1 /* 2 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 and 6 * only version 2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/platform_device.h> 15 16 #include "dsi_phy.h" 17 18 #define S_DIV_ROUND_UP(n, d) \ 19 (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d))) 20 21 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent, 22 s32 min_result, bool even) 23 { 24 s32 v; 25 26 v = (tmax - tmin) * percent; 27 v = S_DIV_ROUND_UP(v, 100) + tmin; 28 if (even && (v & 0x1)) 29 return max_t(s32, min_result, v - 1); 30 else 31 return max_t(s32, min_result, v); 32 } 33 34 static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing, 35 s32 ui, s32 coeff, s32 pcnt) 36 { 37 s32 tmax, tmin, clk_z; 38 s32 temp; 39 40 /* reset */ 41 temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui; 42 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 43 if (tmin > 255) { 44 tmax = 511; 45 clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true); 46 } else { 47 tmax = 255; 48 clk_z = linear_inter(tmax, tmin, pcnt, 0, true); 49 } 50 51 /* adjust */ 52 temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7; 53 timing->clk_zero = clk_z + 8 - temp; 54 } 55 56 int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing, 57 struct msm_dsi_phy_clk_request *clk_req) 58 { 59 const unsigned long bit_rate = clk_req->bitclk_rate; 60 const unsigned long esc_rate = clk_req->escclk_rate; 61 s32 ui, lpx; 62 s32 tmax, tmin; 63 s32 pcnt0 = 10; 64 s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10; 65 s32 pcnt2 = 10; 66 s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40; 67 s32 coeff = 1000; /* Precision, should avoid overflow */ 68 s32 temp; 69 70 if (!bit_rate || !esc_rate) 71 return -EINVAL; 72 73 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 74 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 75 76 tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2; 77 tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2; 78 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true); 79 80 temp = lpx / ui; 81 if (temp & 0x1) 82 timing->hs_rqst = temp; 83 else 84 timing->hs_rqst = max_t(s32, 0, temp - 2); 85 86 /* Calculate clk_zero after clk_prepare and hs_rqst */ 87 dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2); 88 89 temp = 105 * coeff + 12 * ui - 20 * coeff; 90 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 91 tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2; 92 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 93 94 temp = 85 * coeff + 6 * ui; 95 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 96 temp = 40 * coeff + 4 * ui; 97 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 98 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true); 99 100 tmax = 255; 101 temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui; 102 temp = 145 * coeff + 10 * ui - temp; 103 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 104 timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true); 105 106 temp = 105 * coeff + 12 * ui - 20 * coeff; 107 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 108 temp = 60 * coeff + 4 * ui; 109 tmin = DIV_ROUND_UP(temp, ui) - 2; 110 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 111 112 tmax = 255; 113 tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2; 114 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true); 115 116 tmax = 63; 117 temp = ((timing->hs_exit >> 1) + 1) * 2 * ui; 118 temp = 60 * coeff + 52 * ui - 24 * ui - temp; 119 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 120 timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, 121 false); 122 tmax = 63; 123 temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui; 