1 /* 2 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 and 6 * only version 2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/platform_device.h> 15 16 #include "dsi_phy.h" 17 18 #define S_DIV_ROUND_UP(n, d) \ 19 (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d))) 20 21 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent, 22 s32 min_result, bool even) 23 { 24 s32 v; 25 26 v = (tmax - tmin) * percent; 27 v = S_DIV_ROUND_UP(v, 100) + tmin; 28 if (even && (v & 0x1)) 29 return max_t(s32, min_result, v - 1); 30 else 31 return max_t(s32, min_result, v); 32 } 33 34 static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing, 35 s32 ui, s32 coeff, s32 pcnt) 36 { 37 s32 tmax, tmin, clk_z; 38 s32 temp; 39 40 /* reset */ 41 temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui; 42 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 43 if (tmin > 255) { 44 tmax = 511; 45 clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true); 46 } else { 47 tmax = 255; 48 clk_z = linear_inter(tmax, tmin, pcnt, 0, true); 49 } 50 51 /* adjust */ 52 temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7; 53 timing->clk_zero = clk_z + 8 - temp; 54 } 55 56 int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing, 57 struct msm_dsi_phy_clk_request *clk_req) 58 { 59 const unsigned long bit_rate = clk_req->bitclk_rate; 60 const unsigned long esc_rate = clk_req->escclk_rate; 61 s32 ui, lpx; 62 s32 tmax, tmin; 63 s32 pcnt0 = 10; 64 s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10; 65 s32 pcnt2 = 10; 66 s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40; 67 s32 coeff = 1000; /* Precision, should avoid overflow */ 68 s32 temp; 69 70 if (!bit_rate || !esc_rate) 71 return -EINVAL; 72 73 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 74 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 75 76 tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2; 77 tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2; 78 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true); 79 80 temp = lpx / ui; 81 if (temp & 0x1) 82 timing->hs_rqst = temp; 83 else 84 timing->hs_rqst = max_t(s32, 0, temp - 2); 85 86 /* Calculate clk_zero after clk_prepare and hs_rqst */ 87 dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2); 88 89 temp = 105 * coeff + 12 * ui - 20 * coeff; 90 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 91 tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2; 92 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 93 94 temp = 85 * coeff + 6 * ui; 95 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 96 temp = 40 * coeff + 4 * ui; 97 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 98 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true); 99 100 tmax = 255; 101 temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui; 102 temp = 145 * coeff + 10 * ui - temp; 103 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 104 timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true); 105 106 temp = 105 * coeff + 12 * ui - 20 * coeff; 107 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 108 temp = 60 * coeff + 4 * ui; 109 tmin = DIV_ROUND_UP(temp, ui) - 2; 110 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 111 112 tmax = 255; 113 tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2; 114 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true); 115 116 tmax = 63; 117 temp = ((timing->hs_exit >> 1) + 1) * 2 * ui; 118 temp = 60 * coeff + 52 * ui - 24 * ui - temp; 119 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 120 timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, 121 false); 122 tmax = 63; 123 temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui; 124 temp += ((timing->clk_zero >> 1) + 1) * 2 * ui; 125 temp += 8 * ui + lpx; 126 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 127 if (tmin > tmax) { 128 temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false); 129 timing->shared_timings.clk_pre = temp >> 1; 130 timing->shared_timings.clk_pre_inc_by_2 = true; 131 } else { 132 timing->shared_timings.clk_pre = 133 linear_inter(tmax, tmin, pcnt2, 0, false); 134 timing->shared_timings.clk_pre_inc_by_2 = false; 135 } 136 137 timing->ta_go = 3; 138 timing->ta_sure = 0; 139 timing->ta_get = 4; 140 141 DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 142 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 143 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 144 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 