1 /*
2  * SPDX-License-Identifier: GPL-2.0
3  * Copyright (c) 2018, The Linux Foundation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 
13 /*
14  * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
15  *
16  *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
17  *                              |                |
18  *                              |                |
19  *                 +---------+  |  +----------+  |  +----+
20  *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
21  *                 +---------+  |  +----------+  |  +----+
22  *                              |                |
23  *                              |                |         dsi0_pll_by_2_bit_clk
24  *                              |                |          |
25  *                              |                |  +----+  |  |\  dsi0_pclk_mux
26  *                              |                |--| /2 |--o--| \   |
27  *                              |                |  +----+     |  \  |  +---------+
28  *                              |                --------------|  |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
29  *                              |------------------------------|  /     +---------+
30  *                              |          +-----+             | /
31  *                              -----------| /4? |--o----------|/
32  *                                         +-----+  |           |
33  *                                                  |           |dsiclk_sel
34  *                                                  |
35  *                                                  dsi0_pll_post_out_div_clk
36  */
37 
38 #define VCO_REF_CLK_RATE		19200000
39 #define FRAC_BITS 18
40 
41 /* Hardware is V4.1 */
42 #define DSI_PHY_7NM_QUIRK_V4_1		BIT(0)
43 
44 struct dsi_pll_config {
45 	bool enable_ssc;
46 	bool ssc_center;
47 	u32 ssc_freq;
48 	u32 ssc_offset;
49 	u32 ssc_adj_per;
50 
51 	/* out */
52 	u32 decimal_div_start;
53 	u32 frac_div_start;
54 	u32 pll_clock_inverters;
55 	u32 ssc_stepsize;
56 	u32 ssc_div_per;
57 };
58 
59 struct pll_7nm_cached_state {
60 	unsigned long vco_rate;
61 	u8 bit_clk_div;
62 	u8 pix_clk_div;
63 	u8 pll_out_div;
64 	u8 pll_mux;
65 };
66 
67 struct dsi_pll_7nm {
68 	struct clk_hw clk_hw;
69 
70 	struct msm_dsi_phy *phy;
71 
72 	u64 vco_current_rate;
73 
74 	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
75 	spinlock_t postdiv_lock;
76 
77 	struct pll_7nm_cached_state cached_state;
78 
79 	struct dsi_pll_7nm *slave;
80 };
81 
82 #define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, clk_hw)
83 
84 /*
85  * Global list of private DSI PLL struct pointers. We need this for Dual DSI
86  * mode, where the master PLL's clk_ops needs access the slave's private data
87  */
88 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
89 
90 static void dsi_pll_setup_config(struct dsi_pll_config *config)
91 {
92 	config->ssc_freq = 31500;
93 	config->ssc_offset = 4800;
94 	config->ssc_adj_per = 2;
95 
96 	/* TODO: ssc enable */
97 	config->enable_ssc = false;
98 	config->ssc_center = 0;
99 }
100 
101 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
102 {
103 	u64 fref = VCO_REF_CLK_RATE;
104 	u64 pll_freq;
105 	u64 divider;
106 	u64 dec, dec_multiple;
107 	u32 frac;
108 	u64 multiplier;
109 
110 	pll_freq = pll->vco_current_rate;
111 
112 	divider = fref * 2;
113 
114 	multiplier = 1 << FRAC_BITS;
115 	dec_multiple = div_u64(pll_freq * multiplier, divider);
116 	div_u64_rem(dec_multiple, multiplier, &frac);
117 
118 	dec = div_u64(dec_multiple, multiplier);
119 
120 	if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1))
121 		config->pll_clock_inverters = 0x28;
122 	else if (pll_freq <= 1000000000ULL)
123 		config->pll_clock_inverters = 0xa0;
124 	else if (pll_freq <= 2500000000ULL)
125 		config->pll_clock_inverters = 0x20;
126 	else if (pll_freq <= 3020000000ULL)
127 		config->pll_clock_inverters = 0x00;
128 	else
129 		config->pll_clock_inverters = 0x40;
130 
131 	config->decimal_div_start = dec;
132 	config->frac_div_start = frac;
133 }
134 
135 #define SSC_CENTER		BIT(0)
136 #define SSC_EN			BIT(1)
137 
138 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
139 {
140 	u32 ssc_per;
141 	u32 ssc_mod;
142 	u64 ssc_step_size;
143 	u64 frac;
144 
145 	if (!config->enable_ssc) {
146 		DBG("SSC not enabled\n");
147 		return;
148 	}
149 
150 	ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
151 	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
152 	ssc_per -= ssc_mod;
153 
154 	frac = config->frac_div_start;
155 	ssc_step_size = config->decimal_div_start;
