xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision dc608edf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_opp.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/spinlock.h>
21 
22 #include <video/mipi_display.h>
23 
24 #include <drm/drm_of.h>
25 
26 #include "dsi.h"
27 #include "dsi.xml.h"
28 #include "sfpb.xml.h"
29 #include "dsi_cfg.h"
30 #include "msm_kms.h"
31 #include "msm_gem.h"
32 #include "phy/dsi_phy.h"
33 
34 #define DSI_RESET_TOGGLE_DELAY_MS 20
35 
36 static int dsi_populate_dsc_params(struct drm_dsc_config *dsc);
37 
38 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
39 {
40 	u32 ver;
41 
42 	if (!major || !minor)
43 		return -EINVAL;
44 
45 	/*
46 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
47 	 * makes all other registers 4-byte shifted down.
48 	 *
49 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
50 	 * older, we read the DSI_VERSION register without any shift(offset
51 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
52 	 * the case of DSI6G, this has to be zero (the offset points to a
53 	 * scratch register which we never touch)
54 	 */
55 
56 	ver = msm_readl(base + REG_DSI_VERSION);
57 	if (ver) {
58 		/* older dsi host, there is no register shift */
59 		ver = FIELD(ver, DSI_VERSION_MAJOR);
60 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
61 			/* old versions */
62 			*major = ver;
63 			*minor = 0;
64 			return 0;
65 		} else {
66 			return -EINVAL;
67 		}
68 	} else {
69 		/*
70 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
71 		 * registers are shifted down, read DSI_VERSION again with
72 		 * the shifted offset
73 		 */
74 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
75 		ver = FIELD(ver, DSI_VERSION_MAJOR);
76 		if (ver == MSM_DSI_VER_MAJOR_6G) {
77 			/* 6G version */
78 			*major = ver;
79 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
80 			return 0;
81 		} else {
82 			return -EINVAL;
83 		}
84 	}
85 }
86 
87 #define DSI_ERR_STATE_ACK			0x0000
88 #define DSI_ERR_STATE_TIMEOUT			0x0001
89 #define DSI_ERR_STATE_DLN0_PHY			0x0002
90 #define DSI_ERR_STATE_FIFO			0x0004
91 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
92 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
93 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
94 
95 #define DSI_CLK_CTRL_ENABLE_CLKS	\
96 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
97 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
98 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
99 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
100 
101 struct msm_dsi_host {
102 	struct mipi_dsi_host base;
103 
104 	struct platform_device *pdev;
105 	struct drm_device *dev;
106 
107 	int id;
108 
109 	void __iomem *ctrl_base;
110 	phys_addr_t ctrl_size;
111 	struct regulator_bulk_data *supplies;
112 
113 	int num_bus_clks;
114 	struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX];
115 
116 	struct clk *byte_clk;
117 	struct clk *esc_clk;
118 	struct clk *pixel_clk;
119 	struct clk *byte_clk_src;
120 	struct clk *pixel_clk_src;
121 	struct clk *byte_intf_clk;
122 
123 	unsigned long byte_clk_rate;
124 	unsigned long pixel_clk_rate;
125 	unsigned long esc_clk_rate;
126 
127 	/* DSI v2 specific clocks */
128 	struct clk *src_clk;
129 	struct clk *esc_clk_src;
130 	struct clk *dsi_clk_src;
131 
132 	unsigned long src_clk_rate;
133 
134 	struct gpio_desc *disp_en_gpio;
135 	struct gpio_desc *te_gpio;
136 
137 	const struct msm_dsi_cfg_handler *cfg_hnd;
138 
139 	struct completion dma_comp;
140 	struct completion video_comp;
141 	struct mutex dev_mutex;
142 	struct mutex cmd_mutex;
143 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
144 
145 	u32 err_work_state;
146 	struct work_struct err_work;
147 	struct workqueue_struct *workqueue;
148 
149 	/* DSI 6G TX buffer*/
150 	struct drm_gem_object *tx_gem_obj;
151 
152 	/* DSI v2 TX buffer */
153 	void *tx_buf;
154 	dma_addr_t tx_buf_paddr;
155 
156 	int tx_size;
157 
158 	u8 *rx_buf;
159 
160 	struct regmap *sfpb;
161 
162 	struct drm_display_mode *mode;
163 	struct drm_dsc_config *dsc;
164 
165 	/* connected device info */
166 	unsigned int channel;
167 	unsigned int lanes;
168 	enum mipi_dsi_pixel_format format;
169 	unsigned long mode_flags;
170 
171 	/* lane data parsed via DT */
172 	int dlane_swap;
173 	int num_data_lanes;
174 
175 	/* from phy DT */
176 	bool cphy_mode;
177 
178 	u32 dma_cmd_ctrl_restore;
179 
180 	bool registered;
181 	bool power_on;
182 	bool enabled;
183 	int irq;
184 };
185 
186 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
187 {
188 	switch (fmt) {
189 	case MIPI_DSI_FMT_RGB565:		return 16;
190 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
191 	case MIPI_DSI_FMT_RGB666:
192 	case MIPI_DSI_FMT_RGB888:
193 	default:				return 24;
194 	}
195 }
196 
197 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
198 {
199 	return msm_readl(msm_host->ctrl_base + reg);
200 }
201 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
202 {
203 	msm_writel(data, msm_host->ctrl_base + reg);
204 }
205 
206 static const struct msm_dsi_cfg_handler *dsi_get_config(
207 						struct msm_dsi_host *msm_host)
208 {
209 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
210 	struct device *dev = &msm_host->pdev->dev;
211 	struct clk *ahb_clk;
212 	int ret;
213 	u32 major = 0, minor = 0;
214 
215 	cfg_hnd = device_get_match_data(dev);
216 	if (cfg_hnd)
217 		return cfg_hnd;
218 
219 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
220 	if (IS_ERR(ahb_clk)) {
221 		pr_err("%s: cannot get interface clock\n", __func__);
222 		goto exit;
223 	}
224 
225 	pm_runtime_get_sync(dev);
226 
227 	ret = clk_prepare_enable(ahb_clk);
228 	if (ret) {
229 		pr_err("%s: unable to enable ahb_clk\n", __func__);
230 		goto runtime_put;
231 	}
232 
233 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
234 	if (ret) {
235 		pr_err("%s: Invalid version\n", __func__);
236 		goto disable_clks;
237 	}
238 
239 	cfg_hnd = msm_dsi_cfg_get(major, minor);
240 
241 	DBG("%s: Version %x:%x\n", __func__, major, minor);
242 
243 disable_clks:
244 	clk_disable_unprepare(ahb_clk);
245 runtime_put:
246 	pm_runtime_put_sync(dev);
247 exit:
248 	return cfg_hnd;
249 }
250 
251 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
252 {
253 	return container_of(host, struct msm_dsi_host, base);
254 }
255 
256 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
257 {
258 	struct platform_device *pdev = msm_host->pdev;
259 	int ret = 0;
260 
261 	msm_host->src_clk = msm_clk_get(pdev, "src");
262 
263 	if (IS_ERR(msm_host->src_clk)) {
264 		ret = PTR_ERR(msm_host->src_clk);
265 		pr_err("%s: can't find src clock. ret=%d\n",
266 			__func__, ret);
267 		msm_host->src_clk = NULL;
268 		return ret;
269 	}
270 
271 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
272 	if (!msm_host->esc_clk_src) {
273 		ret = -ENODEV;
274 		pr_err("%s: can't get esc clock parent. ret=%d\n",
275 			__func__, ret);
276 		return ret;
277 	}
278 
279 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
280 	if (!msm_host->dsi_clk_src) {
281 		ret = -ENODEV;
282 		pr_err("%s: can't get src clock parent. ret=%d\n",
283 			__func__, ret);
284 	}
285 
286 	return ret;
287 }
288 
289 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
290 {
291 	struct platform_device *pdev = msm_host->pdev;
292 	int ret = 0;
293 
294 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
295 	if (IS_ERR(msm_host->byte_intf_clk)) {
296 		ret = PTR_ERR(msm_host->byte_intf_clk);
297 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
298 			__func__, ret);
299 	}
300 
301 	return ret;
302 }
303 
304 static int dsi_clk_init(struct msm_dsi_host *msm_host)
305 {
306 	struct platform_device *pdev = msm_host->pdev;
307 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
308 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
309 	int i, ret = 0;
310 
311 	/* get bus clocks */
312 	for (i = 0; i < cfg->num_bus_clks; i++)
313 		msm_host->bus_clks[i].id = cfg->bus_clk_names[i];
314 	msm_host->num_bus_clks = cfg->num_bus_clks;
315 
316 	ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks);
317 	if (ret < 0) {
318 		dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret);
319 		goto exit;
320 	}
321 
322 	/* get link and source clocks */
323 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
324 	if (IS_ERR(msm_host->byte_clk)) {
325 		ret = PTR_ERR(msm_host->byte_clk);
326 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
327 			__func__, ret);
328 		msm_host->byte_clk = NULL;
329 		goto exit;
330 	}
331 
332 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
333 	if (IS_ERR(msm_host->pixel_clk)) {
334 		ret = PTR_ERR(msm_host->pixel_clk);
335 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
336 			__func__, ret);
337 		msm_host->pixel_clk = NULL;
338 		goto exit;
339 	}
340 
341 	msm_host->esc_clk = msm_clk_get(pdev, "core");
342 	if (IS_ERR(msm_host->esc_clk)) {
343 		ret = PTR_ERR(msm_host->esc_clk);
344 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