145 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 146 timing->hs_rqst); 147 148 return 0; 149 } 150 151 int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing, 152 struct msm_dsi_phy_clk_request *clk_req) 153 { 154 const unsigned long bit_rate = clk_req->bitclk_rate; 155 const unsigned long esc_rate = clk_req->escclk_rate; 156 s32 ui, ui_x8, lpx; 157 s32 tmax, tmin; 158 s32 pcnt0 = 50; 159 s32 pcnt1 = 50; 160 s32 pcnt2 = 10; 161 s32 pcnt3 = 30; 162 s32 pcnt4 = 10; 163 s32 pcnt5 = 2; 164 s32 coeff = 1000; /* Precision, should avoid overflow */ 165 s32 hb_en, hb_en_ckln, pd_ckln, pd; 166 s32 val, val_ckln; 167 s32 temp; 168 169 if (!bit_rate || !esc_rate) 170 return -EINVAL; 171 172 timing->hs_halfbyte_en = 0; 173 hb_en = 0; 174 timing->hs_halfbyte_en_ckln = 0; 175 hb_en_ckln = 0; 176 timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3; 177 pd_ckln = timing->hs_prep_dly_ckln; 178 timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1; 179 pd = timing->hs_prep_dly; 180 181 val = (hb_en << 2) + (pd << 1); 182 val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1); 183 184 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 185 ui_x8 = ui << 3; 186 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 187 188 temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8); 189 tmin = max_t(s32, temp, 0); 190 temp = (95 * coeff - val_ckln * ui) / ui_x8; 191 tmax = max_t(s32, temp, 0); 192 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); 193 194 temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui; 195 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 196 tmax = (tmin > 255) ? 511 : 255; 197 timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); 198 199 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 200 temp = 105 * coeff + 12 * ui - 20 * coeff; 201 tmax = (temp + 3 * ui) / ui_x8; 202 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 203 204 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8); 205 tmin = max_t(s32, temp, 0); 206 temp = (85 * coeff + 6 * ui - val * ui) / ui_x8; 207 tmax = max_t(s32, temp, 0); 208 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); 209 210 temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui; 211 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 212 tmax = 255; 213 timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); 214 215 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8); 216 temp = 105 * coeff + 12 * ui - 20 * coeff; 217 tmax = (temp + 3 * ui) / ui_x8; 218 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 219 220 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 221 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 222 223 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 224 tmax = 255; 225 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); 226 227 temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; 228 timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); 229 230 temp = 60 * coeff + 52 * ui - 43 * ui; 231 tmin = DIV_ROUND_UP(temp, ui_x8) - 1; 232 tmax = 63; 233 timing->shared_timings.clk_post = 234 linear_inter(tmax, tmin, pcnt2, 0, false); 235 236 temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui; 237 temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui; 238 temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : 239 (((timing->hs_rqst_ckln << 3) + 8) * ui); 240 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 241 tmax = 63; 242 if (tmin > tmax) { 243 temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); 244 timing->shared_timings.clk_pre = temp >> 1; 245 timing->shared_timings.clk_pre_inc_by_2 = 1; 246 } else { 247 timing->shared_timings.clk_pre = 248 linear_inter(tmax, tmin, pcnt2, 0, false); 249 timing->shared_timings.clk_pre_inc_by_2 = 0; 250 } 251 252 timing->ta_go = 3; 253 timing->ta_sure = 0; 254 timing->ta_get = 4; 255 256 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 257 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 258 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 259 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 260 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 261 timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, 262 timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, 263 timing->hs_prep_dly_ckln); 264 265 return 0; 266 } 267 268 int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing, 269 struct msm_dsi_phy_clk_request *clk_req) 270 { 271 