156 	ssc_step_size *= (1 << FRAC_BITS);
157 	ssc_step_size += frac;
158 	ssc_step_size *= config->ssc_offset;
159 	ssc_step_size *= (config->ssc_adj_per + 1);
160 	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
161 	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
162 
163 	config->ssc_div_per = ssc_per;
164 	config->ssc_stepsize = ssc_step_size;
165 
166 	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
167 		 config->decimal_div_start, frac, FRAC_BITS);
168 	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
169 		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
170 }
171 
172 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
173 {
174 	void __iomem *base = pll->phy->pll_base;
175 
176 	if (config->enable_ssc) {
177 		pr_debug("SSC is enabled\n");
178 
179 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
180 			  config->ssc_stepsize & 0xff);
181 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
182 			  config->ssc_stepsize >> 8);
183 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
184 			  config->ssc_div_per & 0xff);
185 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
186 			  config->ssc_div_per >> 8);
187 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
188 			  config->ssc_adj_per & 0xff);
189 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
190 			  config->ssc_adj_per >> 8);
191 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
192 			  SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
193 	}
194 }
195 
196 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
197 {
198 	void __iomem *base = pll->phy->pll_base;
199 	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
200 
201 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
202 		if (pll->vco_current_rate >= 3100000000ULL)
203 			analog_controls_five_1 = 0x03;
204 
205 		if (pll->vco_current_rate < 1520000000ULL)
206 			vco_config_1 = 0x08;
207 		else if (pll->vco_current_rate < 2990000000ULL)
208 			vco_config_1 = 0x01;
209 	}
210 
211 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
212 		  analog_controls_five_1);
213 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
214 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
215 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
216 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
217 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
218 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
219 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
220 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
221 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
222 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
223 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
224 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
225 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
226 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
227 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
228 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
229 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
230 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
231 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
232 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
233 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
234 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
235 		  pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22);
236 
237 	if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
238 		dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
239 		if (pll->slave)
240 			dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
241 	}
242 }
243 
244 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
245 {
246 	void __iomem *base = pll->phy->pll_base;
247 
248 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
249 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start);
250 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
251 		  config->frac_div_start & 0xff);
252 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
253 		  (config->frac_div_start & 0xff00) >> 8);
254 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
255 		  (config->frac_div_start & 0x30000) >> 16);
256 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
257 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
258 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, 0x10); /* TODO: 0x00 for CPHY */
259 	dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters);
260 }
261 
262 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
263 				     unsigned long parent_rate)
264 {