345 			__func__, ret);
346 		msm_host->esc_clk = NULL;
347 		goto exit;
348 	}
349 
350 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
351 	if (IS_ERR(msm_host->byte_clk_src)) {
352 		ret = PTR_ERR(msm_host->byte_clk_src);
353 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
354 		goto exit;
355 	}
356 
357 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
358 	if (IS_ERR(msm_host->pixel_clk_src)) {
359 		ret = PTR_ERR(msm_host->pixel_clk_src);
360 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
361 		goto exit;
362 	}
363 
364 	if (cfg_hnd->ops->clk_init_ver)
365 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
366 exit:
367 	return ret;
368 }
369 
370 int msm_dsi_runtime_suspend(struct device *dev)
371 {
372 	struct platform_device *pdev = to_platform_device(dev);
373 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
374 	struct mipi_dsi_host *host = msm_dsi->host;
375 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
376 
377 	if (!msm_host->cfg_hnd)
378 		return 0;
379 
380 	clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks);
381 
382 	return 0;
383 }
384 
385 int msm_dsi_runtime_resume(struct device *dev)
386 {
387 	struct platform_device *pdev = to_platform_device(dev);
388 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
389 	struct mipi_dsi_host *host = msm_dsi->host;
390 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
391 
392 	if (!msm_host->cfg_hnd)
393 		return 0;
394 
395 	return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks);
396 }
397 
398 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host)
399 {
400 	unsigned long byte_intf_rate;
401 	int ret;
402 
403 	DBG("Set clk rates: pclk=%d, byteclk=%lu",
404 		msm_host->mode->clock, msm_host->byte_clk_rate);
405 
406 	ret = dev_pm_opp_set_rate(&msm_host->pdev->dev,
407 				  msm_host->byte_clk_rate);
408 	if (ret) {
409 		pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret);
410 		return ret;
411 	}
412 
413 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
414 	if (ret) {
415 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
416 		return ret;
417 	}
418 
419 	if (msm_host->byte_intf_clk) {
420 		/* For CPHY, byte_intf_clk is same as byte_clk */
421 		if (msm_host->cphy_mode)
422 			byte_intf_rate = msm_host->byte_clk_rate;
423 		else
424 			byte_intf_rate = msm_host->byte_clk_rate / 2;
425 
426 		ret = clk_set_rate(msm_host->byte_intf_clk, byte_intf_rate);
427 		if (ret) {
428 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
429 			       __func__, ret);
430 			return ret;
431 		}
432 	}
433 
434 	return 0;
435 }
436 
437 
438 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
439 {
440 	int ret;
441 
442 	ret = clk_prepare_enable(msm_host->esc_clk);
443 	if (ret) {
444 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
445 		goto error;
446 	}
447 
448 	ret = clk_prepare_enable(msm_host->byte_clk);
449 	if (ret) {
450 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
451 		goto byte_clk_err;
452 	}
453 
454 	ret = clk_prepare_enable(msm_host->pixel_clk);
455 	if (ret) {
456 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
457 		goto pixel_clk_err;
458 	}
459 
460 	ret = clk_prepare_enable(msm_host->byte_intf_clk);
461 	if (ret) {
462 		pr_err("%s: Failed to enable byte intf clk\n",
463 			   __func__);
464 		goto byte_intf_clk_err;
465 	}
466 
467 	return 0;
468 
469 byte_intf_clk_err:
470 	clk_disable_unprepare(msm_host->pixel_clk);
471 pixel_clk_err:
472 	clk_disable_unprepare(msm_host->byte_clk);
473 byte_clk_err:
474 	clk_disable_unprepare(msm_host->esc_clk);
475 error:
476 	return ret;
477 }
478 
479 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host)
480 {
481 	int ret;
482 
483 	DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu",
484 		msm_host->mode->clock, msm_host->byte_clk_rate,
485 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
486 
487 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
488 	if (ret) {
489 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
490 		return ret;
491 	}
492 
493 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
494 	if (ret) {
495 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
496 		return ret;
497 	}
498 
499 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
500 	if (ret) {
501 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
502 		return ret;
503 	}
504 
505 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
506 	if (ret) {
507 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
508 		return ret;
509 	}
510 
511 	return 0;
512 }
513 
514 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
515 {
516 	int ret;
517 
518 	ret = clk_prepare_enable(msm_host->byte_clk);
519 	if (ret) {
520 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
521 		goto error;
522 	}
523 
524 	ret = clk_prepare_enable(msm_host->esc_clk);
525 	if (ret) {
526 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
527 		goto esc_clk_err;
528 	}
529 
530 	ret = clk_prepare_enable(msm_host->src_clk);
531 	if (ret) {
532 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
533 		goto src_clk_err;
534 	}
535 
536 	ret = clk_prepare_enable(msm_host->pixel_clk);
537 	if (ret) {
538 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
539 		goto pixel_clk_err;
540 	}
541 
542 	return 0;
543 
544 pixel_clk_err:
545 	clk_disable_unprepare(msm_host->src_clk);
546 src_clk_err:
547 	clk_disable_unprepare(msm_host->esc_clk);
548 esc_clk_err:
549 	clk_disable_unprepare(msm_host->byte_clk);
550 error:
551 	return ret;
552 }
553 
554 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
555 {
556 	/* Drop the performance state vote */
557 	dev_pm_opp_set_rate(&msm_host->pdev->dev, 0);
558 	clk_disable_unprepare(msm_host->esc_clk);
559 	clk_disable_unprepare(msm_host->pixel_clk);
560 	clk_disable_unprepare(msm_host->byte_intf_clk);
561 	clk_disable_unprepare(msm_host->byte_clk);
562 }
563 
564 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
565 {
566 	clk_disable_unprepare(msm_host->pixel_clk);
567 	clk_disable_unprepare(msm_host->src_clk);
568 	clk_disable_unprepare(msm_host->esc_clk);
569 	clk_disable_unprepare(msm_host->byte_clk);
570 }
571 
572 static unsigned long dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
573 {
574 	struct drm_display_mode *mode = msm_host->mode;
575 	unsigned long pclk_rate;
576 
577 	pclk_rate = mode->clock * 1000;
578 
579 	/*
580 	 * For bonded DSI mode, the current DRM mode has the complete width of the
581 	 * panel. Since, the complete panel is driven by two DSI controllers,
582 	 * the clock rates have to be split between the two dsi controllers.
583 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
584 	 */
585 	if (is_bonded_dsi)
586 		pclk_rate /= 2;
587 
588 	return pclk_rate;
589 }
590 
591 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
592 {
593 	u8 lanes = msm_host->lanes;
594 	u32 bpp = dsi_get_bpp(msm_host->format);
595 	unsigned long pclk_rate = dsi_get_pclk_rate(msm_host, is_bonded_dsi);
596 	u64 pclk_bpp = (u64)pclk_rate * bpp;
597 
598 	if (lanes == 0) {
599 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
600 		lanes = 1;
601 	}
602 
603 	/* CPHY "byte_clk" is in units of 16 bits */
604 	if (msm_host->cphy_mode)
605 		do_div(pclk_bpp, (16 * lanes));
606 	else
607 		do_div(pclk_bpp, (8 * lanes));
608 
609 	msm_host->pixel_clk_rate = pclk_rate;
610 	msm_host->byte_clk_rate = pclk_bpp;
611 
612 	DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate,
613 				msm_host->byte_clk_rate);
614 
615 }
616 
617 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
618 {
619 	if (!msm_host->mode) {
620 		pr_err("%s: mode not set\n", __func__);
621 		return -EINVAL;
622 	}
623 
624 	dsi_calc_pclk(msm_host, is_bonded_dsi);
625 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
626 	return 0;
627 }
628 
629 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
630 {
631 	u32 bpp = dsi_get_bpp(msm_host->format);
632 	u64 pclk_bpp;
633 	unsigned int esc_mhz, esc_div;
634 	unsigned long byte_mhz;
635 
636 	dsi_calc_pclk(msm_host, is_bonded_dsi);
637 
638 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_bonded_dsi) * bpp;
639 	do_div(pclk_bpp, 8);
640 	msm_host->src_clk_rate = pclk_bpp;
641 
642 	/*
643 	 * esc clock is byte clock followed by a 4 bit divider,
644 	 * we need to find an escape clock frequency within the
645 	 * mipi DSI spec range within the maximum divider limit
646 	 * We iterate here between an escape clock frequencey
647 	 * between 20 Mhz to 5 Mhz and pick up the first one
648 	 * that can be supported by our divider
649 	 */
650 
651 	byte_mhz = msm_host->byte_clk_rate / 1000000;
652 
653 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
654 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
655 
656 		/*
657 		 * TODO: Ideally, we shouldn't know what sort of divider
658 		 * is available in mmss_cc, we're just assuming that
659 		 * it'll always be a 4 bit divider. Need to come up with
660 		 * a better way here.
