xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/phy/dsi_phy.c (revision b7ec62d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk-provider.h>
7 #include <linux/platform_device.h>
8 #include <dt-bindings/phy/phy.h>
9 
10 #include "dsi_phy.h"
11 
12 #define S_DIV_ROUND_UP(n, d)	\
13 	(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
14 
15 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
16 				s32 min_result, bool even)
17 {
18 	s32 v;
19 
20 	v = (tmax - tmin) * percent;
21 	v = S_DIV_ROUND_UP(v, 100) + tmin;
22 	if (even && (v & 0x1))
23 		return max_t(s32, min_result, v - 1);
24 	else
25 		return max_t(s32, min_result, v);
26 }
27 
28 static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing,
29 					s32 ui, s32 coeff, s32 pcnt)
30 {
31 	s32 tmax, tmin, clk_z;
32 	s32 temp;
33 
34 	/* reset */
35 	temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
36 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
37 	if (tmin > 255) {
38 		tmax = 511;
39 		clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
40 	} else {
41 		tmax = 255;
42 		clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
43 	}
44 
45 	/* adjust */
46 	temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
47 	timing->clk_zero = clk_z + 8 - temp;
48 }
49 
50 int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing,
51 			     struct msm_dsi_phy_clk_request *clk_req)
52 {
53 	const unsigned long bit_rate = clk_req->bitclk_rate;
54 	const unsigned long esc_rate = clk_req->escclk_rate;
55 	s32 ui, lpx;
56 	s32 tmax, tmin;
57 	s32 pcnt0 = 10;
58 	s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
59 	s32 pcnt2 = 10;
60 	s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
61 	s32 coeff = 1000; /* Precision, should avoid overflow */
62 	s32 temp;
63 
64 	if (!bit_rate || !esc_rate)
65 		return -EINVAL;
66 
67 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
68 	lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
69 
70 	tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
71 	tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
72 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
73 
74 	temp = lpx / ui;
75 	if (temp & 0x1)
76 		timing->hs_rqst = temp;
77 	else
78 		timing->hs_rqst = max_t(s32, 0, temp - 2);
79 
80 	/* Calculate clk_zero after clk_prepare and hs_rqst */
81 	dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
82 
83 	temp = 105 * coeff + 12 * ui - 20 * coeff;
84 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
85 	tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
86 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
87 
88 	temp = 85 * coeff + 6 * ui;
89 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
90 	temp = 40 * coeff + 4 * ui;
91 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
92 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
93 
94 	tmax = 255;
95 	temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
96 	temp = 145 * coeff + 10 * ui - temp;
97 	tmin = S_DIV_ROUND_UP(temp, ui) - 2;
98 	timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
99 
100 	temp = 105 * coeff + 12 * ui - 20 * coeff;
101 	tmax = S_DIV_ROUND_UP(temp, ui) - 2;
102 	temp = 60 * coeff + 4 * ui;
103 	tmin = DIV_ROUND_UP(temp, ui) - 2;
104 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
105 
106 	tmax = 255;
107 	tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
108 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
109 
110 	tmax = 63;
111 	temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
112 	temp = 60 * coeff + 52 * ui - 24 * ui - temp;
113 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
114 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0,
115 						       false);
116 	tmax = 63;
117 	temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
118 	temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
119 	temp += 8 * ui + lpx;
120 	tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
121 	if (tmin > tmax) {
