONE:
563 		break;
564 	case MSM_DSI_PHY_MASTER:
565 		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
566 		break;
567 	case MSM_DSI_PHY_SLAVE:
568 		data = 0x1; /* external PLL */
569 		break;
570 	default:
571 		return -EINVAL;
572 	}
573 
574 	/* set PLL src */
575 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
576 
577 	return 0;
578 }
579 
580 /*
581  * The post dividers and mux clocks are created using the standard divider and
582  * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
583  * state to follow the master PLL's divider/mux state. Therefore, we don't
584  * require special clock ops that also configure the slave PLL registers
585  */
586 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
587 {
588 	char clk_name[32], parent[32], vco_name[32];
589 	char parent2[32], parent3[32], parent4[32];
590 	struct clk_init_data vco_init = {
591 		.parent_data = &(const struct clk_parent_data) {
592 			.fw_name = "ref",
593 		},
594 		.num_parents = 1,
595 		.name = vco_name,
596 		.flags = CLK_IGNORE_UNUSED,
597 		.ops = &clk_ops_dsi_pll_7nm_vco,
598 	};
599 	struct device *dev = &pll_7nm->phy->pdev->dev;
600 	struct clk_hw *hw;
601 	int ret;
602 
603 	DBG("DSI%d", pll_7nm->phy->id);
604 
605 	snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->phy->id);
606 	pll_7nm->clk_hw.init = &vco_init;
607 
608 	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
609 	if (ret)
610 		return ret;
611 
612 	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
613 	snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->phy->id);
614 
615 	hw = devm_clk_hw_register_divider(dev, clk_name,
616 				     parent, CLK_SET_RATE_PARENT,
617 				     pll_7nm->phy->pll_base +
618 				     REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
619 				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
620 	if (IS_ERR(hw)) {
621 		ret = PTR_ERR(hw);
622 		goto fail;
623 	}
624 
625 	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
626 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
627 
628 	/* BIT CLK: DIV_CTRL_3_0 */
629 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
630 				     CLK_SET_RATE_PARENT,
631 				     pll_7nm->phy->base +
632 				     REG_DSI_7nm_PHY_CMN_CLK_CFG0,
633 				     0, 4, CLK_DIVIDER_ONE_BASED,
634 				     &pll_7nm->postdiv_lock);
635 	if (IS_ERR(hw)) {
636 		ret = PTR_ERR(hw);
637 		goto fail;
638 	}
639 
640 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
641 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
642 
643 	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
644 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
645 					  CLK_SET_RATE_PARENT, 1,
646 					  pll_7nm->phy->cphy_mode ? 7 : 8);
647 	if (IS_ERR(hw)) {
648 		ret = PTR_ERR(hw);
649 		goto fail;
650 	}
651 
652 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
653 
654 	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
655 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
656 
657 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
658 					  0, 1, 2);
659 	if (IS_ERR(hw)) {
660 		ret = PTR_ERR(hw);
661 		goto fail;
662 	}
663 
664 	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
665 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
666 
667 	if (pll_7nm->phy->cphy_mode)
668 		hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 2, 7);
669 	else
670 		hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 4);
671 	if (IS_ERR(hw)) {
672 		ret = PTR_ERR(hw);
673 		goto fail;
674 	}
675 
676 	/* in CPHY mode, pclk_mux will always have post_out_div as parent
677 	 * don't register a pclk_mux clock and just use post_out_div instead
678 	 */
679 	if (pll_7nm->phy->cphy_mode) {
680 		u32 data;
681 
682 		data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
683 		dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
684 
685 		snprintf(parent, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
686 	} else {
687 		snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
688 		snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
689 		snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
690 		snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
691 		snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
692 
693 		hw = devm_clk_hw_register_mux(dev, clk_name,
694 					((const char *[]){
695 					parent, parent2, parent3, parent4