124 temp += ((timing->clk_zero >> 1) + 1) * 2 * ui; 125 temp += 8 * ui + lpx; 126 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 127 if (tmin > tmax) { 128 temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false); 129 timing->shared_timings.clk_pre = temp >> 1; 130 timing->shared_timings.clk_pre_inc_by_2 = true; 131 } else { 132 timing->shared_timings.clk_pre = 133 linear_inter(tmax, tmin, pcnt2, 0, false); 134 timing->shared_timings.clk_pre_inc_by_2 = false; 135 } 136 137 timing->ta_go = 3; 138 timing->ta_sure = 0; 139 timing->ta_get = 4; 140 141 DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 142 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 143 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 144 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 145 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 146 timing->hs_rqst); 147 148 return 0; 149 } 150 151 int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing, 152 struct msm_dsi_phy_clk_request *clk_req) 153 { 154 const unsigned long bit_rate = clk_req->bitclk_rate; 155 const unsigned long esc_rate = clk_req->escclk_rate; 156 s32 ui, ui_x8, lpx; 157 s32 tmax, tmin; 158 s32 pcnt0 = 50; 159 s32 pcnt1 = 50; 160 s32 pcnt2 = 10; 161 s32 pcnt3 = 30; 162 s32 pcnt4 = 10; 163 s32 pcnt5 = 2; 164 s32 coeff = 1000; /* Precision, should avoid overflow */ 165 s32 hb_en, hb_en_ckln, pd_ckln, pd; 166 s32 val, val_ckln; 167 s32 temp; 168 169 if (!bit_rate || !esc_rate) 170 return -EINVAL; 171 172 timing->hs_halfbyte_en = 0; 173 hb_en = 0; 174 timing->hs_halfbyte_en_ckln = 0; 175 hb_en_ckln = 0; 176 timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3; 177 pd_ckln = timing->hs_prep_dly_ckln; 178 timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1; 179 pd = timing->hs_prep_dly; 180 181 val = (hb_en << 2) + (pd << 1); 182 val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1); 183 184 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 185 ui_x8 = ui << 3; 186 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 187 188 temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8); 189 tmin = max_t(s32, temp, 0); 190 temp = (95 * coeff - val_ckln * ui) / ui_x8; 191 tmax = max_t(s32, temp, 0); 192 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); 193 194 temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui; 195 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 196 tmax = (tmin > 255) ? 511 : 255; 197 timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); 198 199 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 200 temp = 105 * coeff + 12 * ui - 20 * coeff; 201 tmax = (temp + 3 * ui) / ui_x8; 202 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 203 204 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8); 205 tmin = max_t(s32, temp, 0); 206 temp = (85 * coeff + 6 * ui - val * ui) / ui_x8; 207 tmax = max_t(s32, temp, 0); 208 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); 209 210 temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui; 211 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 212 tmax = 255; 213 timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); 214 215 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8); 216 temp = 105 * coeff + 12 * ui - 20 * coeff; 217 tmax = (temp + 3 * ui) / ui_x8; 218 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 219 220 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 221 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 222 223 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 224 tmax = 255; 225 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); 226 227 temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; 