122 		temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false);
123 		timing->shared_timings.clk_pre = temp >> 1;
124 		timing->shared_timings.clk_pre_inc_by_2 = true;
125 	} else {
126 		timing->shared_timings.clk_pre =
127 				linear_inter(tmax, tmin, pcnt2, 0, false);
128 		timing->shared_timings.clk_pre_inc_by_2 = false;
129 	}
130 
131 	timing->ta_go = 3;
132 	timing->ta_sure = 0;
133 	timing->ta_get = 4;
134 
135 	DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
136 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
137 		timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
138 		timing->clk_trail, timing->clk_prepare, timing->hs_exit,
139 		timing->hs_zero, timing->hs_prepare, timing->hs_trail,
140 		timing->hs_rqst);
141 
142 	return 0;
143 }
144 
145 int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing,
146 				struct msm_dsi_phy_clk_request *clk_req)
147 {
148 	const unsigned long bit_rate = clk_req->bitclk_rate;
149 	const unsigned long esc_rate = clk_req->escclk_rate;
150 	s32 ui, ui_x8;
151 	s32 tmax, tmin;
152 	s32 pcnt0 = 50;
153 	s32 pcnt1 = 50;
154 	s32 pcnt2 = 10;
155 	s32 pcnt3 = 30;
156 	s32 pcnt4 = 10;
157 	s32 pcnt5 = 2;
158 	s32 coeff = 1000; /* Precision, should avoid overflow */
159 	s32 hb_en, hb_en_ckln, pd_ckln, pd;
160 	s32 val, val_ckln;
161 	s32 temp;
162 
163 	if (!bit_rate || !esc_rate)
164 		return -EINVAL;
165 
166 	timing->hs_halfbyte_en = 0;
167 	hb_en = 0;
168 	timing->hs_halfbyte_en_ckln = 0;
169 	hb_en_ckln = 0;
170 	timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3;
171 	pd_ckln = timing->hs_prep_dly_ckln;
172 	timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1;
173 	pd = timing->hs_prep_dly;
174 
175 	val = (hb_en << 2) + (pd << 1);
176 	val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1);
177 
178 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
179 	ui_x8 = ui << 3;
180 
181 	temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8);
182 	tmin = max_t(s32, temp, 0);
183 	temp = (95 * coeff - val_ckln * ui) / ui_x8;
184 	tmax = max_t(s32, temp, 0);
185 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
186 
187 	temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui;
188 	tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
189 	tmax = (tmin > 255) ? 511 : 255;
190 	timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
191 
192 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
193 	temp = 105 * coeff + 12 * ui - 20 * coeff;
194 	tmax = (temp + 3 * ui) / ui_x8;
195 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
196 
197 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8);
198 	tmin = max_t(s32, temp, 0);
199 	temp = (85 * coeff + 6 * ui - val * ui) / ui_x8;
200 	tmax = max_t(s32, temp, 0);
201 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
202 
203 	temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui;
204 	tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
205 	tmax = 255;
206 	timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
207 
208 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8);
209 	temp = 105 * coeff + 12 * ui - 20 * coeff;
210 	tmax = (temp + 3 * ui) / ui_x8;
211 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
212 
213 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
214 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
215 
216 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
217 	tmax = 255;
218 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
219 
220 	temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
221 	timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
222 
223 	temp = 60 * coeff + 52 * ui - 43 * ui;
224 	tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
225 	tmax = 63;
226 	timing->shared_timings.clk_post =
227 				linear_inter(tmax, tmin, pcnt2, 0, false);
228 
229 	temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui;
230 	temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui;