696 					}), 4, 0, pll_7nm->phy->base +
697 					REG_DSI_7nm_PHY_CMN_CLK_CFG1,
698 					0, 2, 0, NULL);
699 		if (IS_ERR(hw)) {
700 			ret = PTR_ERR(hw);
701 			goto fail;
702 		}
703 
704 		snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
705 	}
706 
707 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
708 
709 	/* PIX CLK DIV : DIV_CTRL_7_4*/
710 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
711 				     0, pll_7nm->phy->base +
712 					REG_DSI_7nm_PHY_CMN_CLK_CFG0,
713 				     4, 4, CLK_DIVIDER_ONE_BASED,
714 				     &pll_7nm->postdiv_lock);
715 	if (IS_ERR(hw)) {
716 		ret = PTR_ERR(hw);
717 		goto fail;
718 	}
719 
720 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
721 
722 	return 0;
723 
724 fail:
725 
726 	return ret;
727 }
728 
729 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
730 {
731 	struct platform_device *pdev = phy->pdev;
732 	struct dsi_pll_7nm *pll_7nm;
733 	int ret;
734 
735 	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
736 	if (!pll_7nm)
737 		return -ENOMEM;
738 
739 	DBG("DSI PLL%d", phy->id);
740 
741 	pll_7nm_list[phy->id] = pll_7nm;
742 
743 	spin_lock_init(&pll_7nm->postdiv_lock);
744 
745 	pll_7nm->phy = phy;
746 
747 	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
748 	if (ret) {
749 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
750 		return ret;
751 	}
752 
753 	phy->vco_hw = &pll_7nm->clk_hw;
754 
755 	/* TODO: Remove this when we have proper display handover support */
756 	msm_dsi_phy_pll_save_state(phy);
757 
758 	return 0;
759 }
760 
761 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
762 {
763 	void __iomem *base = phy->base;
764 	u32 data = 0;
765 
766 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
767 	mb(); /* make sure read happened */
768 
769 	return (data & BIT(0));
770 }
771 
772 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
773 {
774 	void __iomem *lane_base = phy->lane_base;
775 	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
776 
777 	/*
778 	 * LPRX and CDRX need to enabled only for physical data lane
779 	 * corresponding to the logical data lane 0
780 	 */
781 	if (enable)
782 		dsi_phy_write(lane_base +
783 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
784 	else
785 		dsi_phy_write(lane_base +
786 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
787 }
788 
789 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
790 {
791 	int i;
792 	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
793 	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
794 	const u8 *tx_dctrl = tx_dctrl_0;
795 	void __iomem *lane_base = phy->lane_base;
796 
797 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)
798 		tx_dctrl = tx_dctrl_1;
799 
800 	/* Strength ctrl settings */
801 	for (i = 0; i < 5; i++) {
802 		/*
803 		 * Disable LPRX and CDRX for all lanes. And later on, it will
804 		 * be only enabled for the physical data lane corresponding
805 		 * to the logical data lane 0
806 		 */
807 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
808 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
809 	}
810 
811 	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
812 
813 	/* other settings */
814 	for (i = 0; i < 5; i++) {
815 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
816 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
817 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
818 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
819 	}
820 }
821 
822 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
823 			      struct msm_dsi_phy_clk_request *clk_req)
824 {
825 	int ret;
826 	u32 status;
827 	u32 const delay_us = 5;
828 	u32 const timeout_us = 1000;
829 	struct msm_dsi_dphy_timing *timing = &phy->timing;
830 	void __iomem *base = phy->base;
831 	bool less_than_1500_mhz;
832 	u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
833 	u32 glbl_pemph_ctrl_0;
834 	u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
835 	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
836 	u32 data;
837 
838 	DBG("");
839 
840 	if (phy->cphy_mode)
841 		ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
842 	else
843 		ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
844 	if (ret) {
845 		DRM_DEV_ERROR(&phy->pdev->dev,
846 			"%s: PHY timing calculation failed\n", __func__);
847 		return -EINVAL;
848 	}
849 
