1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/delay.h>
9 
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 
13 #define PHY_14NM_CKLN_IDX	4
14 
15 /*
16  * DSI PLL 14nm - clock diagram (eg: DSI0):
17  *
18  *         dsi0n1_postdiv_clk
19  *                         |
20  *                         |
21  *                 +----+  |  +----+
22  *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
23  *                 +----+  |  +----+
24  *                         |           dsi0n1_postdivby2_clk
25  *                         |   +----+  |
26  *                         o---| /2 |--o--|\
27  *                         |   +----+     | \   +----+
28  *                         |              |  |--| n2 |-- dsi0pll
29  *                         o--------------| /   +----+
30  *                                        |/
31  */
32 
33 #define POLL_MAX_READS			15
34 #define POLL_TIMEOUT_US			1000
35 
36 #define VCO_REF_CLK_RATE		19200000
37 #define VCO_MIN_RATE			1300000000UL
38 #define VCO_MAX_RATE			2600000000UL
39 
40 struct dsi_pll_config {
41 	u64 vco_current_rate;
42 
43 	u32 ssc_en;	/* SSC enable/disable */
44 
45 	/* fixed params */
46 	u32 plllock_cnt;
47 	u32 ssc_center;
48 	u32 ssc_adj_period;
49 	u32 ssc_spread;
50 	u32 ssc_freq;
51 
52 	/* calculated */
53 	u32 dec_start;
54 	u32 div_frac_start;
55 	u32 ssc_period;
56 	u32 ssc_step_size;
57 	u32 plllock_cmp;
58 	u32 pll_vco_div_ref;
59 	u32 pll_vco_count;
60 	u32 pll_kvco_div_ref;
61 	u32 pll_kvco_count;
62 };
63 
64 struct pll_14nm_cached_state {
65 	unsigned long vco_rate;
66 	u8 n2postdiv;
67 	u8 n1postdiv;
68 };
69 
70 struct dsi_pll_14nm {
71 	struct clk_hw clk_hw;
72 
73 	struct msm_dsi_phy *phy;
74 
75 	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
76 	spinlock_t postdiv_lock;
77 
78 	struct pll_14nm_cached_state cached_state;
79 
80 	struct dsi_pll_14nm *slave;
81 };
82 
83 #define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
84 
85 /*
86  * Private struct for N1/N2 post-divider clocks. These clocks are similar to
87  * the generic clk_divider class of clocks. The only difference is that it
88  * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
89  */
90 struct dsi_pll_14nm_postdiv {
91 	struct clk_hw hw;
92 
93 	/* divider params */
94 	u8 shift;
95 	u8 width;
96 	u8 flags; /* same flags as used by clk_divider struct */
97 
98 	struct dsi_pll_14nm *pll;
99 };
100 
101 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
102 
103 /*
104  * Global list of private DSI PLL struct pointers. We need this for Dual DSI
105  * mode, where the master PLL's clk_ops needs access the slave's private data
106  */
107 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
108 
109 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
110 				    u32 nb_tries, u32 timeout_us)
111 {
112 	bool pll_locked = false;
113 	void __iomem *base = pll_14nm->phy->pll_base;
114 	u32 tries, val;
115 
116 	tries = nb_tries;
117 	while (tries--) {
118 		val = dsi_phy_read(base +
119 			       REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
120 		pll_locked = !!(val & BIT(5));
121 
122 		if (pll_locked)
123 			break;
124 
125 		udelay(timeout_us);
126 	}
127 
128 	if (!pll_locked) {
129 		tries = nb_tries;
130 		while (tries--) {
131 			val = dsi_phy_read(base +
132 				REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
133 			pll_locked = !!(val & BIT(0));
134 
135 			if (pll_locked)
136 				break;
137 
138 			udelay(timeout_us);
139 		}
140 	}
141 
142 	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
143 
144 	return pll_locked;
145 }
146 
147 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
148 {
149 	/* fixed input */
150 	pconf->plllock_cnt = 1;
151 
152 	/*
153 	 * SSC is enabled by default. We might need DT props for configuring
154 	 * some SSC params like PPM and center/down spread etc.