const unsigned long bit_rate = clk_req->bitclk_rate; 272 const unsigned long esc_rate = clk_req->escclk_rate; 273 s32 ui, ui_x8, lpx; 274 s32 tmax, tmin; 275 s32 pcnt0 = 50; 276 s32 pcnt1 = 50; 277 s32 pcnt2 = 10; 278 s32 pcnt3 = 30; 279 s32 pcnt4 = 10; 280 s32 pcnt5 = 2; 281 s32 coeff = 1000; /* Precision, should avoid overflow */ 282 s32 hb_en, hb_en_ckln; 283 s32 temp; 284 285 if (!bit_rate || !esc_rate) 286 return -EINVAL; 287 288 timing->hs_halfbyte_en = 0; 289 hb_en = 0; 290 timing->hs_halfbyte_en_ckln = 0; 291 hb_en_ckln = 0; 292 293 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 294 ui_x8 = ui << 3; 295 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 296 297 temp = S_DIV_ROUND_UP(38 * coeff, ui_x8); 298 tmin = max_t(s32, temp, 0); 299 temp = (95 * coeff) / ui_x8; 300 tmax = max_t(s32, temp, 0); 301 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); 302 303 temp = 300 * coeff - (timing->clk_prepare << 3) * ui; 304 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 305 tmax = (tmin > 255) ? 511 : 255; 306 timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); 307 308 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 309 temp = 105 * coeff + 12 * ui - 20 * coeff; 310 tmax = (temp + 3 * ui) / ui_x8; 311 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 312 313 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8); 314 tmin = max_t(s32, temp, 0); 315 temp = (85 * coeff + 6 * ui) / ui_x8; 316 tmax = max_t(s32, temp, 0); 317 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); 318 319 temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui; 320 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 321 tmax = 255; 322 timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); 323 324 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1; 325 temp = 105 * coeff + 12 * ui - 20 * coeff; 326 tmax = (temp / ui_x8) - 1; 327 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 328 329 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 330 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 331 332 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 333 tmax = 255; 334 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); 335 336 temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; 337 timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); 338 339 temp = 60 * coeff + 52 * ui - 43 * ui; 340 tmin = DIV_ROUND_UP(temp, ui_x8) - 1; 341 tmax = 63; 342 timing->shared_timings.clk_post = 343 linear_inter(tmax, tmin, pcnt2, 0, false); 344 345 temp = 8 * ui + (timing->clk_prepare << 3) * ui; 346 temp += (((timing->clk_zero + 3) << 3) + 11) * ui; 347 temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : 348 (((timing->hs_rqst_ckln << 3) + 8) * ui); 349 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 350 tmax = 63; 351 if (tmin > tmax) { 352 temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); 353 timing->shared_timings.clk_pre = temp >> 1; 354 timing->shared_timings.clk_pre_inc_by_2 = 1; 355 } else { 356 timing->shared_timings.clk_pre = 357 linear_inter(tmax, tmin, pcnt2, 0, false); 358 timing->shared_timings.clk_pre_inc_by_2 = 0; 359 } 360 361 timing->ta_go = 3; 362 timing->ta_sure = 0; 363 timing->ta_get = 4; 364 365 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 366 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 367 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 368 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 369 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 370 timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, 371 timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, 372 timing->hs_prep_dly_ckln); 373 374 return 0; 375 } 376 377 void msm_dsi_phy_set_src_pll(struct msm_dsi_phy *phy, int pll_id, u32 reg, 378 u32 bit_mask) 379 { 380 int phy_id = phy->id; 381 u32 val; 382 383 if ((phy_id >= DSI_MAX) || (pll_id >= DSI_MAX)) 384 return; 385 386 val = dsi_phy_read(phy->base + reg); 387 388 if (phy->cfg->src_pll_truthtable[phy_id][pll_id]) 389 dsi_phy_write(phy->base + reg, val | bit_mask); 390 else 391 dsi_phy_write(phy->base + reg, val & (~bit_mask)); 392 } 393 394 static int dsi_phy_regulator_init(struct msm_dsi_phy *phy) 395 { 396 struct regulator_bulk_data *s = phy->supplies; 397 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 398 struct device *dev = &phy->pdev->dev; 399 int num = phy->cfg->reg_cfg.num; 400 int i, ret; 401 402 for (i = 0; i < num; i++) 403 s[i].supply = regs[i].name; 