661 		 */
662 		if (esc_div >= 1 && esc_div <= 16)
663 			break;
664 	}
665 
666 	if (esc_mhz < 5)
667 		return -EINVAL;
668 
669 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
670 
671 	DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate,
672 		msm_host->src_clk_rate);
673 
674 	return 0;
675 }
676 
677 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
678 {
679 	u32 intr;
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&msm_host->intr_lock, flags);
683 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
684 
685 	if (enable)
686 		intr |= mask;
687 	else
688 		intr &= ~mask;
689 
690 	DBG("intr=%x enable=%d", intr, enable);
691 
692 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
693 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
694 }
695 
696 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
697 {
698 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
699 		return BURST_MODE;
700 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
701 		return NON_BURST_SYNCH_PULSE;
702 
703 	return NON_BURST_SYNCH_EVENT;
704 }
705 
706 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
707 				const enum mipi_dsi_pixel_format mipi_fmt)
708 {
709 	switch (mipi_fmt) {
710 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
711 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
712 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
713 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
714 	default:			return VID_DST_FORMAT_RGB888;
715 	}
716 }
717 
718 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
719 				const enum mipi_dsi_pixel_format mipi_fmt)
720 {
721 	switch (mipi_fmt) {
722 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
723 	case MIPI_DSI_FMT_RGB666_PACKED:
724 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
725 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
726 	default:			return CMD_DST_FORMAT_RGB888;
727 	}
728 }
729 
730 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
731 			struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy)
732 {
733 	u32 flags = msm_host->mode_flags;
734 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
735 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
736 	u32 data = 0, lane_ctrl = 0;
737 
738 	if (!enable) {
739 		dsi_write(msm_host, REG_DSI_CTRL, 0);
740 		return;
741 	}
742 
743 	if (flags & MIPI_DSI_MODE_VIDEO) {
744 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
745 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
746 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
747 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
748 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
749 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
750 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
751 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
752 		/* Always set low power stop mode for BLLP
753 		 * to let command engine send packets
754 		 */
755 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
756 			DSI_VID_CFG0_BLLP_POWER_STOP;
757 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
758 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
759 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
760 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
761 
762 		/* Do not swap RGB colors */
763 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
764 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
765 	} else {
766 		/* Do not swap RGB colors */
767 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
768 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
769 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
770 
771 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
772 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
773 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
774 		/* Always insert DCS command */
775 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
776 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
777 	}
778 
779 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
780 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
781 			DSI_CMD_DMA_CTRL_LOW_POWER);
782 
783 	data = 0;
784 	/* Always assume dedicated TE pin */
785 	data |= DSI_TRIG_CTRL_TE;
786 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
787 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
788 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
789 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
790 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
791 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
792 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
793 
794 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
795 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
796 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
797 
798 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
799 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
800 	    phy_shared_timings->clk_pre_inc_by_2)
801 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
802 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
803 
804 	data = 0;
805 	if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET))
806 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
807 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
808 
809 	/* allow only ack-err-status to generate interrupt */
810 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
811 
812 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
813 
814 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
815 
816 	data = DSI_CTRL_CLK_EN;
817 
818 	DBG("lane number=%d", msm_host->lanes);
819 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
820 
821 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
822 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
823 
824 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) {
825 		lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL);
826 
827 		if (msm_dsi_phy_set_continuous_clock(phy, enable))
828 			lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY;
829 
830 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
831 			lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
832 	}
833 
834 	data |= DSI_CTRL_ENABLE;
835 
836 	dsi_write(msm_host, REG_DSI_CTRL, data);
837 
838 	if (msm_host->cphy_mode)
839 		dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0));
840 }
841 
842 static void dsi_update_dsc_timing(struct msm_dsi_host *msm_host, bool is_cmd_mode, u32 hdisplay)
843 {
844 	struct drm_dsc_config *dsc = msm_host->dsc;
845 	u32 reg, intf_width, reg_ctrl, reg_ctrl2;
846 	u32 slice_per_intf, total_bytes_per_intf;
847 	u32 pkt_per_line;
848 	u32 bytes_in_slice;
849 	u32 eol_byte_num;
850 
851 	/* first calculate dsc parameters and then program
852 	 * compress mode registers
853 	 */
854 	intf_width = hdisplay;
855 	slice_per_intf = DIV_ROUND_UP(intf_width, dsc->slice_width);
856 
857 	/* If slice_per_pkt is greater than slice_per_intf
858 	 * then default to 1. This can happen during partial
859 	 * update.
860 	 */
861 	if (slice_per_intf > dsc->slice_count)
862 		dsc->slice_count = 1;
863 
864 	slice_per_intf = DIV_ROUND_UP(hdisplay, dsc->slice_width);
865 	bytes_in_slice = DIV_ROUND_UP(dsc->slice_width * dsc->bits_per_pixel, 8);
866 
867 	dsc->slice_chunk_size = bytes_in_slice;
868 
869 	total_bytes_per_intf = bytes_in_slice * slice_per_intf;
870 
871 	eol_byte_num = total_bytes_per_intf % 3;
872 	pkt_per_line = slice_per_intf / dsc->slice_count;
873 
874 	if (is_cmd_mode) /* packet data type */
875 		reg = DSI_COMMAND_COMPRESSION_MODE_CTRL_STREAM0_DATATYPE(MIPI_DSI_DCS_LONG_WRITE);
876 	else
877 		reg = DSI_VIDEO_COMPRESSION_MODE_CTRL_DATATYPE(MIPI_DSI_COMPRESSED_PIXEL_STREAM);
878 
879 	/* DSI_VIDEO_COMPRESSION_MODE & DSI_COMMAND_COMPRESSION_MODE
880 	 * registers have similar offsets, so for below common code use
881 	 * DSI_VIDEO_COMPRESSION_MODE_XXXX for setting bits
882 	 */
883 	reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_PKT_PER_LINE(pkt_per_line >> 1);
884 	reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EOL_BYTE_NUM(eol_byte_num);
885 	reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EN;
886 
887 	if (is_cmd_mode) {
888 		reg_ctrl = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL);
889 		reg_ctrl2 = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2);
890 
891 		reg_ctrl &= ~0xffff;
892 		reg_ctrl |= reg;
893 
894 		reg_ctrl2 &= ~DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH__MASK;
895 		reg_ctrl2 |= DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH(bytes_in_slice);
896 
897 		dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl);
898 		dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2);
899 	} else {
900 		dsi_write(msm_host, REG_DSI_VIDEO_COMPRESSION_MODE_CTRL, reg);
901 	}
902 }
903 
904 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
905 {
906 	struct drm_display_mode *mode = msm_host->mode;
907 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
908 	u32 h_total = mode->htotal;
909 	u32 v_total = mode->vtotal;
910 	u32 hs_end = mode->hsync_end - mode->hsync_start;
911 	u32 vs_end = mode->vsync_end - mode->vsync_start;
912 	u32 ha_start = h_total - mode->hsync_start;
913 	u32 ha_end = ha_start + mode->hdisplay;
914 	u32 va_start = v_total - mode->vsync_start;
915 	u32 va_end = va_start + mode->vdisplay;
916 	u32 hdisplay = mode->hdisplay;
917 	u32 wc;
918 
919 	DBG("");
920 
921 	/*
922 	 * For bonded DSI mode, the current DRM mode has
923 	 * the complete width of the panel. Since, the complete
924 	 * panel is driven by two DSI controllers, the horizontal
925 	 * timings have to be split between the two dsi controllers.
926 	 * Adjust the DSI host timing values accordingly.