155 	 */
156 	pconf->ssc_en = 1;
157 	pconf->ssc_center = 0;		/* down spread by default */
158 	pconf->ssc_spread = 5;		/* PPM / 1000 */
159 	pconf->ssc_freq = 31500;	/* default recommended */
160 	pconf->ssc_adj_period = 37;
161 }
162 
163 #define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
164 
165 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
166 {
167 	u32 period, ssc_period;
168 	u32 ref, rem;
169 	u64 step_size;
170 
171 	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
172 
173 	ssc_period = pconf->ssc_freq / 500;
174 	period = (u32)VCO_REF_CLK_RATE / 1000;
175 	ssc_period  = CEIL(period, ssc_period);
176 	ssc_period -= 1;
177 	pconf->ssc_period = ssc_period;
178 
179 	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
180 	    pconf->ssc_spread, pconf->ssc_period);
181 
182 	step_size = (u32)pconf->vco_current_rate;
183 	ref = VCO_REF_CLK_RATE;
184 	ref /= 1000;
185 	step_size = div_u64(step_size, ref);
186 	step_size <<= 20;
187 	step_size = div_u64(step_size, 1000);
188 	step_size *= pconf->ssc_spread;
189 	step_size = div_u64(step_size, 1000);
190 	step_size *= (pconf->ssc_adj_period + 1);
191 
192 	rem = 0;
193 	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
194 	if (rem)
195 		step_size++;
196 
197 	DBG("step_size=%lld", step_size);
198 
199 	step_size &= 0x0ffff;	/* take lower 16 bits */
200 
201 	pconf->ssc_step_size = step_size;
202 }
203 
204 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
205 {
206 	u64 multiplier = BIT(20);
207 	u64 dec_start_multiple, dec_start, pll_comp_val;
208 	u32 duration, div_frac_start;
209 	u64 vco_clk_rate = pconf->vco_current_rate;
210 	u64 fref = VCO_REF_CLK_RATE;
211 
212 	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
213 
214 	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
215 	div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
216 
217 	dec_start = div_u64(dec_start_multiple, multiplier);
218 
219 	pconf->dec_start = (u32)dec_start;
220 	pconf->div_frac_start = div_frac_start;
221 
222 	if (pconf->plllock_cnt == 0)
223 		duration = 1024;
224 	else if (pconf->plllock_cnt == 1)
225 		duration = 256;
226 	else if (pconf->plllock_cnt == 2)
227 		duration = 128;
228 	else
229 		duration = 32;
230 
231 	pll_comp_val = duration * dec_start_multiple;
232 	pll_comp_val = div_u64(pll_comp_val, multiplier);
233 	do_div(pll_comp_val, 10);
234 
235 	pconf->plllock_cmp = (u32)pll_comp_val;
236 }
237 
238 static u32 pll_14nm_kvco_slop(u32 vrate)
239 {
240 	u32 slop = 0;
241 
242 	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
243 		slop =  600;
244 	else if (vrate > 1800000000UL && vrate < 2300000000UL)
245 		slop = 400;
246 	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
247 		slop = 280;
248 
249 	return slop;
250 }
251 
252 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
253 {
254 	u64 vco_clk_rate = pconf->vco_current_rate;
255 	u64 fref = VCO_REF_CLK_RATE;
256 	u32 vco_measure_time = 5;
257 	u32 kvco_measure_time = 5;
258 	u64 data;
259 	u32 cnt;
260 
261 	data = fref * vco_measure_time;
262 	do_div(data, 1000000);
263 	data &= 0x03ff;	/* 10 bits */
264 	data -= 2;
265 	pconf->pll_vco_div_ref = data;
266 
267 	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
268 	data *= vco_measure_time;
269 	do_div(data, 10);
270 	pconf->pll_vco_count = data;
271 
272 	data = fref * kvco_measure_time;
273 	do_div(data, 1000000);
274 	data &= 0x03ff;	/* 10 bits */
275 	data -= 1;
276 	pconf->pll_kvco_div_ref = data;
277 
278 	cnt = pll_14nm_kvco_slop(vco_clk_rate);
279 	cnt *= 2;
280 	cnt /= 100;
281 	cnt *= kvco_measure_time;
282 	pconf->pll_kvco_count = cnt;
283 }
284 
285 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
286 {
287 	void __iomem *base = pll->phy->pll_base;
288 	u8 data;
289 
290 	data = pconf->ssc_adj_period;
291 	data &= 0x0ff;
292 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
293 	data = (pconf->ssc_adj_period >> 8);
294 	data &= 0x03;
295 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
296 
297 	data = pconf->ssc_period;
298 	data &= 0x0ff;
299 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
300 	data = (pconf->ssc_period >> 8);
301 	data &= 0x0ff;
302 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
303 
304 	data = pconf->ssc_step_size;
305 	data &= 0x0ff;
306 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
307 	data = (pconf->ssc_step_size >> 8);
308 	data &= 0x0ff;
309 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