850 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
851 		pr_warn("PLL turned on before configuring PHY\n");
852 
853 	/* wait for REFGEN READY */
854 	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
855 					status, (status & BIT(0)),
856 					delay_us, timeout_us);
857 	if (ret) {
858 		pr_err("Ref gen not ready. Aborting\n");
859 		return -EINVAL;
860 	}
861 
862 	/* TODO: CPHY enable path (this is for DPHY only) */
863 
864 	/* Alter PHY configurations if data rate less than 1.5GHZ*/
865 	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
866 
867 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
868 		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
869 		if (phy->cphy_mode) {
870 			glbl_rescode_top_ctrl = 0x00;
871 			glbl_rescode_bot_ctrl = 0x3c;
872 		} else {
873 			glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
874 			glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
875 		}
876 		glbl_str_swi_cal_sel_ctrl = 0x00;
877 		glbl_hstx_str_ctrl_0 = 0x88;
878 	} else {
879 		vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
880 		if (phy->cphy_mode) {
881 			glbl_str_swi_cal_sel_ctrl = 0x03;
882 			glbl_hstx_str_ctrl_0 = 0x66;
883 		} else {
884 			glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
885 			glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
886 		}
887 		glbl_rescode_top_ctrl = 0x03;
888 		glbl_rescode_bot_ctrl = 0x3c;
889 	}
890 
891 	if (phy->cphy_mode) {
892 		vreg_ctrl_0 = 0x51;
893 		vreg_ctrl_1 = 0x55;
894 		glbl_pemph_ctrl_0 = 0x11;
895 		lane_ctrl0 = 0x17;
896 	} else {
897 		vreg_ctrl_1 = 0x5c;
898 		glbl_pemph_ctrl_0 = 0x00;
899 		lane_ctrl0 = 0x1f;
900 	}
901 
902 	/* de-assert digital and pll power down */
903 	data = BIT(6) | BIT(5);
904 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
905 
906 	/* Assert PLL core reset */
907 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
908 
909 	/* turn off resync FIFO */
910 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
911 
912 	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
913 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0);
914 	data = data & (0xf0);
915 	if (data == 0x20)
916 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
917 
918 	/* Configure PHY lane swap (TODO: we need to calculate this) */
919 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
920 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
921 
922 	if (phy->cphy_mode)
923 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
924 
925 	/* Enable LDO */
926 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
927 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
928 
929 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
930 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
931 		      glbl_str_swi_cal_sel_ctrl);
932 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
933 		      glbl_hstx_str_ctrl_0);
934 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
935 		      glbl_pemph_ctrl_0);
936 	if (phy->cphy_mode)
937 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
938 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
939 		      glbl_rescode_top_ctrl);
940 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
941 		      glbl_rescode_bot_ctrl);
942 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
943 
944 	/* Remove power down from all blocks */
945 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
946 
947 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
948 
949 	/* Select full-rate mode */
950 	if (!phy->cphy_mode)
951 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
952 
953 	ret = dsi_7nm_set_usecase(phy);
954 	if (ret) {
955 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
956 			__func__, ret);
957 		return ret;
958 	}
959 
960 	/* DSI PHY timings */
961 	if (phy->cphy_mode) {
962 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
963 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
964 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
965 			timing->shared_timings.clk_pre);
966 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
967 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
968 			timing->shared_timings.clk_post);
969 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
970 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
971 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