927 	 */
928 	if (is_bonded_dsi) {
929 		h_total /= 2;
930 		hs_end /= 2;
931 		ha_start /= 2;
932 		ha_end /= 2;
933 		hdisplay /= 2;
934 	}
935 
936 	if (msm_host->dsc) {
937 		struct drm_dsc_config *dsc = msm_host->dsc;
938 
939 		/* update dsc params with timing params */
940 		if (!dsc || !mode->hdisplay || !mode->vdisplay) {
941 			pr_err("DSI: invalid input: pic_width: %d pic_height: %d\n",
942 			       mode->hdisplay, mode->vdisplay);
943 			return;
944 		}
945 
946 		dsc->pic_width = mode->hdisplay;
947 		dsc->pic_height = mode->vdisplay;
948 		DBG("Mode %dx%d\n", dsc->pic_width, dsc->pic_height);
949 
950 		/* we do the calculations for dsc parameters here so that
951 		 * panel can use these parameters
952 		 */
953 		dsi_populate_dsc_params(dsc);
954 
955 		/* Divide the display by 3 but keep back/font porch and
956 		 * pulse width same
957 		 */
958 		h_total -= hdisplay;
959 		hdisplay /= 3;
960 		h_total += hdisplay;
961 		ha_end = ha_start + hdisplay;
962 	}
963 
964 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
965 		if (msm_host->dsc)
966 			dsi_update_dsc_timing(msm_host, false, mode->hdisplay);
967 
968 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
969 			DSI_ACTIVE_H_START(ha_start) |
970 			DSI_ACTIVE_H_END(ha_end));
971 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
972 			DSI_ACTIVE_V_START(va_start) |
973 			DSI_ACTIVE_V_END(va_end));
974 		dsi_write(msm_host, REG_DSI_TOTAL,
975 			DSI_TOTAL_H_TOTAL(h_total - 1) |
976 			DSI_TOTAL_V_TOTAL(v_total - 1));
977 
978 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
979 			DSI_ACTIVE_HSYNC_START(hs_start) |
980 			DSI_ACTIVE_HSYNC_END(hs_end));
981 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
982 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
983 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
984 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
985 	} else {		/* command mode */
986 		if (msm_host->dsc)
987 			dsi_update_dsc_timing(msm_host, true, mode->hdisplay);
988 
989 		/* image data and 1 byte write_memory_start cmd */
990 		if (!msm_host->dsc)
991 			wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
992 		else
993 			wc = mode->hdisplay / 2 + 1;
994 
995 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL,
996 			DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) |
997 			DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL(
998 					msm_host->channel) |
999 			DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE(
1000 					MIPI_DSI_DCS_LONG_WRITE));
1001 
1002 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL,
1003 			DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) |
1004 			DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay));
1005 	}
1006 }
1007 
1008 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
1009 {
1010 	u32 ctrl;
1011 
1012 	ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1013 
1014 	if (ctrl & DSI_CTRL_ENABLE) {
1015 		dsi_write(msm_host, REG_DSI_CTRL, ctrl & ~DSI_CTRL_ENABLE);
1016 		/*
1017 		 * dsi controller need to be disabled before
1018 		 * clocks turned on
1019 		 */
1020 		wmb();
1021 	}
1022 
1023 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1024 	wmb(); /* clocks need to be enabled before reset */
1025 
1026 	/* dsi controller can only be reset while clocks are running */
1027 	dsi_write(msm_host, REG_DSI_RESET, 1);
1028 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1029 	dsi_write(msm_host, REG_DSI_RESET, 0);
1030 	wmb(); /* controller out of reset */
1031 
1032 	if (ctrl & DSI_CTRL_ENABLE) {
1033 		dsi_write(msm_host, REG_DSI_CTRL, ctrl);
1034 		wmb();	/* make sure dsi controller enabled again */
1035 	}
1036 }
1037 
1038 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
1039 					bool video_mode, bool enable)
1040 {
1041 	u32 dsi_ctrl;
1042 
1043 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1044 
1045 	if (!enable) {
1046 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1047 				DSI_CTRL_CMD_MODE_EN);
1048 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1049 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1050 	} else {
1051 		if (video_mode) {
1052 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1053 		} else {		/* command mode */
1054 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1055 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1056 		}
1057 		dsi_ctrl |= DSI_CTRL_ENABLE;
1058 	}
1059 
1060 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1061 }
1062 
1063 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1064 {
1065 	u32 data;
1066 
1067 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1068 
1069 	if (mode == 0)
1070 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1071 	else
1072 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1073 
1074 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1075 }
1076 
1077 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1078 {
1079 	u32 ret = 0;
1080 	struct device *dev = &msm_host->pdev->dev;
1081 
1082 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1083 
1084 	reinit_completion(&msm_host->video_comp);
1085 
1086 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1087 			msecs_to_jiffies(70));
1088 
1089 	if (ret == 0)
1090 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1091 
1092 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1093 }
1094 
1095 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1096 {
1097 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1098 		return;
1099 
1100 	if (msm_host->power_on && msm_host->enabled) {
1101 		dsi_wait4video_done(msm_host);
1102 		/* delay 4 ms to skip BLLP */
1103 		usleep_range(2000, 4000);
1104 	}
1105 }
1106 
1107 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1108 {
1109 	struct drm_device *dev = msm_host->dev;
1110 	struct msm_drm_private *priv = dev->dev_private;
1111 	uint64_t iova;
1112 	u8 *data;
1113 
1114 	data = msm_gem_kernel_new(dev, size, MSM_BO_WC,
1115 					priv->kms->aspace,
1116 					&msm_host->tx_gem_obj, &iova);
1117 
1118 	if (IS_ERR(data)) {
1119 		msm_host->tx_gem_obj = NULL;
1120 		return PTR_ERR(data);
1121 	}
1122 
1123 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1124 
1125 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1126 
1127 	return 0;
1128 }
1129 
1130 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1131 {
1132 	struct drm_device *dev = msm_host->dev;
1133 
1134 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1135 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1136 	if (!msm_host->tx_buf)
1137 		return -ENOMEM;
1138 
1139 	msm_host->tx_size = size;
1140 
1141 	return 0;
1142 }
1143 
1144 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1145 {
1146 	struct drm_device *dev = msm_host->dev;
1147 	struct msm_drm_private *priv;
1148 
1149 	/*
1150 	 * This is possible if we're tearing down before we've had a chance to
1151 	 * fully initialize. A very real possibility if our probe is deferred,
1152 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1153 	 * through the dsi_tx_buf_alloc().
1154 	 */
1155 	if (!dev)
1156 		return;
1157 
1158 	priv = dev->dev_private;
1159 	if (msm_host->tx_gem_obj) {
1160 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1161 		drm_gem_object_put(msm_host->tx_gem_obj);
1162 		msm_host->tx_gem_obj = NULL;
1163 	}
1164 
1165 	if (msm_host->tx_buf)
1166 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1167 			msm_host->tx_buf_paddr);
1168 }
1169 
1170 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1171 {
1172 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1173 }
1174 
1175 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1176 {
1177 	return msm_host->tx_buf;
1178 }
1179 
1180 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1181 {
1182 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1183 }
1184 
1185 /*
1186  * prepare cmd buffer to be txed
1187  */
1188 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1189 			   const struct mipi_dsi_msg *msg)
1190 {
1191 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1192 	struct mipi_dsi_packet packet;
1193 	int len;
1194 	int ret;
1195 	u8 *data;
1196 
1197 	ret = mipi_dsi_create_packet(&packet, msg);
1198 	if (ret) {
1199 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1200 		return ret;
1201 	}
1202 	len = (packet.size + 3) & (~0x3);
1203 
1204 	if (len > msm_host->tx_size) {
1205 		pr_err("%s: packet size is too big\n", __func__);
1206 		return -EINVAL;
1207 	}
1208 
1209 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1210 	if (IS_ERR(data)) {
1211 		ret = PTR_ERR(data);
1212 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1213 		return ret;
1214 	}
1215 
1216 	/* MSM specific command format in memory */
1217 	data[0] = packet.header[1];
1218 	data[1] = packet.header[2];
1219 	data[2] = packet.header[0];
1220 	data[3] = BIT(7); /* Last packet */
1221 	if (mipi_dsi_packet_format_is_long(msg->type))
1222 		data[3] |= BIT(6);
1223 	if (msg->rx_buf && msg->rx_len)
1224 		data[3] |= BIT(5);
1225 
1226 	/* Long packet */
1227 	if (packet.payload && packet.payload_length)
1228 		memcpy(data + 4, packet.payload, packet.payload_length);
1229 
1230 	/* Append 0xff to the end */
1231 	if (packet.size < len)
1232 		memset(data + packet.size, 0xff, len - packet.size);
1233 
1234 	if (cfg_hnd->ops->tx_buf_put)
1235 		cfg_hnd->ops->tx_buf_put(msm_host);
1236 
1237 	return len;
1238 }
1239 
1240 /*
1241  * dsi_short_read1_resp: 1 parameter
1242  */
1243 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1244 {
1245 	u8 *data = msg->rx_buf;
1246 	if (data && (msg->rx_len >= 1)) {
1247 		*data = buf[1]; /* strip out dcs type */
1248 		return 1;
1249 	} else {
1250 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1251 			__func__, msg->rx_len);
1252 		return -EINVAL;
1253 	}
1254 }
1255 
1256 /*
1257  * dsi_short_read2_resp: 2 parameter
1258  */
1259 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1260 {
1261 	u8 *data = msg->rx_buf;
1262 	if (data && (msg->rx_len >= 2)) {
1263 		data[0] = buf[1]; /* strip out dcs type */
1264 		data[1] = buf[2];
1265 		return 2;
1266 	} else {
1267 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1268 			__func__, msg->rx_len);
1269 		return -EINVAL;
1270 	}
1271 }
1272 
1273 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1274 {
1275 	/* strip out 4 byte dcs header */
1276 	if (msg->rx_buf && msg->rx_len)
1277 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1278 
1279 	return msg->rx_len;
1280 }
1281 
1282 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1283 {
1284 	struct drm_device *dev = msm_host->dev;
1285 	struct msm_drm_private *priv = dev->dev_private;
1286 
1287 	if (!dma_base)
1288 		return -EINVAL;
1289 
1290 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1291 				priv->kms->aspace, dma_base);
1292 }
1293 
1294 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1295 {
1296 	if (!dma_base)
1297 		return -EINVAL;
1298 
1299 	*dma_base = msm_host->tx_buf_paddr;
1300 	return 0;
1301 }
1302 
1303 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1304 {
1305 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1306 	int ret;
1307 	uint64_t dma_base;
1308 	bool triggered;
1309 
1310 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1311 	if (ret) {
1312 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1313 		return ret;
1314 	}
1315 
1316 	reinit_completion(&msm_host->dma_comp);
1317 
1318 	dsi_wait4video_eng_busy(msm_host);
1319 
1320 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1321 						msm_host->id, dma_base, len);
1322 	if (triggered) {
1323 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1324 					msecs_to_jiffies(200));
1325 		DBG("ret=%d", ret);
1326 		if (ret == 0)
1327 			ret = -ETIMEDOUT;
1328 		else
1329 			ret = len;
1330 	} else
1331 		ret = len;
1332 
1333 	return ret;
1334 }
1335 
1336 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1337 			u8 *buf, int rx_byte, int pkt_size)
1338 {
1339 	u32 *temp, data;
1340 	int i, j = 0, cnt;
1341 	u32 read_cnt;
1342 	u8 reg[16];
1343 	int repeated_bytes = 0;
1344 	int buf_offset = buf - msm_host->rx_buf;
1345 
1346 	temp = (u32 *)reg;
1347 	cnt = (rx_byte + 3) >> 2;
1348 	if (cnt > 4)
1349 		cnt = 4; /* 4 x 32 bits registers only */
1350 
1351 	if (rx_byte == 4)
1352 		read_cnt = 4;
1353 	else
1354 		read_cnt = pkt_size + 6;
1355 
1356 	/*
1357 	 * In case of multiple reads from the panel, after the first read, there
1358 	 * is possibility that there are some bytes in the payload repeating in
1359 	 * the RDBK_DATA registers. Since we read all the parameters from the
1360 	 * panel right from the first byte for every pass. We need to skip the
1361 	 * repeating bytes and then append the new parameters to the rx buffer.