265 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
266 	struct dsi_pll_config config;
267 
268 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
269 	    parent_rate);
270 
271 	pll_7nm->vco_current_rate = rate;
272 
273 	dsi_pll_setup_config(&config);
274 
275 	dsi_pll_calc_dec_frac(pll_7nm, &config);
276 
277 	dsi_pll_calc_ssc(pll_7nm, &config);
278 
279 	dsi_pll_commit(pll_7nm, &config);
280 
281 	dsi_pll_config_hzindep_reg(pll_7nm);
282 
283 	dsi_pll_ssc_commit(pll_7nm, &config);
284 
285 	/* flush, ensure all register writes are done*/
286 	wmb();
287 
288 	return 0;
289 }
290 
291 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
292 {
293 	int rc;
294 	u32 status = 0;
295 	u32 const delay_us = 100;
296 	u32 const timeout_us = 5000;
297 
298 	rc = readl_poll_timeout_atomic(pll->phy->pll_base +
299 				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
300 				       status,
301 				       ((status & BIT(0)) > 0),
302 				       delay_us,
303 				       timeout_us);
304 	if (rc)
305 		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
306 		       pll->phy->id, status);
307 
308 	return rc;
309 }
310 
311 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
312 {
313 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
314 
315 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
316 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
317 	ndelay(250);
318 }
319 
320 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
321 {
322 	u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
323 
324 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
325 	dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
326 	ndelay(250);
327 }
328 
329 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
330 {
331 	u32 data;
332 
333 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
334 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
335 }
336 
337 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
338 {
339 	u32 data;
340 
341 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
342 
343 	data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
344 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
345 		  data | BIT(5) | BIT(4));
346 }
347 
348 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
349 {
350 	/*
351 	 * Reset the PHY digital domain. This would be needed when
352 	 * coming out of a CX or analog rail power collapse while
353 	 * ensuring that the pads maintain LP00 or LP11 state
354 	 */
355 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
356 	wmb(); /* Ensure that the reset is deasserted */
357 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
358 	wmb(); /* Ensure that the reset is deasserted */
359 }
360 
361 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
362 {
363 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
364 	int rc;
365 
366 	dsi_pll_enable_pll_bias(pll_7nm);
367 	if (pll_7nm->slave)
368 		dsi_pll_enable_pll_bias(pll_7nm->slave);
369 
370 	/* Start PLL */
371 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
372 
373 	/*
374 	 * ensure all PLL configurations are written prior to checking
375 	 * for PLL lock.
376 	 */
377 	wmb();
378 
379 	/* Check for PLL lock */
380 	rc = dsi_pll_7nm_lock_status(pll_7nm);
381 	if (rc) {
382 		pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
383 		goto error;
384 	}
385 
386 	pll_7nm->phy->pll_on = true;
387 
388 	/*
389 	 * assert power on reset for PHY digital in case the PLL is
390 	 * enabled after CX of analog domain power collapse. This needs
391 	 * to be done before enabling the global clk.
392 	 */
393 	dsi_pll_phy_dig_reset(pll_7nm);
394 	if (pll_7nm->slave)
395 		dsi_pll_phy_dig_reset(pll_7nm->slave);
396 
397 	dsi_pll_enable_global_clk(pll_7nm);
398 	if (pll_7nm->slave)
399 		dsi_pll_enable_global_clk(pll_7nm->slave);
400 
401 error:
402 	return rc;
403 }
404 
405 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
406 {
407 	dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
408 	dsi_pll_disable_pll_bias(pll);
409 }
410 
411 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
412 {
413 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
414 
415 	/*
416 	 * To avoid any stray glitches while abruptly powering down the PLL
417 	 * make sure to gate the clock using the clock enable bit before
418 	 * powering down the PLL
419 	 */
420 	dsi_pll_disable_global_clk(pll_7nm);
421 	dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
422 	dsi_pll_disable_sub(pll_7nm);
423 	if (pll_7nm->slave) {
424 		dsi_pll_disable_global_clk(pll_7nm->slave);
425 		dsi_pll_disable_sub(pll_7nm->slave);