228 timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); 229 230 temp = 60 * coeff + 52 * ui - 43 * ui; 231 tmin = DIV_ROUND_UP(temp, ui_x8) - 1; 232 tmax = 63; 233 timing->shared_timings.clk_post = 234 linear_inter(tmax, tmin, pcnt2, 0, false); 235 236 temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui; 237 temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui; 238 temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : 239 (((timing->hs_rqst_ckln << 3) + 8) * ui); 240 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 241 tmax = 63; 242 if (tmin > tmax) { 243 temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); 244 timing->shared_timings.clk_pre = temp >> 1; 245 timing->shared_timings.clk_pre_inc_by_2 = 1; 246 } else { 247 timing->shared_timings.clk_pre = 248 linear_inter(tmax, tmin, pcnt2, 0, false); 249 timing->shared_timings.clk_pre_inc_by_2 = 0; 250 } 251 252 timing->ta_go = 3; 253 timing->ta_sure = 0; 254 timing->ta_get = 4; 255 256 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 257 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 258 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 259 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 260 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 261 timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, 262 timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, 263 timing->hs_prep_dly_ckln); 264 265 return 0; 266 } 267 268 void msm_dsi_phy_set_src_pll(struct msm_dsi_phy *phy, int pll_id, u32 reg, 269 u32 bit_mask) 270 { 271 int phy_id = phy->id; 272 u32 val; 273 274 if ((phy_id >= DSI_MAX) || (pll_id >= DSI_MAX)) 275 return; 276 277 val = dsi_phy_read(phy->base + reg); 278 279 if (phy->cfg->src_pll_truthtable[phy_id][pll_id]) 280 dsi_phy_write(phy->base + reg, val | bit_mask); 281 else 282 dsi_phy_write(phy->base + reg, val & (~bit_mask)); 283 } 284 285 static int dsi_phy_regulator_init(struct msm_dsi_phy *phy) 286 { 287 struct regulator_bulk_data *s = phy->supplies; 288 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 289 struct device *dev = &phy->pdev->dev; 290 int num = phy->cfg->reg_cfg.num; 291 int i, ret; 292 293 for (i = 0; i < num; i++) 294 s[i].supply = regs[i].name; 295 296 ret = devm_regulator_bulk_get(dev, num, s); 297 if (ret < 0) { 298 dev_err(dev, "%s: failed to init regulator, ret=%d\n", 299 __func__, ret); 300 return ret; 301 } 302 303 return 0; 304 } 305 306 static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy) 307 { 308 struct regulator_bulk_data *s = phy->supplies; 309 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 310 int num = phy->cfg->reg_cfg.num; 311 int i; 312 313 DBG(""); 314 for (i = num - 1; i >= 0; i--) 315 if (regs[i].disable_load >= 0) 316 regulator_set_load(s[i].consumer, regs[i].disable_load); 317 318 regulator_bulk_disable(num, s); 319 } 320 321 static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy) 322 { 323 struct regulator_bulk_data *s = phy->supplies; 324 const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; 325 struct device *dev = &phy->pdev->dev; 326 int num = phy->cfg->reg_cfg.num; 327 int ret, i; 328 329 DBG(""); 330 for (i = 0; i < num; i++) { 331 if (regs[i].enable_load >= 0) { 332 ret = regulator_set_load(s[i].consumer, 333 regs[i].enable_load); 334 if (ret < 0) { 335 dev_err(dev, 336 "regulator %d set op mode failed, %d\n", 337 i, ret); 338 goto fail; 339 } 340 } 341 } 342 343 ret = regulator_bulk_enable(num, s); 344 if (ret < 0) { 345 dev_err(dev, "regulator enable failed, %d\n", ret); 346 goto fail; 347 } 348 349 return 0; 350 351 fail: 352 for (i--; i >= 0; i--) 353 regulator_set_load(s[i].consumer, regs[i].disable_load); 