1362 	 */
1363 	if (read_cnt > 16) {
1364 		int bytes_shifted;
1365 		/* Any data more than 16 bytes will be shifted out.
1366 		 * The temp read buffer should already contain these bytes.
1367 		 * The remaining bytes in read buffer are the repeated bytes.
1368 		 */
1369 		bytes_shifted = read_cnt - 16;
1370 		repeated_bytes = buf_offset - bytes_shifted;
1371 	}
1372 
1373 	for (i = cnt - 1; i >= 0; i--) {
1374 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1375 		*temp++ = ntohl(data); /* to host byte order */
1376 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1377 	}
1378 
1379 	for (i = repeated_bytes; i < 16; i++)
1380 		buf[j++] = reg[i];
1381 
1382 	return j;
1383 }
1384 
1385 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1386 				const struct mipi_dsi_msg *msg)
1387 {
1388 	int len, ret;
1389 	int bllp_len = msm_host->mode->hdisplay *
1390 			dsi_get_bpp(msm_host->format) / 8;
1391 
1392 	len = dsi_cmd_dma_add(msm_host, msg);
1393 	if (len < 0) {
1394 		pr_err("%s: failed to add cmd type = 0x%x\n",
1395 			__func__,  msg->type);
1396 		return len;
1397 	}
1398 
1399 	/* for video mode, do not send cmds more than
1400 	* one pixel line, since it only transmit it
1401 	* during BLLP.
1402 	*/
1403 	/* TODO: if the command is sent in LP mode, the bit rate is only
1404 	 * half of esc clk rate. In this case, if the video is already
1405 	 * actively streaming, we need to check more carefully if the
1406 	 * command can be fit into one BLLP.
1407 	 */
1408 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1409 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1410 			__func__, len);
1411 		return -EINVAL;
1412 	}
1413 
1414 	ret = dsi_cmd_dma_tx(msm_host, len);
1415 	if (ret < 0) {
1416 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d, ret=%d\n",
1417 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len, ret);
1418 		return ret;
1419 	} else if (ret < len) {
1420 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, ret=%d len=%d\n",
1421 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), ret, len);
1422 		return -EIO;
1423 	}
1424 
1425 	return len;
1426 }
1427 
1428 static void dsi_err_worker(struct work_struct *work)
1429 {
1430 	struct msm_dsi_host *msm_host =
1431 		container_of(work, struct msm_dsi_host, err_work);
1432 	u32 status = msm_host->err_work_state;
1433 
1434 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1435 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1436 		dsi_sw_reset(msm_host);
1437 
1438 	/* It is safe to clear here because error irq is disabled. */
1439 	msm_host->err_work_state = 0;
1440 
1441 	/* enable dsi error interrupt */
1442 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1443 }
1444 
1445 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1446 {
1447 	u32 status;
1448 
1449 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1450 
1451 	if (status) {
1452 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1453 		/* Writing of an extra 0 needed to clear error bits */
1454 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1455 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1456 	}
1457 }
1458 
1459 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1460 {
1461 	u32 status;
1462 
1463 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1464 
1465 	if (status) {
1466 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1467 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1468 	}
1469 }
1470 
1471 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1472 {
1473 	u32 status;
1474 
1475 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1476 
1477 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1478 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1479 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1480 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1481 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1482 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1483 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1484 	}
1485 }
1486 
1487 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1488 {
1489 	u32 status;
1490 
1491 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1492 
1493 	/* fifo underflow, overflow */
1494 	if (status) {
1495 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1496 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1497 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1498 			msm_host->err_work_state |=
1499 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1500 	}
1501 }
1502 
1503 static void dsi_status(struct msm_dsi_host *msm_host)
1504 {
1505 	u32 status;
1506 
1507 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1508 
1509 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1510 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1511 		msm_host->err_work_state |=
1512 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1513 	}
1514 }
1515 
1516 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1517 {
1518 	u32 status;
1519 
1520 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1521 
1522 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1523 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1524 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1525 	}
1526 }
1527 
1528 static void dsi_error(struct msm_dsi_host *msm_host)
1529 {
1530 	/* disable dsi error interrupt */
1531 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1532 
1533 	dsi_clk_status(msm_host);
1534 	dsi_fifo_status(msm_host);
1535 	dsi_ack_err_status(msm_host);
1536 	dsi_timeout_status(msm_host);
1537 	dsi_status(msm_host);
1538 	dsi_dln0_phy_err(msm_host);
1539 
1540 	queue_work(msm_host->workqueue, &msm_host->err_work);
1541 }
1542 
1543 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1544 {
1545 	struct msm_dsi_host *msm_host = ptr;
1546 	u32 isr;
1547 	unsigned long flags;
1548 
1549 	if (!msm_host->ctrl_base)
1550 		return IRQ_HANDLED;
1551 
1552 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1553 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1554 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1555 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1556 
1557 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1558 
1559 	if (isr & DSI_IRQ_ERROR)
1560 		dsi_error(msm_host);
1561 
1562 	if (isr & DSI_IRQ_VIDEO_DONE)
1563 		complete(&msm_host->video_comp);
1564 
1565 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1566 		complete(&msm_host->dma_comp);
1567 
1568 	return IRQ_HANDLED;
1569 }
1570 
1571 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1572 			struct device *panel_device)
1573 {
1574 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1575 							 "disp-enable",
1576 							 GPIOD_OUT_LOW);
1577 	if (IS_ERR(msm_host->disp_en_gpio)) {
1578 		DBG("cannot get disp-enable-gpios %ld",
1579 				PTR_ERR(msm_host->disp_en_gpio));
1580 		return PTR_ERR(msm_host->disp_en_gpio);
1581 	}
1582 
1583 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1584 								GPIOD_IN);
1585 	if (IS_ERR(msm_host->te_gpio)) {
1586 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1587 		return PTR_ERR(msm_host->te_gpio);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static int dsi_host_attach(struct mipi_dsi_host *host,
1594 					struct mipi_dsi_device *dsi)
1595 {
1596 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1597 	int ret;
1598 
1599 	if (dsi->lanes > msm_host->num_data_lanes)
1600 		return -EINVAL;
1601 
1602 	msm_host->channel = dsi->channel;
1603 	msm_host->lanes = dsi->lanes;
1604 	msm_host->format = dsi->format;
1605 	msm_host->mode_flags = dsi->mode_flags;
1606 	if (dsi->dsc)
1607 		msm_host->dsc = dsi->dsc;
1608 
1609 	/* Some gpios defined in panel DT need to be controlled by host */
1610 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1611 	if (ret)
1612 		return ret;
1613 
1614 	ret = dsi_dev_attach(msm_host->pdev);
1615 	if (ret)
1616 		return ret;
1617 
1618 	DBG("id=%d", msm_host->id);
1619 
1620 	return 0;
1621 }
1622 
1623 static int dsi_host_detach(struct mipi_dsi_host *host,
1624 					struct mipi_dsi_device *dsi)
1625 {
1626 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1627 
1628 	dsi_dev_detach(msm_host->pdev);
1629 
1630 	DBG("id=%d", msm_host->id);
1631 
1632 	return 0;
1633 }
1634 
1635 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1636 					const struct mipi_dsi_msg *msg)
1637 {
1638 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1639 	int ret;
1640 
1641 	if (!msg || !msm_host->power_on)
1642 		return -EINVAL;
1643 
1644 	mutex_lock(&msm_host->cmd_mutex);
1645 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1646 	mutex_unlock(&msm_host->cmd_mutex);
1647 
1648 	return ret;
1649 }
1650 
1651 static const struct mipi_dsi_host_ops dsi_host_ops = {
1652 	.attach = dsi_host_attach,
1653 	.detach = dsi_host_detach,
1654 	.transfer = dsi_host_transfer,
1655 };
1656 
1657 /*
1658  * List of supported physical to logical lane mappings.
1659  * For example, the 2nd entry represents the following mapping:
1660  *
1661  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1662  */
1663 static const int supported_data_lane_swaps[][4] = {
1664 	{ 0, 1, 2, 3 },
1665 	{ 3, 0, 1, 2 },
1666 	{ 2, 3, 0, 1 },
1667 	{ 1, 2, 3, 0 },
1668 	{ 0, 3, 2, 1 },
1669 	{ 1, 0, 3, 2 },
1670 	{ 2, 1, 0, 3 },
1671 	{ 3, 2, 1, 0 },
1672 };
1673 
1674 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1675 				    struct device_node *ep)
1676 {
1677 	struct device *dev = &msm_host->pdev->dev;
1678 	struct property *prop;
1679 	u32 lane_map[4];
1680 	int ret, i, len, num_lanes;
1681 
1682 	prop = of_find_property(ep, "data-lanes", &len);
1683 	if (!prop) {
1684 		DRM_DEV_DEBUG(dev,
1685 			"failed to find data lane mapping, using default\n");
1686 		/* Set the number of date lanes to 4 by default. */
1687 		msm_host->num_data_lanes = 4;
1688 		return 0;
1689 	}
1690 
1691 	num_lanes = drm_of_get_data_lanes_count(ep, 1, 4);
1692 	if (num_lanes < 0) {
1693 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1694 		return num_lanes;
1695 	}
1696 
1697 	msm_host->num_data_lanes = num_lanes;
1698 
1699 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1700 					 num_lanes);
1701 	if (ret) {
1702 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1703 		return ret;
1704 	}
1705 
1706 	/*
1707 	 * compare DT specified physical-logical lane mappings with the ones
1708 	 * supported by hardware
1709 	 */
1710 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1711 		const int *swap = supported_data_lane_swaps[i];
1712 		int j;
1713 
1714 		/*
1715 		 * the data-lanes array we get from DT has a logical->physical
1716 		 * mapping. The "data lane swap" register field represents
1717 		 * supported configurations in a physical->logical mapping.