426 	}
427 	/* flush, ensure all register writes are done */
428 	wmb();
429 	pll_7nm->phy->pll_on = false;
430 }
431 
432 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
433 						  unsigned long parent_rate)
434 {
435 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
436 	void __iomem *base = pll_7nm->phy->pll_base;
437 	u64 ref_clk = VCO_REF_CLK_RATE;
438 	u64 vco_rate = 0x0;
439 	u64 multiplier;
440 	u32 frac;
441 	u32 dec;
442 	u64 pll_freq, tmp64;
443 
444 	dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
445 	dec &= 0xff;
446 
447 	frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
448 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
449 		  0xff) << 8);
450 	frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
451 		  0x3) << 16);
452 
453 	/*
454 	 * TODO:
455 	 *	1. Assumes prescaler is disabled
456 	 */
457 	multiplier = 1 << FRAC_BITS;
458 	pll_freq = dec * (ref_clk * 2);
459 	tmp64 = (ref_clk * 2 * frac);
460 	pll_freq += div_u64(tmp64, multiplier);
461 
462 	vco_rate = pll_freq;
463 
464 	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
465 	    pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
466 
467 	return (unsigned long)vco_rate;
468 }
469 
470 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
471 		unsigned long rate, unsigned long *parent_rate)
472 {
473 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
474 
475 	if      (rate < pll_7nm->phy->cfg->min_pll_rate)
476 		return  pll_7nm->phy->cfg->min_pll_rate;
477 	else if (rate > pll_7nm->phy->cfg->max_pll_rate)
478 		return  pll_7nm->phy->cfg->max_pll_rate;
479 	else
480 		return rate;
481 }
482 
483 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
484 	.round_rate = dsi_pll_7nm_clk_round_rate,
485 	.set_rate = dsi_pll_7nm_vco_set_rate,
486 	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
487 	.prepare = dsi_pll_7nm_vco_prepare,
488 	.unprepare = dsi_pll_7nm_vco_unprepare,
489 };
490 
491 /*
492  * PLL Callbacks
493  */
494 
495 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
496 {
497 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
498 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
499 	void __iomem *phy_base = pll_7nm->phy->base;
500 	u32 cmn_clk_cfg0, cmn_clk_cfg1;
501 
502 	cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
503 				       REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
504 	cached->pll_out_div &= 0x3;
505 
506 	cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
507 	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
508 	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
509 
510 	cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
511 	cached->pll_mux = cmn_clk_cfg1 & 0x3;
512 
513 	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
514 	    pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
515 	    cached->pix_clk_div, cached->pll_mux);
516 }
517 
518 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
519 {
520 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
521 	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
522 	void __iomem *phy_base = pll_7nm->phy->base;
523 	u32 val;
524 	int ret;
525 
526 	val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
527 	val &= ~0x3;
528 	val |= cached->pll_out_div;
529 	dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
530 
531 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
532 		  cached->bit_clk_div | (cached->pix_clk_div << 4));
533 
534 	val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
535 	val &= ~0x3;
536 	val |= cached->pll_mux;
537 	dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
538 
539 	ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
540 			pll_7nm->vco_current_rate,
541 			VCO_REF_CLK_RATE);
542 	if (ret) {
543 		DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
544 			"restore vco rate failed. ret=%d\n", ret);
545 		return ret;
546 	}
547 
548 	DBG("DSI PLL%d", pll_7nm->phy->id);
549 
550 	return 0;
551 }
552 
553 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
554 {
555 	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
556 	void __iomem *base = phy->base;
557 	u32 data = 0x0;	/* internal PLL */
558 
559 	DBG("DSI PLL%d", pll_7nm->phy->id);
560 
561 	switch (phy->usecase) {
562 	case MSM_DSI_PHY_STANDALONE:
563 		break;
564 	case MSM_DSI_PHY_MASTER:
565 		pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
566 		break;
567 	case MSM_DSI_PHY_SLAVE:
568 		data = 0x1; /* external PLL */
569 		break;
570 	default:
571 		return -EINVAL;
572 	}
573 
574 	/* set PLL src */