310 
311 	data = (pconf->ssc_center & 0x01);
312 	data <<= 1;
313 	data |= 0x01; /* enable */
314 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
315 
316 	wmb();	/* make sure register committed */
317 }
318 
319 static void pll_db_commit_common(struct dsi_pll_14nm *pll,
320 				 struct dsi_pll_config *pconf)
321 {
322 	void __iomem *base = pll->phy->pll_base;
323 	u8 data;
324 
325 	/* confgiure the non frequency dependent pll registers */
326 	data = 0;
327 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
328 
329 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
330 
331 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
332 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
333 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
334 
335 	data = pconf->pll_vco_div_ref & 0xff;
336 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
337 	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
338 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
339 
340 	data = pconf->pll_kvco_div_ref & 0xff;
341 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
342 	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
343 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
344 
345 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
346 
347 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
348 
349 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
350 
351 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
352 
353 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
354 
355 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
356 
357 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
358 
359 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
360 
361 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
362 
363 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
364 }
365 
366 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
367 {
368 	void __iomem *cmn_base = pll_14nm->phy->base;
369 
370 	/* de assert pll start and apply pll sw reset */
371 
372 	/* stop pll */
373 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
374 
375 	/* pll sw reset */
376 	dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
377 	wmb();	/* make sure register committed */
378 
379 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
380 	wmb();	/* make sure register committed */
381 }
382 
383 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
384 			       struct dsi_pll_config *pconf)
385 {
386 	void __iomem *base = pll->phy->pll_base;
387 	void __iomem *cmn_base = pll->phy->base;
388 	u8 data;
389 
390 	DBG("DSI%d PLL", pll->phy->id);
391 
392 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
393 
394 	pll_db_commit_common(pll, pconf);
395 
396 	pll_14nm_software_reset(pll);
397 
398 	/* Use the /2 path in Mux */
399 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
400 
401 	data = 0xff; /* data, clk, pll normal operation */
402 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
403 
404 	/* configure the frequency dependent pll registers */
405 	data = pconf->dec_start;
406 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
407 
408 	data = pconf->div_frac_start & 0xff;
409 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
410 	data = (pconf->div_frac_start >> 8) & 0xff;
411 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
412 	data = (pconf->div_frac_start >> 16) & 0xf;
413 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
414 
415 	data = pconf->plllock_cmp & 0xff;
416 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
417 
418 	data = (pconf->plllock_cmp >> 8) & 0xff;
419 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
420 
421 	data = (pconf->plllock_cmp >> 16) & 0x3;
422 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
423 
424 	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
425 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
426 
427 	data = pconf->pll_vco_count & 0xff;
428 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
429 	data = (pconf->pll_vco_count >> 8) & 0xff;
430 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
431 
432 	data = pconf->pll_kvco_count & 0xff;
433 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
434 	data = (pconf->pll_kvco_count >> 8) & 0x3;
435 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
436 
437 	/*
438 	 * High nibble configures the post divider internal to the VCO. It's
439 	 * fixed to divide by 1 for now.