231 	temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
232 				(((timing->hs_rqst_ckln << 3) + 8) * ui);
233 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
234 	tmax = 63;
235 	if (tmin > tmax) {
236 		temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
237 		timing->shared_timings.clk_pre = temp >> 1;
238 		timing->shared_timings.clk_pre_inc_by_2 = 1;
239 	} else {
240 		timing->shared_timings.clk_pre =
241 				linear_inter(tmax, tmin, pcnt2, 0, false);
242 		timing->shared_timings.clk_pre_inc_by_2 = 0;
243 	}
244 
245 	timing->ta_go = 3;
246 	timing->ta_sure = 0;
247 	timing->ta_get = 4;
248 
249 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
250 	    timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
251 	    timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
252 	    timing->clk_trail, timing->clk_prepare, timing->hs_exit,
253 	    timing->hs_zero, timing->hs_prepare, timing->hs_trail,
254 	    timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
255 	    timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
256 	    timing->hs_prep_dly_ckln);
257 
258 	return 0;
259 }
260 
261 int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing,
262 	struct msm_dsi_phy_clk_request *clk_req)
263 {
264 	const unsigned long bit_rate = clk_req->bitclk_rate;
265 	const unsigned long esc_rate = clk_req->escclk_rate;
266 	s32 ui, ui_x8;
267 	s32 tmax, tmin;
268 	s32 pcnt0 = 50;
269 	s32 pcnt1 = 50;
270 	s32 pcnt2 = 10;
271 	s32 pcnt3 = 30;
272 	s32 pcnt4 = 10;
273 	s32 pcnt5 = 2;
274 	s32 coeff = 1000; /* Precision, should avoid overflow */
275 	s32 hb_en, hb_en_ckln;
276 	s32 temp;
277 
278 	if (!bit_rate || !esc_rate)
279 		return -EINVAL;
280 
281 	timing->hs_halfbyte_en = 0;
282 	hb_en = 0;
283 	timing->hs_halfbyte_en_ckln = 0;
284 	hb_en_ckln = 0;
285 
286 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
287 	ui_x8 = ui << 3;
288 
289 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
290 	tmin = max_t(s32, temp, 0);
291 	temp = (95 * coeff) / ui_x8;
292 	tmax = max_t(s32, temp, 0);
293 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
294 
295 	temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
296 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
297 	tmax = (tmin > 255) ? 511 : 255;
298 	timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
299 
300 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
301 	temp = 105 * coeff + 12 * ui - 20 * coeff;
302 	tmax = (temp + 3 * ui) / ui_x8;
303 	timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
304 
305 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
306 	tmin = max_t(s32, temp, 0);
307 	temp = (85 * coeff + 6 * ui) / ui_x8;
308 	tmax = max_t(s32, temp, 0);
309 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
310 
311 	temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
312 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
313 	tmax = 255;
314 	timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
315 
316 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
317 	temp = 105 * coeff + 12 * ui - 20 * coeff;
318 	tmax = (temp / ui_x8) - 1;
319 	timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
320 
321 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
322 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
323 
324 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
325 	tmax = 255;
326 	timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
327 
328 	temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
329 	timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
330 
331 	temp = 60 * coeff + 52 * ui - 43 * ui;
332 	tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
333 	tmax = 63;
334 	timing->shared_timings.clk_post =
335 		linear_inter(tmax, tmin, pcnt2, 0, false);
336 
337 	temp = 8 * ui + (timing->clk_prepare << 3) * ui;
338 	temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
339 	temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
