1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  * Copyright (c) 2018, The Linux Foundation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 
13 /*
14  * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
15  *
16  *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
17  *                              |                |
18  *                              |                |
19  *                 +---------+  |  +----------+  |  +----+
20  *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
21  *                 +---------+  |  +----------+  |  +----+
22  *                              |                |
23  *                              |                |         dsi0_pll_by_2_bit_clk
24  *                              |                |          |
25  *                              |                |  +----+  |  |\  dsi0_pclk_mux
26  *                              |                |--| /2 |--o--| \   |
27  *                              |                |  +----+     |  \  |  +---------+
28  *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
29  *                              |------------------------------|  /     +---------+
30  *                              |          +-----+             | /
31  *                              -----------| /4? |--o----------|/
32  *                                         +-----+  |           |
33  *                                                  |           |dsiclk_sel
34  *                                                  |
35  *                                                  dsi0_pll_post_out_div_clk
36  */
37 
38 #define VCO_REF_CLK_RATE		19200000
39 #define FRAC_BITS 18
40 
41 /* Hardware is V4.1 */
42 #define DSI_PHY_7NM_QUIRK_V4_1		BIT(0)
43 
44 struct dsi_pll_config {
45 	bool enable_ssc;
46 	bool ssc_center;
47 	u32 ssc_freq;
48 	u32 ssc_offset;
49 	u32 ssc_adj_per;
50 
51 	/* out */
52 	u32 decimal_div_start;
53 	u32 frac_div_start;
54 	u32 pll_clock_inverters;
55 	u32 ssc_stepsize;
56 	u32 ssc_div_per;
57 };
58 
59 struct pll_7nm_cached_state {
60 	unsigned long vco_rate;
61 	u8 bit_clk_div;
62 	u8 pix_clk_div;
63 	u8 pll_out_div;
64 	u8 pll_mux;
65 };
66 
67 struct dsi_pll_7nm {
68 	struct clk_hw clk_hw;
69 
70 	struct msm_dsi_phy *phy;
71 
72 	u64 vco_current_rate;
73 
74 	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
75 	spinlock_t postdiv_lock;
76 
77 	struct pll_7nm_cached_state cached_state;
78 
79 	struct dsi_pll_7nm *slave;
80 };
81 
82 #define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
83 
84 /*
85  * Global list of private DSI PLL struct pointers. We need this for Dual DSI
86  * mode, where the master PLL's clk_ops needs access the slave's private data
87  */
88 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
89 
90 static void dsi_pll_setup_config(struct dsi_pll_config *config)
91 {
92 	config->ssc_freq = 31500;
93 	config->ssc_offset = 4800;
94 	config->ssc_adj_per = 2;
95 
96 	/* TODO: ssc enable */
97 	config->enable_ssc = false;
98 	config->ssc_center = 0;
99 }
100 
101 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
102 {
103 	u64 fref = VCO_REF_CLK_RATE;
104 	u64 pll_freq;
105 	u64 divider;
106 	u64 dec, dec_multiple;
107 	u32 frac;
108 	u64 multiplier;
109 
110 	pll_freq = pll->vco_current_rate;
111 
112 	divider = fref * 2;
113 
114 	multiplier = 1 << FRAC_BITS;
115 	dec_multiple = div_u64(pll_freq * multiplier, divider);
116 	div_u64_rem(dec_multiple, multiplier, &frac);
117 
118 	dec = div_u64(dec_multiple, multiplier);
119 
120 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1))
121 		config->pll_clock_inverters = 0x28;
122 	else if (pll_freq <= 1000000000ULL)
123 		config->pll_clock_inverters = 0xa0;
124 	else if (pll_freq <= 2500000000ULL)
125 		config->pll_clock_inverters = 0x20;
126 	else if (pll_freq <= 3020000000ULL)
127 		config->pll_clock_inverters = 0x00;
128 	else
129 		config->pll_clock_inverters = 0x40;
130 
131 	config->decimal_div_start = dec;
132 	config->frac_div_start = frac;
133 }
134 
135 #define SSC_CENTER		BIT(0)
136 #define SSC_EN			BIT(1)
137 
138 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
139 {
140 	u32 ssc_per;
141 	u32 ssc_mod;
142 	u64 ssc_step_size;
143 	u64 frac;
144 
145 	if (!config->enable_ssc) {
146 		DBG("SSC not enabled\n");
147 		return;
148 	}
149 
150 	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
151 	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
152 	ssc_per -= ssc_mod;
153 
154 	frac = config->frac_div_start;
155 	ssc_step_size = config->decimal_div_start;
156 	ssc_step_size *= (1 << FRAC_BITS);
157 	ssc_step_size += frac;
158 	ssc_step_size *= config->ssc_offset;
159 	ssc_step_size *= (config->ssc_adj_per + 1);
160 	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
161 	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
162 
163 	config->ssc_div_per = ssc_per;
164 	config->ssc_stepsize = ssc_step_size;
165 
166 	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
167 		 config->decimal_div_start, frac, FRAC_BITS);
168 	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
169 		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
170 }
171 
172 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
173 {
174 	void __iomem *base = pll->phy->pll_base;
175 
176 	if (config->enable_ssc) {
177 		pr_debug("SSC is enabled\n");
178 
179 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
180 			  config->ssc_stepsize & 0xff);
181 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
182 			  config->ssc_stepsize >> 8);
183 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
184 			  config->ssc_div_per & 0xff);
185 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
186 			  config->ssc_div_per >> 8);
187 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
188 			  config->ssc_adj_per & 0xff);
189 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
190 			  config->ssc_adj_per >> 8);
191 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
192 			  SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
193 	}
194 }
195 
196 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
197 {
198 	void __iomem *base = pll->phy->pll_base;