1718 		 * Translate the DT mapping to what we understand and find a
1719 		 * configuration that works.
1720 		 */
1721 		for (j = 0; j < num_lanes; j++) {
1722 			if (lane_map[j] < 0 || lane_map[j] > 3)
1723 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1724 					lane_map[j]);
1725 
1726 			if (swap[lane_map[j]] != j)
1727 				break;
1728 		}
1729 
1730 		if (j == num_lanes) {
1731 			msm_host->dlane_swap = i;
1732 			return 0;
1733 		}
1734 	}
1735 
1736 	return -EINVAL;
1737 }
1738 
1739 static u32 dsi_dsc_rc_buf_thresh[DSC_NUM_BUF_RANGES - 1] = {
1740 	0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62,
1741 	0x69, 0x70, 0x77, 0x79, 0x7b, 0x7d, 0x7e
1742 };
1743 
1744 /* only 8bpc, 8bpp added */
1745 static char min_qp[DSC_NUM_BUF_RANGES] = {
1746 	0, 0, 1, 1, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 13
1747 };
1748 
1749 static char max_qp[DSC_NUM_BUF_RANGES] = {
1750 	4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13, 15
1751 };
1752 
1753 static char bpg_offset[DSC_NUM_BUF_RANGES] = {
1754 	2, 0, 0, -2, -4, -6, -8, -8, -8, -10, -10, -12, -12, -12, -12
1755 };
1756 
1757 static int dsi_populate_dsc_params(struct drm_dsc_config *dsc)
1758 {
1759 	int mux_words_size;
1760 	int groups_per_line, groups_total;
1761 	int min_rate_buffer_size;
1762 	int hrd_delay;
1763 	int pre_num_extra_mux_bits, num_extra_mux_bits;
1764 	int slice_bits;
1765 	int target_bpp_x16;
1766 	int data;
1767 	int final_value, final_scale;
1768 	int i;
1769 
1770 	dsc->rc_model_size = 8192;
1771 	dsc->first_line_bpg_offset = 12;
1772 	dsc->rc_edge_factor = 6;
1773 	dsc->rc_tgt_offset_high = 3;
1774 	dsc->rc_tgt_offset_low = 3;
1775 	dsc->simple_422 = 0;
1776 	dsc->convert_rgb = 1;
1777 	dsc->vbr_enable = 0;
1778 
1779 	/* handle only bpp = bpc = 8 */
1780 	for (i = 0; i < DSC_NUM_BUF_RANGES - 1 ; i++)
1781 		dsc->rc_buf_thresh[i] = dsi_dsc_rc_buf_thresh[i];
1782 
1783 	for (i = 0; i < DSC_NUM_BUF_RANGES; i++) {
1784 		dsc->rc_range_params[i].range_min_qp = min_qp[i];
1785 		dsc->rc_range_params[i].range_max_qp = max_qp[i];
1786 		dsc->rc_range_params[i].range_bpg_offset = bpg_offset[i];
1787 	}
1788 
1789 	dsc->initial_offset = 6144; /* Not bpp 12 */
1790 	if (dsc->bits_per_pixel != 8)
1791 		dsc->initial_offset = 2048;	/* bpp = 12 */
1792 
1793 	mux_words_size = 48;		/* bpc == 8/10 */
1794 	if (dsc->bits_per_component == 12)
1795 		mux_words_size = 64;
1796 
1797 	dsc->initial_xmit_delay = 512;
1798 	dsc->initial_scale_value = 32;
1799 	dsc->first_line_bpg_offset = 12;
1800 	dsc->line_buf_depth = dsc->bits_per_component + 1;
1801 
1802 	/* bpc 8 */
1803 	dsc->flatness_min_qp = 3;
1804 	dsc->flatness_max_qp = 12;
1805 	dsc->rc_quant_incr_limit0 = 11;
1806 	dsc->rc_quant_incr_limit1 = 11;
1807 	dsc->mux_word_size = DSC_MUX_WORD_SIZE_8_10_BPC;
1808 
1809 	/* FIXME: need to call drm_dsc_compute_rc_parameters() so that rest of
1810 	 * params are calculated
1811 	 */
1812 	groups_per_line = DIV_ROUND_UP(dsc->slice_width, 3);
1813 	dsc->slice_chunk_size = dsc->slice_width * dsc->bits_per_pixel / 8;
1814 	if ((dsc->slice_width * dsc->bits_per_pixel) % 8)
1815 		dsc->slice_chunk_size++;
1816 
1817 	/* rbs-min */
1818 	min_rate_buffer_size =  dsc->rc_model_size - dsc->initial_offset +
1819 				dsc->initial_xmit_delay * dsc->bits_per_pixel +
1820 				groups_per_line * dsc->first_line_bpg_offset;
1821 
1822 	hrd_delay = DIV_ROUND_UP(min_rate_buffer_size, dsc->bits_per_pixel);
1823 
1824 	dsc->initial_dec_delay = hrd_delay - dsc->initial_xmit_delay;
1825 
1826 	dsc->initial_scale_value = 8 * dsc->rc_model_size /
1827 				       (dsc->rc_model_size - dsc->initial_offset);
1828 
1829 	slice_bits = 8 * dsc->slice_chunk_size * dsc->slice_height;
1830 
1831 	groups_total = groups_per_line * dsc->slice_height;
1832 
1833 	data = dsc->first_line_bpg_offset * 2048;
1834 
1835 	dsc->nfl_bpg_offset = DIV_ROUND_UP(data, (dsc->slice_height - 1));
1836 
1837 	pre_num_extra_mux_bits = 3 * (mux_words_size + (4 * dsc->bits_per_component + 4) - 2);
1838 
1839 	num_extra_mux_bits = pre_num_extra_mux_bits - (mux_words_size -
1840 			     ((slice_bits - pre_num_extra_mux_bits) % mux_words_size));
1841 
1842 	data = 2048 * (dsc->rc_model_size - dsc->initial_offset + num_extra_mux_bits);
1843 	dsc->slice_bpg_offset = DIV_ROUND_UP(data, groups_total);
1844 
1845 	/* bpp * 16 + 0.5 */
1846 	data = dsc->bits_per_pixel * 16;
1847 	data *= 2;
1848 	data++;
1849 	data /= 2;
1850 	target_bpp_x16 = data;
1851 
1852 	data = (dsc->initial_xmit_delay * target_bpp_x16) / 16;
1853 	final_value =  dsc->rc_model_size - data + num_extra_mux_bits;
1854 	dsc->final_offset = final_value;
1855 
1856 	final_scale = 8 * dsc->rc_model_size / (dsc->rc_model_size - final_value);
1857 
1858 	data = (final_scale - 9) * (dsc->nfl_bpg_offset + dsc->slice_bpg_offset);
1859 	dsc->scale_increment_interval = (2048 * dsc->final_offset) / data;
1860 
1861 	dsc->scale_decrement_interval = groups_per_line / (dsc->initial_scale_value - 8);
1862 
1863 	return 0;
1864 }
1865 
1866 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1867 {
1868 	struct device *dev = &msm_host->pdev->dev;
1869 	struct device_node *np = dev->of_node;
1870 	struct device_node *endpoint;
1871 	int ret = 0;
1872 
1873 	/*
1874 	 * Get the endpoint of the output port of the DSI host. In our case,
1875 	 * this is mapped to port number with reg = 1. Don't return an error if
1876 	 * the remote endpoint isn't defined. It's possible that there is
1877 	 * nothing connected to the dsi output.