340 		(((timing->hs_rqst_ckln << 3) + 8) * ui);
341 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
342 	tmax = 63;
343 	if (tmin > tmax) {
344 		temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
345 		timing->shared_timings.clk_pre = temp >> 1;
346 		timing->shared_timings.clk_pre_inc_by_2 = 1;
347 	} else {
348 		timing->shared_timings.clk_pre =
349 			linear_inter(tmax, tmin, pcnt2, 0, false);
350 			timing->shared_timings.clk_pre_inc_by_2 = 0;
351 	}
352 
353 	timing->ta_go = 3;
354 	timing->ta_sure = 0;
355 	timing->ta_get = 4;
356 
357 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
358 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
359 		timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
360 		timing->clk_trail, timing->clk_prepare, timing->hs_exit,
361 		timing->hs_zero, timing->hs_prepare, timing->hs_trail,
362 		timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
363 		timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
364 		timing->hs_prep_dly_ckln);
365 
366 	return 0;
367 }
368 
369 int msm_dsi_dphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing,
370 	struct msm_dsi_phy_clk_request *clk_req)
371 {
372 	const unsigned long bit_rate = clk_req->bitclk_rate;
373 	const unsigned long esc_rate = clk_req->escclk_rate;
374 	s32 ui, ui_x8;
375 	s32 tmax, tmin;
376 	s32 pcnt_clk_prep = 50;
377 	s32 pcnt_clk_zero = 2;
378 	s32 pcnt_clk_trail = 30;
379 	s32 pcnt_hs_prep = 50;
380 	s32 pcnt_hs_zero = 10;
381 	s32 pcnt_hs_trail = 30;
382 	s32 pcnt_hs_exit = 10;
383 	s32 coeff = 1000; /* Precision, should avoid overflow */
384 	s32 hb_en;
385 	s32 temp;
386 
387 	if (!bit_rate || !esc_rate)
388 		return -EINVAL;
389 
390 	hb_en = 0;
391 
392 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
393 	ui_x8 = ui << 3;
394 
395 	/* TODO: verify these calculations against latest downstream driver
396 	 * everything except clk_post/clk_pre uses calculations from v3 based
397 	 * on the downstream driver having the same calculations for v3 and v4
398 	 */
399 
400 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
401 	tmin = max_t(s32, temp, 0);
402 	temp = (95 * coeff) / ui_x8;
403 	tmax = max_t(s32, temp, 0);
404 	timing->clk_prepare = linear_inter(tmax, tmin, pcnt_clk_prep, 0, false);
405 
406 	temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
407 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
408 	tmax = (tmin > 255) ? 511 : 255;
409 	timing->clk_zero = linear_inter(tmax, tmin, pcnt_clk_zero, 0, false);
410 
411 	tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
412 	temp = 105 * coeff + 12 * ui - 20 * coeff;
413 	tmax = (temp + 3 * ui) / ui_x8;
414 	timing->clk_trail = linear_inter(tmax, tmin, pcnt_clk_trail, 0, false);
415 
416 	temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
417 	tmin = max_t(s32, temp, 0);
418 	temp = (85 * coeff + 6 * ui) / ui_x8;
419 	tmax = max_t(s32, temp, 0);
420 	timing->hs_prepare = linear_inter(tmax, tmin, pcnt_hs_prep, 0, false);
421 
422 	temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
423 	tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
424 	tmax = 255;
425 	timing->hs_zero = linear_inter(tmax, tmin, pcnt_hs_zero, 0, false);
426 
427 	tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
428 	temp = 105 * coeff + 12 * ui - 20 * coeff;
429 	tmax = (temp / ui_x8) - 1;
430 	timing->hs_trail = linear_inter(tmax, tmin, pcnt_hs_trail, 0, false);
431 
432 	temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
433 	timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
434 
435 	tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
436 	tmax = 255;
437 	timing->hs_exit = linear_inter(tmax, tmin, pcnt_hs_exit, 0, false);
438 
439 	/* recommended min
440 	 * = roundup((mipi_min_ns + t_hs_trail_ns)/(16*bit_clk_ns), 0) - 1
441 	 */
442 	temp = 60 * coeff + 52 * ui + + (timing->hs_trail + 1) * ui_x8;
443 	tmin = DIV_ROUND_UP(temp, 16 * ui) - 1;
444 	tmax = 255;