199 	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
200 
201 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
202 		if (pll->vco_current_rate >= 3100000000ULL)
203 			analog_controls_five_1 = 0x03;
204 
205 		if (pll->vco_current_rate < 1520000000ULL)
206 			vco_config_1 = 0x08;
207 		else if (pll->vco_current_rate < 2990000000ULL)
208 			vco_config_1 = 0x01;
209 	}
210 
211 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
212 		  analog_controls_five_1);
213 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
214 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
215 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
216 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
217 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
218 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
219 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
220 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
221 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
222 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
223 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
224 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
225 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
226 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
227 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
228 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
229 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
230 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
231 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
232 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
233 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
234 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
235 		  pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22);
236 
237 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
238 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
239 		if (pll->slave)
240 			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
241 	}
242 }
243 
244 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
245 {
246 	void __iomem *base = pll->phy->pll_base;
247 
248 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
249 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start);
250 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
251 		  config->frac_div_start & 0xff);
252 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
253 		  (config->frac_div_start & 0xff00) >> 8);
254 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
255 		  (config->frac_div_start & 0x30000) >> 16);
256 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
257 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
258 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, 0x10); /* TODO: 0x00 for CPHY */
259 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters);
260 }
261 
262 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
263 				     unsigned long parent_rate)
264 {
265 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
266 	struct dsi_pll_config config;
267 
268 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
269 	    parent_rate);
270 
271 	pll_7nm->vco_current_rate = rate;
272 
273 	dsi_pll_setup_config(&config);
274 
275 	dsi_pll_calc_dec_frac(pll_7nm, &config);
276 
277 	dsi_pll_calc_ssc(pll_7nm, &config);
278 
279 	dsi_pll_commit(pll_7nm, &config);
280 
281 	dsi_pll_config_hzindep_reg(pll_7nm);
282 
283 	dsi_pll_ssc_commit(pll_7nm, &config);
284 
285 	/* flush, ensure all register writes are done*/
286 	wmb();
287 
288 	return 0;
289 }
290 
291 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
292 {
293 	int rc;
294 	u32 status = 0;
295 	u32 const delay_us = 100;
296 	u32 const timeout_us = 5000;
297 
298 	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
299 				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
300 				       status,
301 				       ((status & BIT(0)) > 0),
302 				       delay_us,
303 				       timeout_us);
304 	if (rc)
305 		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
306 		       pll->phy->id, status);
307 
308 	return rc;
309 }
310 
311 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
312 {
313 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
314 
315 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
316 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
317 	ndelay(250);
318 }
319 
320 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
321 {
322 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
323 
324 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
325 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
326 	ndelay(250);
327 }
328 
329 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
330 {
331 	u32 data;
332 
333 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
334 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
335 }
336 
337 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
338 {
339 	u32 data;
340 
341 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
342 
343 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
344 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
345 		  data | BIT(5) | BIT(4));
346 }
347 
348 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
349 {
350 	/*
351 	 * Reset the PHY digital domain. This would be needed when
352 	 * coming out of a CX or analog rail power collapse while
353 	 * ensuring that the pads maintain LP00 or LP11 state
354 	 */
355 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
356 	wmb(); /* Ensure that the reset is deasserted */
357 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
358 	wmb(); /* Ensure that the reset is deasserted */
359 }
360 
361 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
362 {
363 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
364 	int rc;
365 
366 	dsi_pll_enable_pll_bias(pll_7nm);
367 	if (pll_7nm->slave)
368 		dsi_pll_enable_pll_bias(pll_7nm->slave);
369 
370 	/* Start PLL */
371 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
372 
373 	/*
374 	 * ensure all PLL configurations are written prior to checking
375 	 * for PLL lock.