404 405 ret = devm_regulator_bulk_get(dev, num, s); 406 if (ret < 0) { 407 dev_err(dev, "%s: failed to init regulator, ret=%d\n", 408 __func__, ret); 409 return ret; 410 } 411 412 return 0; 413 } 414 415 static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy) 416 { 417 struct regulator_bulk_data *s = phy->supplies; 418 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 419 int num = phy->cfg->reg_cfg.num; 420 int i; 421 422 DBG(""); 423 for (i = num - 1; i >= 0; i--) 424 if (regs[i].disable_load >= 0) 425 regulator_set_load(s[i].consumer, regs[i].disable_load); 426 427 regulator_bulk_disable(num, s); 428 } 429 430 static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy) 431 { 432 struct regulator_bulk_data *s = phy->supplies; 433 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 434 struct device *dev = &phy->pdev->dev; 435 int num = phy->cfg->reg_cfg.num; 436 int ret, i; 437 438 DBG(""); 439 for (i = 0; i < num; i++) { 440 if (regs[i].enable_load >= 0) { 441 ret = regulator_set_load(s[i].consumer, 442 regs[i].enable_load); 443 if (ret < 0) { 444 dev_err(dev, 445 "regulator %d set op mode failed, %d\n", 446 i, ret); 447 goto fail; 448 } 449 } 450 } 451 452 ret = regulator_bulk_enable(num, s); 453 if (ret < 0) { 454 dev_err(dev, "regulator enable failed, %d\n", ret); 455 goto fail; 456 } 457 458 return 0; 459 460 fail: 461 for (i--; i >= 0; i--) 462 regulator_set_load(s[i].consumer, regs[i].disable_load); 463 return ret; 464 } 465 466 static int dsi_phy_enable_resource(struct msm_dsi_phy *phy) 467 { 468 struct device *dev = &phy->pdev->dev; 469 int ret; 470 471 pm_runtime_get_sync(dev); 472 473 ret = clk_prepare_enable(phy->ahb_clk); 474 if (ret) { 475 dev_err(dev, "%s: can't enable ahb clk, %d\n", __func__, ret); 476 pm_runtime_put_sync(dev); 477 } 478 479 return ret; 480 } 481 482 static void dsi_phy_disable_resource(struct msm_dsi_phy *phy) 483 { 484 clk_disable_unprepare(phy->ahb_clk); 485 pm_runtime_put_autosuspend(&phy->pdev->dev); 486 } 487 488 static const struct of_device_id dsi_phy_dt_match[] = { 489 #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY 490 { .compatible = "qcom,dsi-phy-28nm-hpm", 491 .data = &dsi_phy_28nm_hpm_cfgs }, 492 { .compatible = "qcom,dsi-phy-28nm-lp", 493 .data = &dsi_phy_28nm_lp_cfgs }, 494 #endif 495 #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY 496 { .compatible = "qcom,dsi-phy-20nm", 497 .data = &dsi_phy_20nm_cfgs }, 498 #endif 499 #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY 500 { .compatible = "qcom,dsi-phy-28nm-8960", 501 .data = &dsi_phy_28nm_8960_cfgs }, 502 #endif 503 #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY 504 { .compatible = "qcom,dsi-phy-14nm", 505 .data = &dsi_phy_14nm_cfgs }, 506 #endif 507 #ifdef CONFIG_DRM_MSM_DSI_10NM_PHY 508 { .compatible = "qcom,dsi-phy-10nm", 509 .data = &dsi_phy_10nm_cfgs }, 510 #endif 511 {} 512 }; 513 514 /* 515 * Currently, we only support one SoC for each PHY type. When we have multiple 516 * SoCs for the same PHY, we can try to make the index searching a bit more 517 * clever. 518 */ 519 static int dsi_phy_get_id(struct msm_dsi_phy *phy) 520 { 521 struct platform_device *pdev = phy->pdev; 522 const struct msm_dsi_phy_cfg *cfg = phy->cfg; 523 struct resource *res; 524 int i; 525 526 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy"); 527 if (!res) 528 return -EINVAL; 529 530 for (i = 0; i < cfg->num_dsi_phy; i++) { 531 if (cfg->io_start[i] == res->start) 532 return i; 533 } 534 535 return -EINVAL; 536 } 537 538 int msm_dsi_phy_init_common(struct msm_dsi_phy *phy) 539 { 540 struct platform_device *pdev = phy->pdev; 541 int ret = 0; 542 543 phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", 544 "DSI_PHY_REG"); 545 if (IS_ERR(phy->reg_base)) { 546 dev_err(&pdev->dev, "%s: failed to map phy regulator base\n", 547 __func__); 548 ret = -ENOMEM; 549 goto fail; 550 } 551 552 fail: 553 return ret; 554 } 555 556 static int dsi_phy_driver_probe(struct platform_device *pdev) 557 { 558 struct msm_dsi_phy *phy; 559 struct device *dev = &pdev->dev; 560 const struct of_device_id *match; 561 int ret; 562 563 phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); 564 if (!phy) 565 return -ENOMEM; 566 567 match = of_match_node(dsi_phy_dt_match, dev->of_node); 568 if (!match) 569 return -ENODEV; 570 571 phy->cfg = match->data; 572 phy->pdev = pdev; 573 574 phy->id = dsi_phy_get_id(phy); 575 if (phy->id < 0) { 576 ret = phy->id; 577 dev_err(dev, "%s: couldn't identify