440 	 *
441 	 * 0: divided by 1
442 	 * 1: divided by 2
443 	 * 2: divided by 4
444 	 * 3: divided by 8
445 	 */
446 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
447 
448 	if (pconf->ssc_en)
449 		pll_db_commit_ssc(pll, pconf);
450 
451 	wmb();	/* make sure register committed */
452 }
453 
454 /*
455  * VCO clock Callbacks
456  */
457 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
458 				     unsigned long parent_rate)
459 {
460 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
461 	struct dsi_pll_config conf;
462 
463 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
464 	    parent_rate);
465 
466 	dsi_pll_14nm_config_init(&conf);
467 	conf.vco_current_rate = rate;
468 
469 	pll_14nm_dec_frac_calc(pll_14nm, &conf);
470 
471 	if (conf.ssc_en)
472 		pll_14nm_ssc_calc(pll_14nm, &conf);
473 
474 	pll_14nm_calc_vco_count(pll_14nm, &conf);
475 
476 	/* commit the slave DSI PLL registers if we're master. Note that we
477 	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
478 	 * of the master and slave are identical
479 	 */
480 	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
481 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
482 
483 		pll_db_commit_14nm(pll_14nm_slave, &conf);
484 	}
485 
486 	pll_db_commit_14nm(pll_14nm, &conf);
487 
488 	return 0;
489 }
490 
491 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
492 						  unsigned long parent_rate)
493 {
494 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
495 	void __iomem *base = pll_14nm->phy->pll_base;
496 	u64 vco_rate, multiplier = BIT(20);
497 	u32 div_frac_start;
498 	u32 dec_start;
499 	u64 ref_clk = parent_rate;
500 
501 	dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
502 	dec_start &= 0x0ff;
503 
504 	DBG("dec_start = %x", dec_start);
505 
506 	div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
507 				& 0xf) << 16;
508 	div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
509 				& 0xff) << 8;
510 	div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
511 				& 0xff;
512 
513 	DBG("div_frac_start = %x", div_frac_start);
514 
515 	vco_rate = ref_clk * dec_start;
516 
517 	vco_rate += ((ref_clk * div_frac_start) / multiplier);
518 
519 	/*
520 	 * Recalculating the rate from dec_start and frac_start doesn't end up
521 	 * the rate we originally set. Convert the freq to KHz, round it up and
522 	 * convert it back to MHz.
523 	 */
524 	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
525 
526 	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
527 
528 	return (unsigned long)vco_rate;
529 }
530 
531 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
532 {
533 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
534 	void __iomem *base = pll_14nm->phy->pll_base;
535 	void __iomem *cmn_base = pll_14nm->phy->base;
536 	bool locked;
537 
538 	DBG("");
539 
540 	if (unlikely(pll_14nm->phy->pll_on))
541 		return 0;
542 
543 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
544 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
545 
546 	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
547 					 POLL_TIMEOUT_US);
548 
549 	if (unlikely(!locked)) {
550 		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
551 		return -EINVAL;
552 	}
553 
554 	DBG("DSI PLL lock success");
555 	pll_14nm->phy->pll_on = true;
556 
557 	return 0;
558 }
559 
560 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
561 {
562 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
563 	void __iomem *cmn_base = pll_14nm->phy->base;
564 
565 	DBG("");
566 
567 	if (unlikely(!pll_14nm->phy->pll_on))
568 		return;
569 
570 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
571 
572 	pll_14nm->phy->pll_on = false;
573 }
574 
575 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
576 		unsigned long rate, unsigned long *parent_rate)
577 {
578 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
579 
580 	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
581 		return  pll_14nm->phy->cfg->min_pll_rate;
582 	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
583 		return  pll_14nm->phy->cfg->max_pll_rate;
584 	else
585 		return rate;
586 }
587 
588 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
589 	.round_rate = dsi_pll_14nm_clk_round_rate,
590 	.set_rate = dsi_pll_14nm_vco_set_rate,
591 	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
592 	.prepare = dsi_pll_14nm_vco_prepare,
593 	.unprepare = dsi_pll_14nm_vco_unprepare,
594 };
595 
596 /*
597  * N1 and N2 post-divider clock callbacks
598  */
599 #define div_mask(width)	((1 << (width)) - 1)
600 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
601 						      unsigned long parent_rate)
602 {
603 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
604 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
605 	void __iomem *base = pll_14nm->phy->base;
606 	u8 shift = postdiv->shift;
607 	u8 width = postdiv->width;
608 	u32 val;
609 