445 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, 5, 0, false);
446 
447 	/* recommended min
448 	 * val1 = (tlpx_ns + clk_prepare_ns + clk_zero_ns + hs_rqst_ns)
449 	 * val2 = (16 * bit_clk_ns)
450 	 * final = roundup(val1/val2, 0) - 1
451 	 */
452 	temp = 52 * coeff + (timing->clk_prepare + timing->clk_zero + 1) * ui_x8 + 54 * coeff;
453 	tmin = DIV_ROUND_UP(temp, 16 * ui) - 1;
454 	tmax = 255;
455 	timing->shared_timings.clk_pre = DIV_ROUND_UP((tmax - tmin) * 125, 10000) + tmin;
456 
457 	DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
458 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
459 		timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit,
460 		timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst);
461 
462 	return 0;
463 }
464 
465 int msm_dsi_cphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing,
466 	struct msm_dsi_phy_clk_request *clk_req)
467 {
468 	const unsigned long bit_rate = clk_req->bitclk_rate;
469 	const unsigned long esc_rate = clk_req->escclk_rate;
470 	s32 ui, ui_x7;
471 	s32 tmax, tmin;
472 	s32 coeff = 1000; /* Precision, should avoid overflow */
473 	s32 temp;
474 
475 	if (!bit_rate || !esc_rate)
476 		return -EINVAL;
477 
478 	ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
479 	ui_x7 = ui * 7;
480 
481 	temp = S_DIV_ROUND_UP(38 * coeff, ui_x7);
482 	tmin = max_t(s32, temp, 0);
483 	temp = (95 * coeff) / ui_x7;
484 	tmax = max_t(s32, temp, 0);
485 	timing->clk_prepare = linear_inter(tmax, tmin, 50, 0, false);
486 
487 	tmin = DIV_ROUND_UP(50 * coeff, ui_x7);
488 	tmax = 255;
489 	timing->hs_rqst = linear_inter(tmax, tmin, 1, 0, false);
490 
491 	tmin = DIV_ROUND_UP(100 * coeff, ui_x7) - 1;
492 	tmax = 255;
493 	timing->hs_exit = linear_inter(tmax, tmin, 10, 0, false);
494 
495 	tmin = 1;
496 	tmax = 32;
497 	timing->shared_timings.clk_post = linear_inter(tmax, tmin, 80, 0, false);
498 
499 	tmin = min_t(s32, 64, S_DIV_ROUND_UP(262 * coeff, ui_x7) - 1);
500 	tmax = 64;
501 	timing->shared_timings.clk_pre = linear_inter(tmax, tmin, 20, 0, false);
502 
503 	DBG("%d, %d, %d, %d, %d",
504 		timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
505 		timing->clk_prepare, timing->hs_exit, timing->hs_rqst);
506 
507 	return 0;
508 }
509 
510 static int dsi_phy_regulator_init(struct msm_dsi_phy *phy)
511 {
512 	struct regulator_bulk_data *s = phy->supplies;
513 	const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
514 	struct device *dev = &phy->pdev->dev;
515 	int num = phy->cfg->reg_cfg.num;
516 	int i, ret;
517 
518 	for (i = 0; i < num; i++)
519 		s[i].supply = regs[i].name;
520 
521 	ret = devm_regulator_bulk_get(dev, num, s);
522 	if (ret < 0) {
523 		if (ret != -EPROBE_DEFER) {
524 			DRM_DEV_ERROR(dev,
525 				      "%s: failed to init regulator, ret=%d\n",
526 				      __func__, ret);
527 		}
528 
529 		return ret;
530 	}
531 
532 	return 0;
533 }
534 
535 static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy)
536 {
537 	struct regulator_bulk_data *s = phy->supplies;
538 	const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
539 	int num = phy->cfg->reg_cfg.num;
540 	int i;
541 
542 	DBG("");
543 	for (i = num - 1; i >= 0; i--)
544 		if (regs[i].disable_load >= 0)
545 			regulator_set_load(s[i].consumer, regs[i].disable_load);
546 
547 	regulator_bulk_disable(num, s);
548 }
549 
550 static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy)
551 {
552 	struct regulator_bulk_data *s = phy->supplies;
553 	const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
554 	struct device *dev = &phy->pdev->dev;
555 	int num = phy->cfg->reg_cfg.num;
556 	int ret, i;
557 
558 	DBG("");
559 	for (i = 0; i < num; i++) {
560 		if (regs[i].enable_load >= 0) {
561 			ret = regulator_set_load(s[i].consumer,
562 							regs[i].enable_load);
563 			if (ret < 0) {
564 				DRM_DEV_ERROR(dev,
565 					"regulator %d set op mode failed, %d\n",
566 					i, ret);
567 				goto fail;
568 			}
569 		}
570 	}
571 
572 	ret = regulator_bulk_enable(num, s);
573 	if (ret < 0) {