PHY index, %d\n", 578 __func__, ret); 579 goto fail; 580 } 581 582 phy->regulator_ldo_mode = of_property_read_bool(dev->of_node, 583 "qcom,dsi-phy-regulator-ldo-mode"); 584 585 phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY"); 586 if (IS_ERR(phy->base)) { 587 dev_err(dev, "%s: failed to map phy base\n", __func__); 588 ret = -ENOMEM; 589 goto fail; 590 } 591 592 ret = dsi_phy_regulator_init(phy); 593 if (ret) { 594 dev_err(dev, "%s: failed to init regulator\n", __func__); 595 goto fail; 596 } 597 598 phy->ahb_clk = msm_clk_get(pdev, "iface"); 599 if (IS_ERR(phy->ahb_clk)) { 600 dev_err(dev, "%s: Unable to get ahb clk\n", __func__); 601 ret = PTR_ERR(phy->ahb_clk); 602 goto fail; 603 } 604 605 if (phy->cfg->ops.init) { 606 ret = phy->cfg->ops.init(phy); 607 if (ret) 608 goto fail; 609 } 610 611 /* PLL init will call into clk_register which requires 612 * register access, so we need to enable power and ahb clock. 613 */ 614 ret = dsi_phy_enable_resource(phy); 615 if (ret) 616 goto fail; 617 618 phy->pll = msm_dsi_pll_init(pdev, phy->cfg->type, phy->id); 619 if (IS_ERR_OR_NULL(phy->pll)) 620 dev_info(dev, 621 "%s: pll init failed: %ld, need separate pll clk driver\n", 622 __func__, PTR_ERR(phy->pll)); 623 624 dsi_phy_disable_resource(phy); 625 626 platform_set_drvdata(pdev, phy); 627 628 return 0; 629 630 fail: 631 return ret; 632 } 633 634 static int dsi_phy_driver_remove(struct platform_device *pdev) 635 { 636 struct msm_dsi_phy *phy = platform_get_drvdata(pdev); 637 638 if (phy && phy->pll) { 639 msm_dsi_pll_destroy(phy->pll); 640 phy->pll = NULL; 641 } 642 643 platform_set_drvdata(pdev, NULL); 644 645 return 0; 646 } 647 648 static struct platform_driver dsi_phy_platform_driver = { 649 .probe = dsi_phy_driver_probe, 650 .remove = dsi_phy_driver_remove, 651 .driver = { 652 .name = "msm_dsi_phy", 653 .of_match_table = dsi_phy_dt_match, 654 }, 655 }; 656 657 void __init msm_dsi_phy_driver_register(void) 658 { 659 platform_driver_register(&dsi_phy_platform_driver); 660 } 661 662 void __exit msm_dsi_phy_driver_unregister(void) 663 { 664 platform_driver_unregister(&dsi_phy_platform_driver); 665 } 666 667 int msm_dsi_phy_enable(struct msm_dsi_phy *phy, int src_pll_id, 668 struct msm_dsi_phy_clk_request *clk_req) 669 { 670 struct device *dev = &phy->pdev->dev; 671 int ret; 672 673 if (!phy || !phy->cfg->ops.enable) 674 return -EINVAL; 675 676 ret = dsi_phy_enable_resource(phy); 677 if (ret) { 678 dev_err(dev, "%s: resource enable failed, %d\n", 679 __func__, ret); 680 goto res_en_fail; 681 } 682 683 ret = dsi_phy_regulator_enable(phy); 684 if (ret) { 685 dev_err(dev, "%s: regulator enable failed, %d\n", 686 __func__, ret); 687 goto reg_en_fail; 688 } 689 690 ret = phy->cfg->ops.enable(phy, src_pll_id, clk_req); 691 if (ret) { 692 dev_err(dev, "%s: phy enable failed, %d\n", __func__, ret); 693 goto phy_en_fail; 694 } 695 696 /* 697 * Resetting DSI PHY silently changes its PLL registers to reset status, 698 * which will confuse clock driver and result in wrong output rate of 699 * link clocks. Restore PLL status if its PLL is being used as clock 700 * source. 701 */ 702 if (phy->usecase != MSM_DSI_PHY_SLAVE) { 703 ret = msm_dsi_pll_restore_state(phy->pll); 704 if (ret) { 705 dev_err(dev, "%s: failed to restore pll state, %d\n", 706 __func__, ret); 707 goto pll_restor_fail; 708 } 709 } 710 711 return 0; 712 713 pll_restor_fail: 714 if (phy->cfg->ops.disable) 715 phy->cfg->ops.disable(phy); 716 phy_en_fail: 717 dsi_phy_regulator_disable(phy); 718 reg_en_fail: 719 dsi_phy_disable_resource(phy); 720 res_en_fail: 721 return ret; 722 } 723 724 void msm_dsi_phy_disable(struct msm_dsi_phy *phy) 725 { 726 if (!phy || !phy->cfg->ops.disable) 727 return; 728 729 /* Save PLL status if it is a clock source */ 730 if (phy->usecase != MSM_DSI_PHY_SLAVE) 731 msm_dsi_pll_save_state(phy->pll); 732 733 phy->cfg->ops.disable(phy); 734 735 dsi_phy_regulator_disable(phy); 736 dsi_phy_disable_resource(phy); 737 } 738 739 void msm_dsi_phy_get_shared_timings(struct msm_dsi_phy *phy, 740 struct msm_dsi_phy_shared_timings *shared_timings) 741 { 742 memcpy(shared_timings, &phy->timing.shared_timings, 743 sizeof(*shared_timings)); 744 } 745 746 struct msm_dsi_pll *msm_dsi_phy_get_pll(struct msm_dsi_phy *phy) 747 { 748 if (!phy) 749 return NULL; 750 751 return phy->pll; 752 } 753 754 void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy, 755 enum msm_dsi_phy_usecase uc) 756 { 757 if (phy) 758 phy->usecase = uc; 759 } 760