376 	 */
377 	wmb();
378 
379 	/* Check for PLL lock */
380 	rc = dsi_pll_7nm_lock_status(pll_7nm);
381 	if (rc) {
382 		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
383 		goto error;
384 	}
385 
386 	pll_7nm->phy->pll_on = true;
387 
388 	/*
389 	 * assert power on reset for PHY digital in case the PLL is
390 	 * enabled after CX of analog domain power collapse. This needs
391 	 * to be done before enabling the global clk.
392 	 */
393 	dsi_pll_phy_dig_reset(pll_7nm);
394 	if (pll_7nm->slave)
395 		dsi_pll_phy_dig_reset(pll_7nm->slave);
396 
397 	dsi_pll_enable_global_clk(pll_7nm);
398 	if (pll_7nm->slave)
399 		dsi_pll_enable_global_clk(pll_7nm->slave);
400 
401 error:
402 	return rc;
403 }
404 
405 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
406 {
407 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
408 	dsi_pll_disable_pll_bias(pll);
409 }
410 
411 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
412 {
413 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
414 
415 	/*
416 	 * To avoid any stray glitches while abruptly powering down the PLL
417 	 * make sure to gate the clock using the clock enable bit before
418 	 * powering down the PLL
419 	 */
420 	dsi_pll_disable_global_clk(pll_7nm);
421 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
422 	dsi_pll_disable_sub(pll_7nm);
423 	if (pll_7nm->slave) {
424 		dsi_pll_disable_global_clk(pll_7nm->slave);
425 		dsi_pll_disable_sub(pll_7nm->slave);
426 	}
427 	/* flush, ensure all register writes are done */
428 	wmb();
429 	pll_7nm->phy->pll_on = false;
430 }
431 
432 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
433 						  unsigned long parent_rate)
434 {
435 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
436 	void __iomem *base = pll_7nm->phy->pll_base;
437 	u64 ref_clk = VCO_REF_CLK_RATE;
438 	u64 vco_rate = 0x0;
439 	u64 multiplier;
440 	u32 frac;
441 	u32 dec;
442 	u64 pll_freq, tmp64;
443 
444 	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
445 	dec &= 0xff;
446 
447 	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
448 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
449 		  0xff) << 8);
450 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
451 		  0x3) << 16);
452 
453 	/*
454 	 * TODO:
455 	 *	1. Assumes prescaler is disabled
456 	 */
457 	multiplier = 1 << FRAC_BITS;
458 	pll_freq = dec * (ref_clk * 2);
459 	tmp64 = (ref_clk * 2 * frac);
460 	pll_freq += div_u64(tmp64, multiplier);
461 
462 	vco_rate = pll_freq;
463 	pll_7nm->vco_current_rate = vco_rate;
464 
465 	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
466 	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
467 
468 	return (unsigned long)vco_rate;
469 }
470 
471 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
472 		unsigned long rate, unsigned long *parent_rate)
473 {
474 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
475 
476 	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
477 		return  pll_7nm->phy->cfg->min_pll_rate;
478 	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
479 		return  pll_7nm->phy->cfg->max_pll_rate;
480 	else
481 		return rate;
482 }
483 
484 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
485 	.round_rate = dsi_pll_7nm_clk_round_rate,
486 	.set_rate = dsi_pll_7nm_vco_set_rate,
487 	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
488 	.prepare = dsi_pll_7nm_vco_prepare,
489 	.unprepare = dsi_pll_7nm_vco_unprepare,
490 };
491 
492 /*
493  * PLL Callbacks
494  */
495 
496 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
497 {
498 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
499 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
500 	void __iomem *phy_base = pll_7nm->phy->base;
501 	u32 cmn_clk_cfg0, cmn_clk_cfg1;
502 
503 	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
504 				       REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
505 	cached->pll_out_div &= 0x3;
506 
507 	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
508 	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
509 	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
510 
511 	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
512 	cached->pll_mux = cmn_clk_cfg1 & 0x3;
513 
514 	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
515 	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
516 	    cached->pix_clk_div, cached->pll_mux);
517 }
518 
519 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
520 {
521 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
522 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
523 	void __iomem *phy_base = pll_7nm->phy->base;
524 	u32 val;
525 	int ret;
526 
527 	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
528 	val &= ~0x3;
529 	val |= cached->pll_out_div;
530 	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
531 
532 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
533 		  cached->bit_clk_div | (cached->pix_clk_div << 4));
534 