574 		DRM_DEV_ERROR(dev, "regulator enable failed, %d\n", ret);
575 		goto fail;
576 	}
577 
578 	return 0;
579 
580 fail:
581 	for (i--; i >= 0; i--)
582 		regulator_set_load(s[i].consumer, regs[i].disable_load);
583 	return ret;
584 }
585 
586 static int dsi_phy_enable_resource(struct msm_dsi_phy *phy)
587 {
588 	struct device *dev = &phy->pdev->dev;
589 	int ret;
590 
591 	pm_runtime_get_sync(dev);
592 
593 	ret = clk_prepare_enable(phy->ahb_clk);
594 	if (ret) {
595 		DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret);
596 		pm_runtime_put_sync(dev);
597 	}
598 
599 	return ret;
600 }
601 
602 static void dsi_phy_disable_resource(struct msm_dsi_phy *phy)
603 {
604 	clk_disable_unprepare(phy->ahb_clk);
605 	pm_runtime_put_autosuspend(&phy->pdev->dev);
606 }
607 
608 static const struct of_device_id dsi_phy_dt_match[] = {
609 #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY
610 	{ .compatible = "qcom,dsi-phy-28nm-hpm",
611 	  .data = &dsi_phy_28nm_hpm_cfgs },
612 	{ .compatible = "qcom,dsi-phy-28nm-hpm-fam-b",
613 	  .data = &dsi_phy_28nm_hpm_famb_cfgs },
614 	{ .compatible = "qcom,dsi-phy-28nm-lp",
615 	  .data = &dsi_phy_28nm_lp_cfgs },
616 #endif
617 #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY
618 	{ .compatible = "qcom,dsi-phy-20nm",
619 	  .data = &dsi_phy_20nm_cfgs },
620 #endif
621 #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY
622 	{ .compatible = "qcom,dsi-phy-28nm-8960",
623 	  .data = &dsi_phy_28nm_8960_cfgs },
624 #endif
625 #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY
626 	{ .compatible = "qcom,dsi-phy-14nm",
627 	  .data = &dsi_phy_14nm_cfgs },
628 	{ .compatible = "qcom,dsi-phy-14nm-660",
629 	  .data = &dsi_phy_14nm_660_cfgs },
630 	{ .compatible = "qcom,dsi-phy-14nm-8953",
631 	  .data = &dsi_phy_14nm_8953_cfgs },
632 #endif
633 #ifdef CONFIG_DRM_MSM_DSI_10NM_PHY
634 	{ .compatible = "qcom,dsi-phy-10nm",
635 	  .data = &dsi_phy_10nm_cfgs },
636 	{ .compatible = "qcom,dsi-phy-10nm-8998",
637 	  .data = &dsi_phy_10nm_8998_cfgs },
638 #endif
639 #ifdef CONFIG_DRM_MSM_DSI_7NM_PHY
640 	{ .compatible = "qcom,dsi-phy-7nm",
641 	  .data = &dsi_phy_7nm_cfgs },
642 	{ .compatible = "qcom,dsi-phy-7nm-8150",
643 	  .data = &dsi_phy_7nm_8150_cfgs },
644 	{ .compatible = "qcom,sc7280-dsi-phy-7nm",
645 	  .data = &dsi_phy_7nm_7280_cfgs },
646 #endif
647 	{}
648 };
649 
650 /*
651  * Currently, we only support one SoC for each PHY type. When we have multiple
652  * SoCs for the same PHY, we can try to make the index searching a bit more
653  * clever.
654  */
655 static int dsi_phy_get_id(struct msm_dsi_phy *phy)
656 {
657 	struct platform_device *pdev = phy->pdev;
658 	const struct msm_dsi_phy_cfg *cfg = phy->cfg;
659 	struct resource *res;
660 	int i;
661 
662 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy");
663 	if (!res)
664 		return -EINVAL;
665 
666 	for (i = 0; i < cfg->num_dsi_phy; i++) {
667 		if (cfg->io_start[i] == res->start)
668 			return i;
669 	}
670 
671 	return -EINVAL;
672 }
673 
674 static int dsi_phy_driver_probe(struct platform_device *pdev)
675 {
676 	struct msm_dsi_phy *phy;
677 	struct device *dev = &pdev->dev;
678 	u32 phy_type;
679 	int ret;
680 
681 	phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
682 	if (!phy)
683 		return -ENOMEM;
684 
685 	phy->provided_clocks = devm_kzalloc(dev,
686 			struct_size(phy->provided_clocks, hws, NUM_PROVIDED_CLKS),
687 			GFP_KERNEL);
688 	if (!phy->provided_clocks)
689 		return -ENOMEM;
690 
691 	phy->provided_clocks->num = NUM_PROVIDED_CLKS;
692 
693 	phy->cfg = of_device_get_match_data(&pdev->dev);
694 	if (!phy->cfg)
695 		return -ENODEV;
696 
697 	phy->pdev = pdev;
698 
699 	phy->id = dsi_phy_get_id(phy);
700 	if (phy->id < 0) {
701 		ret = phy->id;
702 		DRM_DEV_ERROR(dev, "%s: couldn't identify PHY index, %d\n",
703 			__func__, ret);
704 		goto fail;
705 	}
706 
707 	phy->regulator_ldo_mode = of_property_read_bool(dev->of_node,
708 				"qcom,dsi-phy-regulator-ldo-mode");