575 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
576 
577 	return 0;
578 }
579 
580 /*
581  * The post dividers and mux clocks are created using the standard divider and
582  * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
583  * state to follow the master PLL's divider/mux state. Therefore, we don't
584  * require special clock ops that also configure the slave PLL registers
585  */
586 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
587 {
588 	char clk_name[32], parent[32], vco_name[32];
589 	char parent2[32], parent3[32], parent4[32];
590 	struct clk_init_data vco_init = {
591 		.parent_names = (const char *[]){ "bi_tcxo" },
592 		.num_parents = 1,
593 		.name = vco_name,
594 		.flags = CLK_IGNORE_UNUSED,
595 		.ops = &clk_ops_dsi_pll_7nm_vco,
596 	};
597 	struct device *dev = &pll_7nm->phy->pdev->dev;
598 	struct clk_hw *hw;
599 	int ret;
600 
601 	DBG("DSI%d", pll_7nm->phy->id);
602 
603 	snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->phy->id);
604 	pll_7nm->clk_hw.init = &vco_init;
605 
606 	ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
607 	if (ret)
608 		return ret;
609 
610 	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
611 	snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->phy->id);
612 
613 	hw = devm_clk_hw_register_divider(dev, clk_name,
614 				     parent, CLK_SET_RATE_PARENT,
615 				     pll_7nm->phy->pll_base +
616 				     REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
617 				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
618 	if (IS_ERR(hw)) {
619 		ret = PTR_ERR(hw);
620 		goto fail;
621 	}
622 
623 	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
624 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
625 
626 	/* BIT CLK: DIV_CTRL_3_0 */
627 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
628 				     CLK_SET_RATE_PARENT,
629 				     pll_7nm->phy->base +
630 				     REG_DSI_7nm_PHY_CMN_CLK_CFG0,
631 				     0, 4, CLK_DIVIDER_ONE_BASED,
632 				     &pll_7nm->postdiv_lock);
633 	if (IS_ERR(hw)) {
634 		ret = PTR_ERR(hw);
635 		goto fail;
636 	}
637 
638 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
639 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
640 
641 	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
642 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
643 					  CLK_SET_RATE_PARENT, 1, 8);
644 	if (IS_ERR(hw)) {
645 		ret = PTR_ERR(hw);
646 		goto fail;
647 	}
648 
649 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
650 
651 	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
652 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
653 
654 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
655 					  0, 1, 2);
656 	if (IS_ERR(hw)) {
657 		ret = PTR_ERR(hw);
658 		goto fail;
659 	}
660 
661 	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
662 	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
663 
664 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
665 					  0, 1, 4);
666 	if (IS_ERR(hw)) {
667 		ret = PTR_ERR(hw);
668 		goto fail;
669 	}
670 
671 	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
672 	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
673 	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
674 	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
675 	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
676 
677 	hw = devm_clk_hw_register_mux(dev, clk_name,
678 				 ((const char *[]){
679 				 parent, parent2, parent3, parent4
680 				 }), 4, 0, pll_7nm->phy->base +
681 				 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
682 				 0, 2, 0, NULL);
683 	if (IS_ERR(hw)) {
684 		ret = PTR_ERR(hw);
685 		goto fail;
686 	}
687 
688 	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
689 	snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
690 
691 	/* PIX CLK DIV : DIV_CTRL_7_4*/
692 	hw = devm_clk_hw_register_divider(dev, clk_name, parent,
693 				     0, pll_7nm->phy->base +
694 					REG_DSI_7nm_PHY_CMN_CLK_CFG0,
695 				     4, 4, CLK_DIVIDER_ONE_BASED,
696 				     &pll_7nm->postdiv_lock);
697 	if (IS_ERR(hw)) {
698 		ret = PTR_ERR(hw);
699 		goto fail;
700 	}
701 
702 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
703 
704 	return 0;
705 
706 fail:
707 
708 	return ret;
709 }
710 
711 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
712 {
713 	struct platform_device *pdev = phy->pdev;
714 	struct dsi_pll_7nm *pll_7nm;
715 	int ret;
716 
717 	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
718 	if (!pll_7nm)
719 		return -ENOMEM;
720 
721 	DBG("DSI PLL%d", phy->id);
722 
723 	pll_7nm_list[phy->id] = pll_7nm;