972 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
973 	} else {
974 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
975 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
976 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
977 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
978 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
979 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
980 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
981 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
982 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
983 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
984 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
985 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
986 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
987 			timing->shared_timings.clk_pre);
988 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
989 			timing->shared_timings.clk_post);
990 	}
991 
992 	/* DSI lane settings */
993 	dsi_phy_hw_v4_0_lane_settings(phy);
994 
995 	DBG("DSI%d PHY enabled", phy->id);
996 
997 	return 0;
998 }
999 
1000 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
1001 {
1002 	void __iomem *base = phy->base;
1003 	u32 data;
1004 
1005 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1006 	if (enable)
1007 		data |= BIT(5) | BIT(6);
1008 	else
1009 		data &= ~(BIT(5) | BIT(6));
1010 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
1011 
1012 	return enable;
1013 }
1014 
1015 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1016 {
1017 	void __iomem *base = phy->base;
1018 	u32 data;
1019 
1020 	DBG("");
1021 
1022 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
1023 		pr_warn("Turning OFF PHY while PLL is on\n");
1024 
1025 	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1026 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1027 
1028 	/* disable all lanes */
1029 	data &= ~0x1F;
1030 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
1031 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
1032 
1033 	/* Turn off all PHY blocks */
1034 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
1035 	/* make sure phy is turned off */
1036 	wmb();
1037 
1038 	DBG("DSI%d PHY disabled", phy->id);
1039 }
1040 
1041 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1042 	.has_phy_lane = true,
1043 	.reg_cfg = {
1044 		.num = 1,
1045 		.regs = {
1046 			{"vdds", 36000, 32},
1047 		},
1048 	},
1049 	.ops = {
1050 		.enable = dsi_7nm_phy_enable,
1051 		.disable = dsi_7nm_phy_disable,
1052 		.pll_init = dsi_pll_7nm_init,
1053 		.save_pll_state = dsi_7nm_pll_save_state,
1054 		.restore_pll_state = dsi_7nm_pll_restore_state,
1055 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1056 	},
1057 	.min_pll_rate = 600000000UL,
1058 #ifdef CONFIG_64BIT
1059 	.max_pll_rate = 5000000000UL,
1060 #else
1061 	.max_pll_rate = ULONG_MAX,
1062 #endif
1063 	.io_start = { 0xae94400, 0xae96400 },
1064 	.num_dsi_phy = 2,
1065 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1066 };
1067 
1068 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1069 	.has_phy_lane = true,
1070 	.reg_cfg = {
1071 		.num = 1,
1072 		.regs = {
1073 			{"vdds", 36000, 32},
1074 		},
1075 	},
1076 	.ops = {
1077 		.enable = dsi_7nm_phy_enable,
1078 		.disable = dsi_7nm_phy_disable,
1079 		.pll_init = dsi_pll_7nm_init,
1080 		.save_pll_state = dsi_7nm_pll_save_state,
1081 		.restore_pll_state = dsi_7nm_pll_restore_state,
1082 		.set_continuous_clock = dsi_7nm_set_continuous_clock,
1083 	},
1084 	.min_pll_rate = 1000000000UL,
1085 	.max_pll_rate = 3500000000UL,
1086 	.io_start = { 0xae94400, 0xae96400 },
1087 	.num_dsi_phy = 2,
1088 };
1089 
1090 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1091 	.has_phy_lane = true,
1092 	.reg_cfg = {
1093 		.num = 1,
1094 		.regs = {
1095 			{"vdds", 37550, 0},
1096 		},
1097 	},
1098 	.ops = {
1099 		.enable = dsi_7nm_phy_enable,
1100 		.disable = dsi_7nm_phy_disable,
1101 		.pll_init = dsi_pll_7nm_init,
1102 		.save_pll_state = dsi_7nm_pll_save_state,
1103 		.restore_pll_state = dsi_7nm_pll_restore_state,
1104 	},
1105 	.min_pll_rate = 600000000UL,
1106 #ifdef CONFIG_64BIT
1107 	.max_pll_rate = 5000000000ULL,
1108 #else
1109 	.max_pll_rate = ULONG_MAX,
1110 #endif
1111 	.io_start = { 0xae94400 },
1112 	.num_dsi_phy = 1,
1113 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
1114 };
1115