709 	if (!of_property_read_u32(dev->of_node, "phy-type", &phy_type))
710 		phy->cphy_mode = (phy_type == PHY_TYPE_CPHY);
711 
712 	phy->base = msm_ioremap_size(pdev, "dsi_phy", "DSI_PHY", &phy->base_size);
713 	if (IS_ERR(phy->base)) {
714 		DRM_DEV_ERROR(dev, "%s: failed to map phy base\n", __func__);
715 		ret = -ENOMEM;
716 		goto fail;
717 	}
718 
719 	phy->pll_base = msm_ioremap_size(pdev, "dsi_pll", "DSI_PLL", &phy->pll_size);
720 	if (IS_ERR(phy->pll_base)) {
721 		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
722 		ret = -ENOMEM;
723 		goto fail;
724 	}
725 
726 	if (phy->cfg->has_phy_lane) {
727 		phy->lane_base = msm_ioremap_size(pdev, "dsi_phy_lane", "DSI_PHY_LANE", &phy->lane_size);
728 		if (IS_ERR(phy->lane_base)) {
729 			DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy lane base\n", __func__);
730 			ret = -ENOMEM;
731 			goto fail;
732 		}
733 	}
734 
735 	if (phy->cfg->has_phy_regulator) {
736 		phy->reg_base = msm_ioremap_size(pdev, "dsi_phy_regulator", "DSI_PHY_REG", &phy->reg_size);
737 		if (IS_ERR(phy->reg_base)) {
738 			DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy regulator base\n", __func__);
739 			ret = -ENOMEM;
740 			goto fail;
741 		}
742 	}
743 
744 	ret = dsi_phy_regulator_init(phy);
745 	if (ret)
746 		goto fail;
747 
748 	phy->ahb_clk = msm_clk_get(pdev, "iface");
749 	if (IS_ERR(phy->ahb_clk)) {
750 		DRM_DEV_ERROR(dev, "%s: Unable to get ahb clk\n", __func__);
751 		ret = PTR_ERR(phy->ahb_clk);
752 		goto fail;
753 	}
754 
755 	/* PLL init will call into clk_register which requires
756 	 * register access, so we need to enable power and ahb clock.
757 	 */
758 	ret = dsi_phy_enable_resource(phy);
759 	if (ret)
760 		goto fail;
761 
762 	if (phy->cfg->ops.pll_init) {
763 		ret = phy->cfg->ops.pll_init(phy);
764 		if (ret) {
765 			DRM_DEV_INFO(dev,
766 				"%s: pll init failed: %d, need separate pll clk driver\n",
767 				__func__, ret);
768 			goto fail;
769 		}
770 	}
771 
772 	ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
773 				     phy->provided_clocks);
774 	if (ret) {
775 		DRM_DEV_ERROR(dev, "%s: failed to register clk provider: %d\n", __func__, ret);
776 		goto fail;
777 	}
778 
779 	dsi_phy_disable_resource(phy);
780 
781 	platform_set_drvdata(pdev, phy);
782 
783 	return 0;
784 
785 fail:
786 	return ret;
787 }
788 
789 static struct platform_driver dsi_phy_platform_driver = {
790 	.probe      = dsi_phy_driver_probe,
791 	.driver     = {
792 		.name   = "msm_dsi_phy",
793 		.of_match_table = dsi_phy_dt_match,
794 	},
795 };
796 
797 void __init msm_dsi_phy_driver_register(void)
798 {
799 	platform_driver_register(&dsi_phy_platform_driver);
800 }
801 
802 void __exit msm_dsi_phy_driver_unregister(void)
803 {
804 	platform_driver_unregister(&dsi_phy_platform_driver);
805 }
806 
807 int msm_dsi_phy_enable(struct msm_dsi_phy *phy,
808 			struct msm_dsi_phy_clk_request *clk_req,
809 			struct msm_dsi_phy_shared_timings *shared_timings)
810 {
811 	struct device *dev = &phy->pdev->dev;
812 	int ret;
813 
814 	if (!phy || !phy->cfg->ops.enable)
815 		return -EINVAL;
816 
817 	ret = dsi_phy_enable_resource(phy);
818 	if (ret) {
819 		DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n",
820 			__func__, ret);
821 		goto res_en_fail;
822 	}
823 
824 	ret = dsi_phy_regulator_enable(phy);
825 	if (ret) {
826 		DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n",
827 			__func__, ret);
828 		goto reg_en_fail;
829 	}
830 
831 	ret = phy->cfg->ops.enable(phy, clk_req);
832 	if (ret) {
833 		DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret);
834 		goto phy_en_fail;
835 	}
836 
837 	memcpy(shared_timings, &phy->timing.shared_timings,
838 	       sizeof(*shared_timings));
839 
840 	/*
841 	 * Resetting DSI PHY silently changes its PLL registers to reset status,
842 	 * which will confuse clock driver and result in wrong output rate of
843 	 * link clocks. Restore PLL status if its PLL is being used as clock
844 	 * source.