535 	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
536 	val &= ~0x3;
537 	val |= cached->pll_mux;
538 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
539 
540 	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
541 			pll_7nm->vco_current_rate,
542 			VCO_REF_CLK_RATE);
543 	if (ret) {
544 		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
545 			"restore vco rate failed. ret=%d\n", ret);
546 		return ret;
547 	}
548 
549 	DBG("DSI PLL%d", pll_7nm->phy->id);
550 
551 	return 0;
552 }
553 
554 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
555 {
556 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
557 	void __iomem *base = phy->base;
558 	u32 data = 0x0;	/* internal PLL */
559 
560 	DBG("DSI PLL%d", pll_7nm->phy->id);
561 
562 	switch (phy->usecase) {
563 	case MSM_DSI_PHY_STANDALONE:
564 		break;
565 	case MSM_DSI_PHY_MASTER:
566 		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
567 		break;
568 	case MSM_DSI_PHY_SLAVE:
569 		data = 0x1; /* external PLL */
570 		break;
571 	default:
572 		return -EINVAL;
573 	}
574 
575 	/* set PLL src */
576 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
577 
578 	return 0;
579 }
580 
581 /*
582  * The post dividers and mux clocks are created using the standard divider and
583  * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
584  * state to follow the master PLL's divider/mux state. Therefore, we don't
585  * require special clock ops that also configure the slave PLL registers
586  */
587 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
588 {
589 	char clk_name[32], parent[32], vco_name[32];
590 	char parent2[32], parent3[32], parent4[32];
591 	struct clk_init_data vco_init = {
592 		.parent_names = (const char *[]){ "bi_tcxo" },
593 		.num_parents = 1,
594 		.name = vco_name,
595 		.flags = CLK_IGNORE_UNUSED,
596 		.ops = &clk_ops_dsi_pll_7nm_vco,
597 	};
598 	struct device *dev = &pll_7nm->phy->pdev->dev;
599 	struct clk_hw *hw;
600 	int ret;
601 
602 	DBG("DSI%d", pll_7nm->phy->id);
603 
604 	snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->phy->id);
605 	pll_7nm->clk_hw.init = &vco_init;
606 
607 	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
608 	if (ret)
609 		return ret;
610 
611 	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
612 	snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->phy->id);
613 
614 	hw = devm_clk_hw_register_divider(dev, clk_name,
615 				     parent, CLK_SET_RATE_PARENT,
616 				     pll_7nm->phy->pll_base +
617 				     REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
618 				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
619 	if (IS_ERR(hw)) {
620 		ret = PTR_ERR(hw);
621 		goto fail;
622 	}
623 
624 	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
625 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
626 
627 	/* BIT CLK: DIV_CTRL_3_0 */
628 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
629 				     CLK_SET_RATE_PARENT,
630 				     pll_7nm->phy->base +
631 				     REG_DSI_7nm_PHY_CMN_CLK_CFG0,
632 				     0, 4, CLK_DIVIDER_ONE_BASED,
633 				     &pll_7nm->postdiv_lock);
634 	if (IS_ERR(hw)) {
635 		ret = PTR_ERR(hw);
636 		goto fail;
637 	}
638 
639 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
640 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
641 
642 	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
643 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
644 					  CLK_SET_RATE_PARENT, 1, 8);
645 	if (IS_ERR(hw)) {
646 		ret = PTR_ERR(hw);
647 		goto fail;
648 	}
649 
650 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
651 
652 	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
653 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
654 
655 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
656 					  0, 1, 2);
657 	if (IS_ERR(hw)) {
658 		ret = PTR_ERR(hw);
659 		goto fail;
660 	}
661 
662 	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
663 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
664 
665 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
666 					  0, 1, 4);
667 	if (IS_ERR(hw)) {
668 		ret = PTR_ERR(hw);
669 		goto fail;
670 	}
671 
672 	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
673 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
674 	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
675 	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
676 	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
677 
678 	hw = devm_clk_hw_register_mux(dev, clk_name,
679 				 ((const char *[]){
680 				 parent, parent2, parent3, parent4
681 				 }), 4, 0, pll_7nm->phy->base +
682 				 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
683 				 0, 2, 0, NULL);
684 	if (IS_ERR(hw)) {
685 		ret = PTR_ERR(hw);
686 		goto fail;
687 	}
688 
689 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
690 	snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
691 
692 	/* PIX CLK DIV : DIV_CTRL_7_4*/