1878 	 */
1879 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1880 	if (!endpoint) {
1881 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1882 		return 0;
1883 	}
1884 
1885 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1886 	if (ret) {
1887 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1888 			__func__, ret);
1889 		ret = -EINVAL;
1890 		goto err;
1891 	}
1892 
1893 	if (of_property_read_bool(np, "syscon-sfpb")) {
1894 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1895 					"syscon-sfpb");
1896 		if (IS_ERR(msm_host->sfpb)) {
1897 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1898 				__func__);
1899 			ret = PTR_ERR(msm_host->sfpb);
1900 		}
1901 	}
1902 
1903 err:
1904 	of_node_put(endpoint);
1905 
1906 	return ret;
1907 }
1908 
1909 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1910 {
1911 	struct platform_device *pdev = msm_host->pdev;
1912 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1913 	struct resource *res;
1914 	int i;
1915 
1916 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1917 	if (!res)
1918 		return -EINVAL;
1919 
1920 	for (i = 0; i < cfg->num_dsi; i++) {
1921 		if (cfg->io_start[i] == res->start)
1922 			return i;
1923 	}
1924 
1925 	return -EINVAL;
1926 }
1927 
1928 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1929 {
1930 	struct msm_dsi_host *msm_host = NULL;
1931 	struct platform_device *pdev = msm_dsi->pdev;
1932 	const struct msm_dsi_config *cfg;
1933 	int ret;
1934 
1935 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1936 	if (!msm_host) {
1937 		ret = -ENOMEM;
1938 		goto fail;
1939 	}
1940 
1941 	msm_host->pdev = pdev;
1942 	msm_dsi->host = &msm_host->base;
1943 
1944 	ret = dsi_host_parse_dt(msm_host);
1945 	if (ret) {
1946 		pr_err("%s: failed to parse dt\n", __func__);
1947 		goto fail;
1948 	}
1949 
1950 	msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size);
1951 	if (IS_ERR(msm_host->ctrl_base)) {
1952 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1953 		ret = PTR_ERR(msm_host->ctrl_base);
1954 		goto fail;
1955 	}
1956 
1957 	pm_runtime_enable(&pdev->dev);
1958 
1959 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1960 	if (!msm_host->cfg_hnd) {
1961 		ret = -EINVAL;
1962 		pr_err("%s: get config failed\n", __func__);
1963 		goto fail;
1964 	}
1965 	cfg = msm_host->cfg_hnd->cfg;
1966 
1967 	msm_host->id = dsi_host_get_id(msm_host);
1968 	if (msm_host->id < 0) {
1969 		ret = msm_host->id;
1970 		pr_err("%s: unable to identify DSI host index\n", __func__);
1971 		goto fail;
1972 	}
1973 
1974 	/* fixup base address by io offset */
1975 	msm_host->ctrl_base += cfg->io_offset;
1976 
1977 	ret = devm_regulator_bulk_get_const(&pdev->dev, cfg->num_regulators,
1978 					    cfg->regulator_data,
1979 					    &msm_host->supplies);
1980 	if (ret)
1981 		goto fail;
1982 
1983 	ret = dsi_clk_init(msm_host);
1984 	if (ret) {
1985 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1986 		goto fail;
1987 	}
1988 
1989 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1990 	if (!msm_host->rx_buf) {
1991 		ret = -ENOMEM;
1992 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1993 		goto fail;
1994 	}
1995 
1996 	ret = devm_pm_opp_set_clkname(&pdev->dev, "byte");
1997 	if (ret)
1998 		return ret;
1999 	/* OPP table is optional */
2000 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2001 	if (ret && ret != -ENODEV) {
2002 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
2003 		return ret;
2004 	}
2005 
2006 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2007 	if (msm_host->irq < 0) {
2008 		ret = msm_host->irq;
2009 		dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
2010 		return ret;
2011 	}
2012 
2013 	/* do not autoenable, will be enabled later */
2014 	ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq,
2015 			IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
2016 			"dsi_isr", msm_host);
2017 	if (ret < 0) {
2018 		dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
2019 				msm_host->irq, ret);
2020 		return ret;
2021 	}
2022 
2023 	init_completion(&msm_host->dma_comp);
2024 	init_completion(&msm_host->video_comp);
2025 	mutex_init(&msm_host->dev_mutex);
2026 	mutex_init(&msm_host->cmd_mutex);
2027 	spin_lock_init(&msm_host->intr_lock);
2028 
2029 	/* setup workqueue */
2030 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
2031 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
2032 
2033 	msm_dsi->id = msm_host->id;
2034 
2035 	DBG("Dsi Host %d initialized", msm_host->id);
2036 	return 0;
2037 
2038 fail:
2039 	return ret;
2040 }
2041 
2042 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
2043 {
2044 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2045 
2046 	DBG("");
2047 	dsi_tx_buf_free(msm_host);
2048 	if (msm_host->workqueue) {
2049 		destroy_workqueue(msm_host->workqueue);
2050 		msm_host->workqueue = NULL;
2051 	}
2052 
2053 	mutex_destroy(&msm_host->cmd_mutex);
2054 	mutex_destroy(&msm_host->dev_mutex);
2055 
2056 	pm_runtime_disable(&msm_host->pdev->dev);
2057 }
2058 
2059 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
2060 					struct drm_device *dev)
2061 {
2062 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2063 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2064 	int ret;
2065 
2066 	msm_host->dev = dev;
2067 
2068 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
2069 	if (ret) {
2070 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
2071 		return ret;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 int msm_dsi_host_register(struct mipi_dsi_host *host)
2078 {
2079 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2080 	int ret;
2081 
2082 	/* Register mipi dsi host */
2083 	if (!msm_host->registered) {
2084 		host->dev = &msm_host->pdev->dev;
2085 		host->ops = &dsi_host_ops;
2086 		ret = mipi_dsi_host_register(host);
2087 		if (ret)
2088 			return ret;
2089 
2090 		msm_host->registered = true;
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
2097 {
2098 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2099 
2100 	if (msm_host->registered) {
2101 		mipi_dsi_host_unregister(host);
2102 		host->dev = NULL;
2103 		host->ops = NULL;
2104 		msm_host->registered = false;
2105 	}
2106 }
2107 
2108 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
2109 				const struct mipi_dsi_msg *msg)
2110 {
2111 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2112 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2113 
2114 	/* TODO: make sure dsi_cmd_mdp is idle.
2115 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
2116 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
2117 	 * How to handle the old versions? Wait for mdp cmd done?
2118 	 */
2119 
2120 	/*
2121 	 * mdss interrupt is generated in mdp core clock domain
2122 	 * mdp clock need to be enabled to receive dsi interrupt
2123 	 */
2124 	pm_runtime_get_sync(&msm_host->pdev->dev);
2125 	cfg_hnd->ops->link_clk_set_rate(msm_host);
2126 	cfg_hnd->ops->link_clk_enable(msm_host);
2127 
2128 	/* TODO: vote for bus bandwidth */
2129 
2130 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2131 		dsi_set_tx_power_mode(0, msm_host);
2132 
2133 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2134 	dsi_write(msm_host, REG_DSI_CTRL,
2135 		msm_host->dma_cmd_ctrl_restore |
2136 		DSI_CTRL_CMD_MODE_EN |
2137 		DSI_CTRL_ENABLE);
2138 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2139 
2140 	return 0;
2141 }
2142 
2143 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2144 				const struct mipi_dsi_msg *msg)
2145 {
2146 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2147 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2148 
2149 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2150 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2151 
2152 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2153 		dsi_set_tx_power_mode(1, msm_host);
2154 
2155 	/* TODO: unvote for bus bandwidth */
2156 
2157 	cfg_hnd->ops->link_clk_disable(msm_host);
2158 	pm_runtime_put(&msm_host->pdev->dev);
2159 }
2160 
2161 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2162 				const struct mipi_dsi_msg *msg)
2163 {
2164 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2165 
2166 	return dsi_cmds2buf_tx(msm_host, msg);
2167 }
2168 
2169 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2170 				const struct mipi_dsi_msg *msg)
2171 {
2172 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2173 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2174 	int data_byte, rx_byte, dlen, end;
2175 	int short_response, diff, pkt_size, ret = 0;
2176 	char cmd;
2177 	int rlen = msg->rx_len;
2178 	u8 *buf;
2179 
2180 	if (rlen <= 2) {
2181 		short_response = 1;
2182 		pkt_size = rlen;
2183 		rx_byte = 4;
2184 	} else {
2185 		short_response = 0;
2186 		data_byte = 10;	/* first read */
2187 		if (rlen < data_byte)
2188 			pkt_size = rlen;
2189 		else
2190 			pkt_size = data_byte;
2191 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2192 	}
2193 
2194 	buf = msm_host->rx_buf;
2195 	end = 0;
2196 	while (!end) {
2197 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2198 		struct mipi_dsi_msg max_pkt_size_msg = {
2199 			.channel = msg->channel,
2200 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2201 			.tx_len = 2,
2202 			.tx_buf = tx,
2203 		};
2204 
2205 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2206 			rlen, pkt_size, rx_byte);
2207 
2208 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2209 		if (ret < 2) {
2210 			pr_err("%s: Set max pkt size failed, %d\n",
2211 				__func__, ret);
2212 			return -EINVAL;
2213 		}
2214 
2215 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2216 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2217 			/* Clear the RDBK_DATA registers */
2218 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2219 					DSI_RDBK_DATA_CTRL_CLR);
2220 			wmb(); /* make sure the RDBK registers are cleared */
2221 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2222 			wmb(); /* release cleared status before transfer */
2223 		}
2224 
2225 		ret = dsi_cmds2buf_tx(msm_host, msg);
2226 		if (ret < 0) {
2227 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2228 			return ret;
2229 		} else if (ret < msg->tx_len) {
2230 			pr_err("%s: Read cmd Tx failed, too short: %d\n", __func__, ret);
2231 			return -ECOMM;
2232 		}
2233 
2234 		/*
2235 		 * once cmd_dma_done interrupt received,
2236 		 * return data from client is ready and stored
2237 		 * at RDBK_DATA register already
2238 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2239 		 * after that dcs header lost during shift into registers
2240 		 */
2241 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2242 
2243 		if (dlen <= 0)
2244 			return 0;
2245 
2246 		if (short_response)
2247 			break;
2248 
2249 		if (rlen <= data_byte) {
2250 			diff = data_byte - rlen;
2251 			end = 1;
2252 		} else {
2253 			diff = 0;
2254 			rlen -= data_byte;
2255 		}
2256 
2257 		if (!end) {
2258 			dlen -= 2; /* 2 crc */
2259 			dlen -= diff;
2260 			buf += dlen;	/* next start position */
2261 			data_byte = 14;	/* NOT first read */
2262 			if (rlen < data_byte)
2263 				pkt_size += rlen;
2264 			else
2265 				pkt_size += data_byte;
2266 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * For single Long read, if the requested rlen < 10,
2272 	 * we need to shift the start position of rx
2273 	 * data buffer to skip the bytes which are not
2274 	 * updated.