354 return ret; 355 } 356 357 static int dsi_phy_enable_resource(struct msm_dsi_phy *phy) 358 { 359 struct device *dev = &phy->pdev->dev; 360 int ret; 361 362 pm_runtime_get_sync(dev); 363 364 ret = clk_prepare_enable(phy->ahb_clk); 365 if (ret) { 366 dev_err(dev, "%s: can't enable ahb clk, %d\n", __func__, ret); 367 pm_runtime_put_sync(dev); 368 } 369 370 return ret; 371 } 372 373 static void dsi_phy_disable_resource(struct msm_dsi_phy *phy) 374 { 375 clk_disable_unprepare(phy->ahb_clk); 376 pm_runtime_put_autosuspend(&phy->pdev->dev); 377 } 378 379 static const struct of_device_id dsi_phy_dt_match[] = { 380 #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY 381 { .compatible = "qcom,dsi-phy-28nm-hpm", 382 .data = &dsi_phy_28nm_hpm_cfgs }, 383 { .compatible = "qcom,dsi-phy-28nm-lp", 384 .data = &dsi_phy_28nm_lp_cfgs }, 385 #endif 386 #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY 387 { .compatible = "qcom,dsi-phy-20nm", 388 .data = &dsi_phy_20nm_cfgs }, 389 #endif 390 #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY 391 { .compatible = "qcom,dsi-phy-28nm-8960", 392 .data = &dsi_phy_28nm_8960_cfgs }, 393 #endif 394 #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY 395 { .compatible = "qcom,dsi-phy-14nm", 396 .data = &dsi_phy_14nm_cfgs }, 397 #endif 398 {} 399 }; 400 401 /* 402 * Currently, we only support one SoC for each PHY type. When we have multiple 403 * SoCs for the same PHY, we can try to make the index searching a bit more 404 * clever. 405 */ 406 static int dsi_phy_get_id(struct msm_dsi_phy *phy) 407 { 408 struct platform_device *pdev = phy->pdev; 409 const struct msm_dsi_phy_cfg *cfg = phy->cfg; 410 struct resource *res; 411 int i; 412 413 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy"); 414 if (!res) 415 return -EINVAL; 416 417 for (i = 0; i < cfg->num_dsi_phy; i++) { 418 if (cfg->io_start[i] == res->start) 419 return i; 420 } 421 422 return -EINVAL; 423 } 424 425 int msm_dsi_phy_init_common(struct msm_dsi_phy *phy) 426 { 427 struct platform_device *pdev = phy->pdev; 428 int ret = 0; 429 430 phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator", 431 "DSI_PHY_REG"); 432 if (IS_ERR(phy->reg_base)) { 433 dev_err(&pdev->dev, "%s: failed to map phy regulator base\n", 434 __func__); 435 ret = -ENOMEM; 436 goto fail; 437 } 438 439 fail: 440 return ret; 441 } 442 443 static int dsi_phy_driver_probe(struct platform_device *pdev) 444 { 445 struct msm_dsi_phy *phy; 446 struct device *dev = &pdev->dev; 447 const struct of_device_id *match; 448 int ret; 449 450 phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); 451 if (!phy) 452 return -ENOMEM; 453 454 match = of_match_node(dsi_phy_dt_match, dev->of_node); 455 if (!match) 456 return -ENODEV; 457 458 phy->cfg = match->data; 459 phy->pdev = pdev; 460 461 phy->id = dsi_phy_get_id(phy); 462 if (phy->id < 0) { 463 ret = phy->id; 464 dev_err(dev, "%s: couldn't identify PHY index, %d\n", 465 __func__, ret); 466 goto fail; 467 } 468 469 phy->regulator_ldo_mode = of_property_read_bool(dev->of_node, 470 "qcom,dsi-phy-regulator-ldo-mode"); 471 472 phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY"); 473 if (IS_ERR(phy->base)) { 474 dev_err(dev, "%s: failed to map phy base\n", __func__); 475 ret = -ENOMEM; 476 goto fail; 477 } 478 479 ret = dsi_phy_regulator_init(phy); 480 if (ret) { 481 dev_err(dev, "%s: failed to init regulator\n", __func__); 482 goto fail; 483 } 484 485 phy->ahb_clk = msm_clk_get(pdev, "iface"); 486 if (IS_ERR(phy->ahb_clk)) { 487 dev_err(dev, "%s: Unable to get ahb clk\n", __func__); 488 ret = PTR_ERR(phy->ahb_clk); 489 goto fail; 490 } 491 492 if (phy->cfg->ops.init) { 493 ret = phy->cfg->ops.init(phy); 494 if (ret) 495 goto fail; 496 } 497 498 /* PLL init will call into clk_register which requires 499 * register access, so we need to enable power and ahb clock. 