693 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
694 				     0, pll_7nm->phy->base +
695 					REG_DSI_7nm_PHY_CMN_CLK_CFG0,
696 				     4, 4, CLK_DIVIDER_ONE_BASED,
697 				     &pll_7nm->postdiv_lock);
698 	if (IS_ERR(hw)) {
699 		ret = PTR_ERR(hw);
700 		goto fail;
701 	}
702 
703 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
704 
705 	return 0;
706 
707 fail:
708 
709 	return ret;
710 }
711 
712 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
713 {
714 	struct platform_device *pdev = phy->pdev;
715 	struct dsi_pll_7nm *pll_7nm;
716 	int ret;
717 
718 	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
719 	if (!pll_7nm)
720 		return -ENOMEM;
721 
722 	DBG("DSI PLL%d", phy->id);
723 
724 	pll_7nm_list[phy->id] = pll_7nm;
725 
726 	spin_lock_init(&pll_7nm->postdiv_lock);
727 
728 	pll_7nm->phy = phy;
729 
730 	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
731 	if (ret) {
732 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
733 		return ret;
734 	}
735 
736 	phy->vco_hw = &pll_7nm->clk_hw;
737 
738 	/* TODO: Remove this when we have proper display handover support */
739 	msm_dsi_phy_pll_save_state(phy);
740 
741 	return 0;
742 }
743 
744 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
745 {
746 	void __iomem *base = phy->base;
747 	u32 data = 0;
748 
749 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
750 	mb(); /* make sure read happened */
751 
752 	return (data & BIT(0));
753 }
754 
755 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
756 {
757 	void __iomem *lane_base = phy->lane_base;
758 	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
759 
760 	/*
761 	 * LPRX and CDRX need to enabled only for physical data lane
762 	 * corresponding to the logical data lane 0
763 	 */
764 	if (enable)
765 		dsi_phy_write(lane_base +
766 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
767 	else
768 		dsi_phy_write(lane_base +
769 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
770 }
771 
772 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
773 {
774 	int i;
775 	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
776 	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
777 	const u8 *tx_dctrl = tx_dctrl_0;
778 	void __iomem *lane_base = phy->lane_base;
779 
780 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)
781 		tx_dctrl = tx_dctrl_1;
782 
783 	/* Strength ctrl settings */
784 	for (i = 0; i < 5; i++) {
785 		/*
786 		 * Disable LPRX and CDRX for all lanes. And later on, it will
787 		 * be only enabled for the physical data lane corresponding
788 		 * to the logical data lane 0
789 		 */
790 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
791 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
792 	}
793 
794 	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
795 
796 	/* other settings */
797 	for (i = 0; i < 5; i++) {
798 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
799 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
800 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
801 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
802 	}
803 }
804 
805 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
806 			      struct msm_dsi_phy_clk_request *clk_req)
807 {
808 	int ret;
809 	u32 status;
810 	u32 const delay_us = 5;
811 	u32 const timeout_us = 1000;
812 	struct msm_dsi_dphy_timing *timing = &phy->timing;
813 	void __iomem *base = phy->base;
814 	bool less_than_1500_mhz;
815 	u32 vreg_ctrl_0, glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
816 	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
817 	u32 data;
818 
819 	DBG("");
820 
821 	if (msm_dsi_dphy_timing_calc_v4(timing, clk_req)) {
822 		DRM_DEV_ERROR(&phy->pdev->dev,
823 			"%s: D-PHY timing calculation failed\n", __func__);
824 		return -EINVAL;
825 	}
826 
827 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
828 		pr_warn("PLL turned on before configuring PHY\n");
829 
830 	/* wait for REFGEN READY */
831 	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
832 					status, (status & BIT(0)),
833 					delay_us, timeout_us);
834 	if (ret) {
835 		pr_err("Ref gen not ready. Aborting\n");
836 		return -EINVAL;
837 	}
838 
839 	/* TODO: CPHY enable path (this is for DPHY only) */
840 
841 	/* Alter PHY configurations if data rate less than 1.5GHZ*/
842 	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
843 
844 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
845 		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
846 		glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
847 		glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
848 		glbl_str_swi_cal_sel_ctrl = 0x00;
849 		glbl_hstx_str_ctrl_0 = 0x88;
850 	} else {
851 		vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
852 		glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
853 		glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
854 		glbl_rescode_top_ctrl = 0x03;
855 		glbl_rescode_bot_ctrl = 0x3c;