724 
725 	spin_lock_init(&pll_7nm->postdiv_lock);
726 
727 	pll_7nm->phy = phy;
728 
729 	ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
730 	if (ret) {
731 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
732 		return ret;
733 	}
734 
735 	phy->vco_hw = &pll_7nm->clk_hw;
736 
737 	/* TODO: Remove this when we have proper display handover support */
738 	msm_dsi_phy_pll_save_state(phy);
739 
740 	return 0;
741 }
742 
743 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
744 {
745 	void __iomem *base = phy->base;
746 	u32 data = 0;
747 
748 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
749 	mb(); /* make sure read happened */
750 
751 	return (data & BIT(0));
752 }
753 
754 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
755 {
756 	void __iomem *lane_base = phy->lane_base;
757 	int phy_lane_0 = 0;	/* TODO: Support all lane swap configs */
758 
759 	/*
760 	 * LPRX and CDRX need to enabled only for physical data lane
761 	 * corresponding to the logical data lane 0
762 	 */
763 	if (enable)
764 		dsi_phy_write(lane_base +
765 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
766 	else
767 		dsi_phy_write(lane_base +
768 			      REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
769 }
770 
771 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
772 {
773 	int i;
774 	const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
775 	const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
776 	const u8 *tx_dctrl = tx_dctrl_0;
777 	void __iomem *lane_base = phy->lane_base;
778 
779 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)
780 		tx_dctrl = tx_dctrl_1;
781 
782 	/* Strength ctrl settings */
783 	for (i = 0; i < 5; i++) {
784 		/*
785 		 * Disable LPRX and CDRX for all lanes. And later on, it will
786 		 * be only enabled for the physical data lane corresponding
787 		 * to the logical data lane 0
788 		 */
789 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
790 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
791 	}
792 
793 	dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
794 
795 	/* other settings */
796 	for (i = 0; i < 5; i++) {
797 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
798 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
799 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
800 		dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
801 	}
802 }
803 
804 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
805 			      struct msm_dsi_phy_clk_request *clk_req)
806 {
807 	int ret;
808 	u32 status;
809 	u32 const delay_us = 5;
810 	u32 const timeout_us = 1000;
811 	struct msm_dsi_dphy_timing *timing = &phy->timing;
812 	void __iomem *base = phy->base;
813 	bool less_than_1500_mhz;
814 	u32 vreg_ctrl_0, glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
815 	u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
816 	u32 data;
817 
818 	DBG("");
819 
820 	if (msm_dsi_dphy_timing_calc_v4(timing, clk_req)) {
821 		DRM_DEV_ERROR(&phy->pdev->dev,
822 			"%s: D-PHY timing calculation failed\n", __func__);
823 		return -EINVAL;
824 	}
825 
826 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
827 		pr_warn("PLL turned on before configuring PHY\n");
828 
829 	/* wait for REFGEN READY */
830 	ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
831 					status, (status & BIT(0)),
832 					delay_us, timeout_us);
833 	if (ret) {
834 		pr_err("Ref gen not ready. Aborting\n");
835 		return -EINVAL;
836 	}
837 
838 	/* TODO: CPHY enable path (this is for DPHY only) */
839 
840 	/* Alter PHY configurations if data rate less than 1.5GHZ*/
841 	less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
842 
843 	if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
844 		vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
845 		glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d :  0x00;
846 		glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 :  0x3c;
847 		glbl_str_swi_cal_sel_ctrl = 0x00;
848 		glbl_hstx_str_ctrl_0 = 0x88;
849 	} else {
850 		vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
851 		glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
852 		glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
853 		glbl_rescode_top_ctrl = 0x03;
854 		glbl_rescode_bot_ctrl = 0x3c;
855 	}
856 
857 	/* de-assert digital and pll power down */
858 	data = BIT(6) | BIT(5);
859 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
860 
861 	/* Assert PLL core reset */
862 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
863 
864 	/* turn off resync FIFO */
865 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