500 */ 501 ret = dsi_phy_enable_resource(phy); 502 if (ret) 503 goto fail; 504 505 phy->pll = msm_dsi_pll_init(pdev, phy->cfg->type, phy->id); 506 if (!phy->pll) 507 dev_info(dev, 508 "%s: pll init failed, need separate pll clk driver\n", 509 __func__); 510 511 dsi_phy_disable_resource(phy); 512 513 platform_set_drvdata(pdev, phy); 514 515 return 0; 516 517 fail: 518 return ret; 519 } 520 521 static int dsi_phy_driver_remove(struct platform_device *pdev) 522 { 523 struct msm_dsi_phy *phy = platform_get_drvdata(pdev); 524 525 if (phy && phy->pll) { 526 msm_dsi_pll_destroy(phy->pll); 527 phy->pll = NULL; 528 } 529 530 platform_set_drvdata(pdev, NULL); 531 532 return 0; 533 } 534 535 static struct platform_driver dsi_phy_platform_driver = { 536 .probe = dsi_phy_driver_probe, 537 .remove = dsi_phy_driver_remove, 538 .driver = { 539 .name = "msm_dsi_phy", 540 .of_match_table = dsi_phy_dt_match, 541 }, 542 }; 543 544 void __init msm_dsi_phy_driver_register(void) 545 { 546 platform_driver_register(&dsi_phy_platform_driver); 547 } 548 549 void __exit msm_dsi_phy_driver_unregister(void) 550 { 551 platform_driver_unregister(&dsi_phy_platform_driver); 552 } 553 554 int msm_dsi_phy_enable(struct msm_dsi_phy *phy, int src_pll_id, 555 struct msm_dsi_phy_clk_request *clk_req) 556 { 557 struct device *dev = &phy->pdev->dev; 558 int ret; 559 560 if (!phy || !phy->cfg->ops.enable) 561 return -EINVAL; 562 563 ret = dsi_phy_enable_resource(phy); 564 if (ret) { 565 dev_err(dev, "%s: resource enable failed, %d\n", 566 __func__, ret); 567 goto res_en_fail; 568 } 569 570 ret = dsi_phy_regulator_enable(phy); 571 if (ret) { 572 dev_err(dev, "%s: regulator enable failed, %d\n", 573 __func__, ret); 574 goto reg_en_fail; 575 } 576 577 ret = phy->cfg->ops.enable(phy, src_pll_id, clk_req); 578 if (ret) { 579 dev_err(dev, "%s: phy enable failed, %d\n", __func__, ret); 580 goto phy_en_fail; 581 } 582 583 /* 584 * Resetting DSI PHY silently changes its PLL registers to reset status, 585 * which will confuse clock driver and result in wrong output rate of 586 * link clocks. Restore PLL status if its PLL is being used as clock 587 * source. 588 */ 589 if (phy->usecase != MSM_DSI_PHY_SLAVE) { 590 ret = msm_dsi_pll_restore_state(phy->pll); 591 if (ret) { 592 dev_err(dev, "%s: failed to restore pll state, %d\n", 593 __func__, ret); 594 goto pll_restor_fail; 595 } 596 } 597 598 return 0; 599 600 pll_restor_fail: 601 if (phy->cfg->ops.disable) 602 phy->cfg->ops.disable(phy); 603 phy_en_fail: 604 dsi_phy_regulator_disable(phy); 605 reg_en_fail: 606 dsi_phy_disable_resource(phy); 607 res_en_fail: 608 return ret; 609 } 610 611 void msm_dsi_phy_disable(struct msm_dsi_phy *phy) 612 { 613 if (!phy || !phy->cfg->ops.disable) 614 return; 615 616 /* Save PLL status if it is a clock source */ 617 if (phy->usecase != MSM_DSI_PHY_SLAVE) 618 msm_dsi_pll_save_state(phy->pll); 619 620 phy->cfg->ops.disable(phy); 621 622 dsi_phy_regulator_disable(phy); 623 dsi_phy_disable_resource(phy); 624 } 625 626 void msm_dsi_phy_get_shared_timings(struct msm_dsi_phy *phy, 627 struct msm_dsi_phy_shared_timings *shared_timings) 628 { 629 memcpy(shared_timings, &phy->timing.shared_timings, 630 sizeof(*shared_timings)); 631 } 632 633 struct msm_dsi_pll *msm_dsi_phy_get_pll(struct msm_dsi_phy *phy) 634 { 635 if (!phy) 636 return NULL; 637 638 return phy->pll; 639 } 640 641 void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy, 642 enum msm_dsi_phy_usecase uc) 643 { 644 if (phy) 645 phy->usecase = uc; 646 } 647