856 	}
857 
858 	/* de-assert digital and pll power down */
859 	data = BIT(6) | BIT(5);
860 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
861 
862 	/* Assert PLL core reset */
863 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
864 
865 	/* turn off resync FIFO */
866 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
867 
868 	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
869 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0);
870 	data = data & (0xf0);
871 	if (data == 0x20)
872 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
873 
874 	/* Configure PHY lane swap (TODO: we need to calculate this) */
875 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
876 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
877 
878 	/* Enable LDO */
879 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
880 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, 0x5c);
881 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
882 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
883 		      glbl_str_swi_cal_sel_ctrl);
884 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
885 		      glbl_hstx_str_ctrl_0);
886 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
887 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
888 		      glbl_rescode_top_ctrl);
889 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
890 		      glbl_rescode_bot_ctrl);
891 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
892 
893 	/* Remove power down from all blocks */
894 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
895 
896 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0x1f);
897 
898 	/* Select full-rate mode */
899 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
900 
901 	ret = dsi_7nm_set_usecase(phy);
902 	if (ret) {
903 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
904 			__func__, ret);
905 		return ret;
906 	}
907 
908 	/* DSI PHY timings */
909 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
910 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
911 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
912 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
913 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
914 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
915 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
916 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
917 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
918 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
919 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
920 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
921 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
922 		      timing->shared_timings.clk_pre);
923 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
924 		      timing->shared_timings.clk_post);
925 
926 	/* DSI lane settings */
927 	dsi_phy_hw_v4_0_lane_settings(phy);
928 
929 	DBG("DSI%d PHY enabled", phy->id);
930 
931 	return 0;
932 }
933 
934 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
935 {
936 	void __iomem *base = phy->base;
937 	u32 data;
938 
939 	DBG("");
940 
941 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
942 		pr_warn("Turning OFF PHY while PLL is on\n");
943 
944 	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
945 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
946 
947 	/* disable all lanes */
948 	data &= ~0x1F;
949 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
950 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
951 
952 	/* Turn off all PHY blocks */
953 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
954 	/* make sure phy is turned off */
955 	wmb();
956 
957 	DBG("DSI%d PHY disabled", phy->id);
958 }
959 
960 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
961 	.has_phy_lane = true,
962 	.reg_cfg = {
963 		.num = 1,
964 		.regs = {
965 			{"vdds", 36000, 32},
966 		},
967 	},
968 	.ops = {
969 		.enable = dsi_7nm_phy_enable,
970 		.disable = dsi_7nm_phy_disable,
971 		.pll_init = dsi_pll_7nm_init,
972 		.save_pll_state = dsi_7nm_pll_save_state,
973 		.restore_pll_state = dsi_7nm_pll_restore_state,
974 	},
975 	.min_pll_rate = 600000000UL,
976 	.max_pll_rate = (5000000000ULL < ULONG_MAX) ? 5000000000ULL : ULONG_MAX,
977 	.io_start = { 0xae94400, 0xae96400 },
978 	.num_dsi_phy = 2,
979 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
980 };
981 
982 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
983 	.has_phy_lane = true,
984 	.reg_cfg = {
985 		.num = 1,
986 		.regs = {
987 			{"vdds", 36000, 32},
988 		},
989 	},
990 	.ops = {
991 		.enable = dsi_7nm_phy_enable,
992 		.disable = dsi_7nm_phy_disable,
993 		.pll_init = dsi_pll_7nm_init,
994 		.save_pll_state = dsi_7nm_pll_save_state,
995 		.restore_pll_state = dsi_7nm_pll_restore_state,
996 	},
997 	.min_pll_rate = 1000000000UL,
998 	.max_pll_rate = 3500000000UL,
999 	.io_start = { 0xae94400, 0xae96400 },
1000 	.num_dsi_phy = 2,
1001 };
1002