866 
867 	/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
868 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0);
869 	data = data & (0xf0);
870 	if (data == 0x20)
871 		dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
872 
873 	/* Configure PHY lane swap (TODO: we need to calculate this) */
874 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
875 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
876 
877 	/* Enable LDO */
878 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
879 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, 0x5c);
880 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
881 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
882 		      glbl_str_swi_cal_sel_ctrl);
883 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
884 		      glbl_hstx_str_ctrl_0);
885 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
886 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
887 		      glbl_rescode_top_ctrl);
888 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
889 		      glbl_rescode_bot_ctrl);
890 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
891 
892 	/* Remove power down from all blocks */
893 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
894 
895 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0x1f);
896 
897 	/* Select full-rate mode */
898 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
899 
900 	ret = dsi_7nm_set_usecase(phy);
901 	if (ret) {
902 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
903 			__func__, ret);
904 		return ret;
905 	}
906 
907 	/* DSI PHY timings */
908 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
909 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
910 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
911 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
912 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
913 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
914 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
915 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
916 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
917 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
918 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
919 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
920 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
921 		      timing->shared_timings.clk_pre);
922 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
923 		      timing->shared_timings.clk_post);
924 
925 	/* DSI lane settings */
926 	dsi_phy_hw_v4_0_lane_settings(phy);
927 
928 	DBG("DSI%d PHY enabled", phy->id);
929 
930 	return 0;
931 }
932 
933 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
934 {
935 	void __iomem *base = phy->base;
936 	u32 data;
937 
938 	DBG("");
939 
940 	if (dsi_phy_hw_v4_0_is_pll_on(phy))
941 		pr_warn("Turning OFF PHY while PLL is on\n");
942 
943 	dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
944 	data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
945 
946 	/* disable all lanes */
947 	data &= ~0x1F;
948 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
949 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
950 
951 	/* Turn off all PHY blocks */
952 	dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
953 	/* make sure phy is turned off */
954 	wmb();
955 
956 	DBG("DSI%d PHY disabled", phy->id);
957 }
958 
959 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
960 	.has_phy_lane = true,
961 	.reg_cfg = {
962 		.num = 1,
963 		.regs = {
964 			{"vdds", 36000, 32},
965 		},
966 	},
967 	.ops = {
968 		.enable = dsi_7nm_phy_enable,
969 		.disable = dsi_7nm_phy_disable,
970 		.pll_init = dsi_pll_7nm_init,
971 		.save_pll_state = dsi_7nm_pll_save_state,
972 		.restore_pll_state = dsi_7nm_pll_restore_state,
973 	},
974 	.min_pll_rate = 600000000UL,
975 	.max_pll_rate = (5000000000ULL < ULONG_MAX) ? 5000000000ULL : ULONG_MAX,
976 	.io_start = { 0xae94400, 0xae96400 },
977 	.num_dsi_phy = 2,
978 	.quirks = DSI_PHY_7NM_QUIRK_V4_1,
979 };
980 
981 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
982 	.has_phy_lane = true,
983 	.reg_cfg = {
984 		.num = 1,
985 		.regs = {
986 			{"vdds", 36000, 32},
987 		},
988 	},
989 	.ops = {
990 		.enable = dsi_7nm_phy_enable,
991 		.disable = dsi_7nm_phy_disable,
992 		.pll_init = dsi_pll_7nm_init,
993 		.save_pll_state = dsi_7nm_pll_save_state,
994 		.restore_pll_state = dsi_7nm_pll_restore_state,
995 	},
996 	.min_pll_rate = 1000000000UL,
997 	.max_pll_rate = 3500000000UL,
998 	.io_start = { 0xae94400, 0xae96400 },
999 	.num_dsi_phy = 2,
1000 };
1001