845 	 */
846 	if (phy->usecase != MSM_DSI_PHY_SLAVE) {
847 		ret = msm_dsi_phy_pll_restore_state(phy);
848 		if (ret) {
849 			DRM_DEV_ERROR(dev, "%s: failed to restore phy state, %d\n",
850 				__func__, ret);
851 			goto pll_restor_fail;
852 		}
853 	}
854 
855 	return 0;
856 
857 pll_restor_fail:
858 	if (phy->cfg->ops.disable)
859 		phy->cfg->ops.disable(phy);
860 phy_en_fail:
861 	dsi_phy_regulator_disable(phy);
862 reg_en_fail:
863 	dsi_phy_disable_resource(phy);
864 res_en_fail:
865 	return ret;
866 }
867 
868 void msm_dsi_phy_disable(struct msm_dsi_phy *phy)
869 {
870 	if (!phy || !phy->cfg->ops.disable)
871 		return;
872 
873 	phy->cfg->ops.disable(phy);
874 
875 	dsi_phy_regulator_disable(phy);
876 	dsi_phy_disable_resource(phy);
877 }
878 
879 void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy,
880 			     enum msm_dsi_phy_usecase uc)
881 {
882 	if (phy)
883 		phy->usecase = uc;
884 }
885 
886 /* Returns true if we have to clear DSI_LANE_CTRL.HS_REQ_SEL_PHY */
887 bool msm_dsi_phy_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
888 {
889 	if (!phy || !phy->cfg->ops.set_continuous_clock)
890 		return false;
891 
892 	return phy->cfg->ops.set_continuous_clock(phy, enable);
893 }
894 
895 int msm_dsi_phy_get_clk_provider(struct msm_dsi_phy *phy,
896 	struct clk **byte_clk_provider, struct clk **pixel_clk_provider)
897 {
898 	if (byte_clk_provider)
899 		*byte_clk_provider = phy->provided_clocks->hws[DSI_BYTE_PLL_CLK]->clk;
900 	if (pixel_clk_provider)
901 		*pixel_clk_provider = phy->provided_clocks->hws[DSI_PIXEL_PLL_CLK]->clk;
902 
903 	return 0;
904 }
905 
906 void msm_dsi_phy_pll_save_state(struct msm_dsi_phy *phy)
907 {
908 	if (phy->cfg->ops.save_pll_state) {
909 		phy->cfg->ops.save_pll_state(phy);
910 		phy->state_saved = true;
911 	}
912 }
913 
914 int msm_dsi_phy_pll_restore_state(struct msm_dsi_phy *phy)
915 {
916 	int ret;
917 
918 	if (phy->cfg->ops.restore_pll_state && phy->state_saved) {
919 		ret = phy->cfg->ops.restore_pll_state(phy);
920 		if (ret)
921 			return ret;
922 
923 		phy->state_saved = false;
924 	}
925 
926 	return 0;
927 }
928 
929 void msm_dsi_phy_snapshot(struct msm_disp_state *disp_state, struct msm_dsi_phy *phy)
930 {
931 	msm_disp_snapshot_add_block(disp_state,
932 			phy->base_size, phy->base,
933 			"dsi%d_phy", phy->id);
934 
935 	/* Do not try accessing PLL registers if it is switched off */
936 	if (phy->pll_on)
937 		msm_disp_snapshot_add_block(disp_state,
938 			phy->pll_size, phy->pll_base,
939 			"dsi%d_pll", phy->id);
940 
941 	if (phy->lane_base)
942 		msm_disp_snapshot_add_block(disp_state,
943 			phy->lane_size, phy->lane_base,
944 			"dsi%d_lane", phy->id);
945 
946 	if (phy->reg_base)
947 		msm_disp_snapshot_add_block(disp_state,
948 			phy->reg_size, phy->reg_base,
949 			"dsi%d_reg", phy->id);
950 }
951