610 	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
611 
612 	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
613 	val &= div_mask(width);
614 
615 	return divider_recalc_rate(hw, parent_rate, val, NULL,
616 				   postdiv->flags, width);
617 }
618 
619 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
620 					    unsigned long rate,
621 					    unsigned long *prate)
622 {
623 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
624 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
625 
626 	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
627 
628 	return divider_round_rate(hw, rate, prate, NULL,
629 				  postdiv->width,
630 				  postdiv->flags);
631 }
632 
633 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
634 					 unsigned long parent_rate)
635 {
636 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
637 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
638 	void __iomem *base = pll_14nm->phy->base;
639 	spinlock_t *lock = &pll_14nm->postdiv_lock;
640 	u8 shift = postdiv->shift;
641 	u8 width = postdiv->width;
642 	unsigned int value;
643 	unsigned long flags = 0;
644 	u32 val;
645 
646 	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
647 	    parent_rate);
648 
649 	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
650 				postdiv->flags);
651 
652 	spin_lock_irqsave(lock, flags);
653 
654 	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
655 	val &= ~(div_mask(width) << shift);
656 
657 	val |= value << shift;
658 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
659 
660 	/* If we're master in dual DSI mode, then the slave PLL's post-dividers
661 	 * follow the master's post dividers
662 	 */
663 	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
664 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
665 		void __iomem *slave_base = pll_14nm_slave->phy->base;
666 
667 		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
668 	}
669 
670 	spin_unlock_irqrestore(lock, flags);
671 
672 	return 0;
673 }
674 
675 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
676 	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
677 	.round_rate = dsi_pll_14nm_postdiv_round_rate,
678 	.set_rate = dsi_pll_14nm_postdiv_set_rate,
679 };
680 
681 /*
682  * PLL Callbacks
683  */
684 
685 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
686 {
687 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
688 	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
689 	void __iomem *cmn_base = pll_14nm->phy->base;
690 	u32 data;
691 
692 	data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
693 
694 	cached_state->n1postdiv = data & 0xf;
695 	cached_state->n2postdiv = (data >> 4) & 0xf;
696 
697 	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
698 	    cached_state->n1postdiv, cached_state->n2postdiv);
699 
700 	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
701 }
702 
703 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
704 {
705 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
706 	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
707 	void __iomem *cmn_base = pll_14nm->phy->base;
708 	u32 data;
709 	int ret;
710 
711 	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
712 					cached_state->vco_rate, 0);
713 	if (ret) {
714 		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
715 			"restore vco rate failed. ret=%d\n", ret);
716 		return ret;
717 	}
718 
719 	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
720 
721 	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
722 	    cached_state->n1postdiv, cached_state->n2postdiv);
723 
724 	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
725 
726 	/* also restore post-dividers for slave DSI PLL */
727 	if (phy->usecase == MSM_DSI_PHY_MASTER) {
728 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
729 		void __iomem *slave_base = pll_14nm_slave->phy->base;
730 
731 		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
732 	}
733 
734 	return 0;
735 }
736 
737 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
738 {
739 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
740 	void __iomem *base = phy->pll_base;
741 	u32 clkbuflr_en, bandgap = 0;
742 
743 	switch (phy->usecase) {
744 	case MSM_DSI_PHY_STANDALONE:
745 		clkbuflr_en = 0x1;
746 		break;
747 	case MSM_DSI_PHY_MASTER:
748 		clkbuflr_en = 0x3;
749 		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
750 		break;
751 	case MSM_DSI_PHY_SLAVE:
752 		clkbuflr_en = 0x0;
753 		bandgap = 0x3;
754 		break;
755 	default:
756 		return -EINVAL;
757 	}
758 
759 	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
760 	if (bandgap)
761 		dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
762 
763 	return 0;
764 }
765 
766 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
767 						const char *name,
768 						const char *parent_name,
769 						unsigned long flags,
770 						u8 shift)
771 {
772 	struct dsi_pll_14nm_postdiv *pll_postdiv;
773 	struct device *dev = &pll_14nm->phy->pdev->dev;
774 	struct clk_init_data postdiv_init = {
775 		.parent_names = (const char *[]) { parent_name },
776 		.num_parents = 1,
777 		.name = name,
778 		.flags = flags,
779 		.ops = &clk_ops_dsi_pll_14nm_postdiv,
780 	};
781 	int ret;
782 
783 	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
784 	if (!pll_postdiv)
785 		return ERR_PTR(-ENOMEM);
786 
787 	pll_postdiv->pll = pll_14nm;
788 	pll_postdiv->shift = shift;
789 	/* both N1 and N2 postdividers are 4 bits wide */
790 	pll_postdiv->width = 4;
791 	/* range of each divider is from 1 to 15 */
792 	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
793 	pll_postdiv->hw.init = &postdiv_init;
794 
795 	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
796 	if (ret)
797 		return ERR_PTR(ret);
798 
799 	return &pll_postdiv->hw;
800 }
801 
802 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
803 {
804 	char clk_name[32], parent[32], vco_name[32];
805 	struct clk_init_data vco_init = {
806 		.parent_names = (const char *[]){ "xo" },
807 		.num_parents = 1,
808 		.name = vco_name,
809 		.flags = CLK_IGNORE_UNUSED,
810 		.ops = &clk_ops_dsi_pll_14nm_vco,
811 	};
812 	struct device *dev = &pll_14nm->phy->pdev->dev;
813 	struct clk_hw *hw;
814 	int ret;
815 
816 	DBG("DSI%d", pll_14nm->phy->id);
817 
818 	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->phy->id);
819 	pll_14nm->clk_hw.init = &vco_init;
820 
821 	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
822 	if (ret)
823 		return ret;
824 
825 	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
826 	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->phy->id);
827 
828 	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
829 	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
830 				       CLK_SET_RATE_PARENT, 0);
831 	if (IS_ERR(hw))
832 		return PTR_ERR(hw);
833 
834 	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->phy->id);
835 	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
836 
837 	/* DSI Byte clock = VCO_CLK / N1 / 8 */
838 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
839 					  CLK_SET_RATE_PARENT, 1, 8);
840 	if (IS_ERR(hw))
841 		return PTR_ERR(hw);
842 
843 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
844 
845 	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
846 	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
847 
848 	/*
849 	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
850 	 * on the way. Don't let it set parent.
851 	 */
852 	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
853 	if (IS_ERR(hw))
854 		return PTR_ERR(hw);
855 
856 	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->phy->id);
857 	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
858 
859 	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
860 	 * This is the output of N2 post-divider, bits 4-7 in
861 	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
862 	 */
863 	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
864 	if (IS_ERR(hw))
865 		return PTR_ERR(hw);
866 
867 	provided_clocks[DSI_PIXEL_PLL_CLK]	= hw;
868 
869 	return 0;
870 }
871 
872 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
873 {
874 	struct platform_device *pdev = phy->pdev;
875 	struct dsi_pll_14nm *pll_14nm;
876 	int ret;
877 
878 	if (!pdev)
879 		return -ENODEV;
880 
881 	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
882 	if (!pll_14nm)
883 		return -ENOMEM;
884 
885 	DBG("PLL%d", phy->id);
886 
887 	pll_14nm_list[phy->id] = pll_14nm;
888 
889 	spin_lock_init(&pll_14nm->postdiv_lock);
890 
891 	pll_14nm->phy = phy;
892 
893 	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
894 	if (ret) {
895 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
896 		return ret;
897 	}
898 
899 	phy->vco_hw = &pll_14nm->clk_hw;
900 
901 	return 0;
902 }
903 
904 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
905 				     struct msm_dsi_dphy_timing *timing,
906 				     int lane_idx)
907 {
908 	void __iomem *base = phy->lane_base;
909 	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
910 	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
911 	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
912 	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
913 	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
914 	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
915 	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
916 				   timing->hs_halfbyte_en;
917 
918 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
919 		      DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
920 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
921 		      DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
922 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
923 		      DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
924 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
925 		      DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
926 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
927 		      DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
928 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
929 		      DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
930 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
931 		      halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
932 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
933 		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
934 		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
935 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
936 		      DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
937 	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
938 		      DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
939 }
940 
941 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
942 			       struct msm_dsi_phy_clk_request *clk_req)
943 {
944 	struct msm_dsi_dphy_timing *timing = &phy->timing;
945 	u32 data;
946 	int i;
947 	int ret;
948 	void __iomem *base = phy->base;
949 	void __iomem *lane_base = phy->lane_base;
950 	u32 glbl_test_ctrl;
951 
952 	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
953 		DRM_DEV_ERROR(&phy->pdev->dev,
954 			"%s: D-PHY timing calculation failed\n", __func__);
955 		return -EINVAL;
956 	}
957 
958 	data = 0x1c;
959 	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
960 		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
961 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
962 
963 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
964 
965 	/* 4 data lanes + 1 clk lane configuration */
966 	for (i = 0; i < 5; i++) {
967 		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
968 			      0x1d);
969 
970 		dsi_phy_write(lane_base +
971 			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
972 		dsi_phy_write(lane_base +
973 			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
974 			      (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
975 
976 		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
977 			      (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
978 		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
979 		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
980 			      0);
981 		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
982 			      0x88);
983 
984 		dsi_14nm_dphy_set_timing(phy, timing, i);
985 	}
986 
987 	/* Make sure PLL is not start */
988 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
989 
990 	wmb(); /* make sure everything is written before reset and enable */
991 
992 	/* reset digital block */
993 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
994 	wmb(); /* ensure reset is asserted */
995 	udelay(100);
996 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
997 
998 	glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
999 	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1000 		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1001 	else
1002 		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1003 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1004 	ret = dsi_14nm_set_usecase(phy);
1005 	if (ret) {
1006 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1007 			__func__, ret);
1008 		return ret;
1009 	}
1010 
1011 	/* Remove power down from PLL and all lanes */
1012 	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1013 
1014 	return 0;
1015 }
1016 
1017 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1018 {
1019 	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1020 	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1021 
1022 	/* ensure that the phy is completely disabled */
1023 	wmb();
1024 }
1025 
1026 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1027 	.has_phy_lane = true,
1028 	.reg_cfg = {
1029 		.num = 1,
1030 		.regs = {
1031 			{"vcca", 17000, 32},
1032 		},
1033 	},
1034 	.ops = {
1035 		.enable = dsi_14nm_phy_enable,
1036 		.disable = dsi_14nm_phy_disable,
1037 		.pll_init = dsi_pll_14nm_init,
1038 		.save_pll_state = dsi_14nm_pll_save_state,
1039 		.restore_pll_state = dsi_14nm_pll_restore_state,
1040 	},
1041 	.min_pll_rate = VCO_MIN_RATE,
1042 	.max_pll_rate = VCO_MAX_RATE,
1043 	.io_start = { 0x994400, 0x996400 },
1044 	.num_dsi_phy = 2,
1045 };
1046 
1047 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1048 	.has_phy_lane = true,
1049 	.reg_cfg = {
1050 		.num = 1,
1051 		.regs = {
1052 			{"vcca", 17000, 32},
1053 		},
1054 	},
1055 	.ops = {
1056 		.enable = dsi_14nm_phy_enable,
1057 		.disable = dsi_14nm_phy_disable,
1058 		.pll_init = dsi_pll_14nm_init,
1059 		.save_pll_state = dsi_14nm_pll_save_state,
1060 		.restore_pll_state = dsi_14nm_pll_restore_state,
1061 	},
1062 	.min_pll_rate = VCO_MIN_RATE,
1063 	.max_pll_rate = VCO_MAX_RATE,
1064 	.io_start = { 0xc994400, 0xc996000 },
1065 	.num_dsi_phy = 2,
1066 };
1067