2275 	 */
2276 	if (pkt_size < 10 && !short_response)
2277 		buf = msm_host->rx_buf + (10 - rlen);
2278 	else
2279 		buf = msm_host->rx_buf;
2280 
2281 	cmd = buf[0];
2282 	switch (cmd) {
2283 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2284 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2285 		ret = 0;
2286 		break;
2287 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2288 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2289 		ret = dsi_short_read1_resp(buf, msg);
2290 		break;
2291 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2292 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2293 		ret = dsi_short_read2_resp(buf, msg);
2294 		break;
2295 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2296 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2297 		ret = dsi_long_read_resp(buf, msg);
2298 		break;
2299 	default:
2300 		pr_warn("%s:Invalid response cmd\n", __func__);
2301 		ret = 0;
2302 	}
2303 
2304 	return ret;
2305 }
2306 
2307 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2308 				  u32 len)
2309 {
2310 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2311 
2312 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2313 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2314 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2315 
2316 	/* Make sure trigger happens */
2317 	wmb();
2318 }
2319 
2320 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host,
2321 	struct msm_dsi_phy *src_phy)
2322 {
2323 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2324 
2325 	msm_host->cphy_mode = src_phy->cphy_mode;
2326 }
2327 
2328 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2329 {
2330 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2331 
2332 	DBG("");
2333 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2334 	/* Make sure fully reset */
2335 	wmb();
2336 	udelay(1000);
2337 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2338 	udelay(100);
2339 }
2340 
2341 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2342 			struct msm_dsi_phy_clk_request *clk_req,
2343 			bool is_bonded_dsi)
2344 {
2345 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2346 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2347 	int ret;
2348 
2349 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi);
2350 	if (ret) {
2351 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2352 		return;
2353 	}
2354 
2355 	/* CPHY transmits 16 bits over 7 clock cycles
2356 	 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk),
2357 	 * so multiply by 7 to get the "bitclk rate"
2358 	 */
2359 	if (msm_host->cphy_mode)
2360 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 7;
2361 	else
2362 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2363 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2364 }
2365 
2366 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host)
2367 {
2368 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2369 
2370 	enable_irq(msm_host->irq);
2371 }
2372 
2373 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host)
2374 {
2375 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2376 
2377 	disable_irq(msm_host->irq);
2378 }
2379 
2380 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2381 {
2382 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2383 
2384 	dsi_op_mode_config(msm_host,
2385 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2386 
2387 	/* TODO: clock should be turned off for command mode,
2388 	 * and only turned on before MDP START.
2389 	 * This part of code should be enabled once mdp driver support it.
2390 	 */
2391 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2392 	 *	dsi_link_clk_disable(msm_host);
2393 	 *	pm_runtime_put(&msm_host->pdev->dev);
2394 	 * }
2395 	 */
2396 	msm_host->enabled = true;
2397 	return 0;
2398 }
2399 
2400 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2401 {
2402 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2403 
2404 	msm_host->enabled = false;
2405 	dsi_op_mode_config(msm_host,
2406 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2407 
2408 	/* Since we have disabled INTF, the video engine won't stop so that
2409 	 * the cmd engine will be blocked.
2410 	 * Reset to disable video engine so that we can send off cmd.
2411 	 */
2412 	dsi_sw_reset(msm_host);
2413 
2414 	return 0;
2415 }
2416 
2417 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2418 {
2419 	enum sfpb_ahb_arb_master_port_en en;
2420 
2421 	if (!msm_host->sfpb)
2422 		return;
2423 
2424 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2425 
2426 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2427 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2428 			SFPB_GPREG_MASTER_PORT_EN(en));
2429 }
2430 
2431 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2432 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2433 			bool is_bonded_dsi, struct msm_dsi_phy *phy)
2434 {
2435 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2436 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2437 	int ret = 0;
2438 
2439 	mutex_lock(&msm_host->dev_mutex);
2440 	if (msm_host->power_on) {
2441 		DBG("dsi host already on");
2442 		goto unlock_ret;
2443 	}
2444 
2445 	msm_dsi_sfpb_config(msm_host, true);
2446 
2447 	ret = regulator_bulk_enable(msm_host->cfg_hnd->cfg->num_regulators,
2448 				    msm_host->supplies);
2449 	if (ret) {
2450 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2451 			__func__, ret);
2452 		goto unlock_ret;
2453 	}
2454 
2455 	pm_runtime_get_sync(&msm_host->pdev->dev);
2456 	ret = cfg_hnd->ops->link_clk_set_rate(msm_host);
2457 	if (!ret)
2458 		ret = cfg_hnd->ops->link_clk_enable(msm_host);
2459 	if (ret) {
2460 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2461 		       __func__, ret);
2462 		goto fail_disable_reg;
2463 	}
2464 
2465 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2466 	if (ret) {
2467 		pr_err("%s: failed to set pinctrl default state, %d\n",
2468 			__func__, ret);
2469 		goto fail_disable_clk;
2470 	}
2471 
2472 	dsi_timing_setup(msm_host, is_bonded_dsi);
2473 	dsi_sw_reset(msm_host);
2474 	dsi_ctrl_config(msm_host, true, phy_shared_timings, phy);
2475 
2476 	if (msm_host->disp_en_gpio)
2477 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2478 
2479 	msm_host->power_on = true;
2480 	mutex_unlock(&msm_host->dev_mutex);
2481 
2482 	return 0;
2483 
2484 fail_disable_clk:
2485 	cfg_hnd->ops->link_clk_disable(msm_host);
2486 	pm_runtime_put(&msm_host->pdev->dev);
2487 fail_disable_reg:
2488 	regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators,
2489 			       msm_host->supplies);
2490 unlock_ret:
2491 	mutex_unlock(&msm_host->dev_mutex);
2492 	return ret;
2493 }
2494 
2495 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2496 {
2497 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2498 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2499 
2500 	mutex_lock(&msm_host->dev_mutex);
2501 	if (!msm_host->power_on) {
2502 		DBG("dsi host already off");
2503 		goto unlock_ret;
2504 	}
2505 
2506 	dsi_ctrl_config(msm_host, false, NULL, NULL);
2507 
2508 	if (msm_host->disp_en_gpio)
2509 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2510 
2511 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2512 
2513 	cfg_hnd->ops->link_clk_disable(msm_host);
2514 	pm_runtime_put(&msm_host->pdev->dev);
2515 
2516 	regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators,
2517 			       msm_host->supplies);
2518 
2519 	msm_dsi_sfpb_config(msm_host, false);
2520 
2521 	DBG("-");
2522 
2523 	msm_host->power_on = false;
2524 
2525 unlock_ret:
2526 	mutex_unlock(&msm_host->dev_mutex);
2527 	return 0;
2528 }
2529 
2530 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2531 				  const struct drm_display_mode *mode)
2532 {
2533 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2534 
2535 	if (msm_host->mode) {
2536 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2537 		msm_host->mode = NULL;
2538 	}
2539 
2540 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2541 	if (!msm_host->mode) {
2542 		pr_err("%s: cannot duplicate mode\n", __func__);
2543 		return -ENOMEM;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 enum drm_mode_status msm_dsi_host_check_dsc(struct mipi_dsi_host *host,
2550 					    const struct drm_display_mode *mode)
2551 {
2552 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2553 	struct drm_dsc_config *dsc = msm_host->dsc;
2554 	int pic_width = mode->hdisplay;
2555 	int pic_height = mode->vdisplay;
2556 
2557 	if (!msm_host->dsc)
2558 		return MODE_OK;
2559 
2560 	if (pic_width % dsc->slice_width) {
2561 		pr_err("DSI: pic_width %d has to be multiple of slice %d\n",
2562 		       pic_width, dsc->slice_width);
2563 		return MODE_H_ILLEGAL;
2564 	}
2565 
2566 	if (pic_height % dsc->slice_height) {
2567 		pr_err("DSI: pic_height %d has to be multiple of slice %d\n",
2568 		       pic_height, dsc->slice_height);
2569 		return MODE_V_ILLEGAL;
2570 	}
2571 
2572 	return MODE_OK;
2573 }
2574 
2575 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2576 {
2577 	return to_msm_dsi_host(host)->mode_flags;
2578 }
2579 
2580 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host)
2581 {
2582 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2583 
2584 	pm_runtime_get_sync(&msm_host->pdev->dev);
2585 
2586 	msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size,
2587 			msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id);
2588 
2589 	pm_runtime_put_sync(&msm_host->pdev->dev);
2590 }
2591 
2592 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host)
2593 {
2594 	u32 reg;
2595 
2596 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2597 
2598 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff);
2599 	/* draw checkered rectangle pattern */
2600 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL,
2601 			DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN);
2602 	/* use 24-bit RGB test pttern */
2603 	dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG,
2604 			DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) |
2605 			DSI_TPG_VIDEO_CONFIG_RGB);
2606 
2607 	reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN);
2608 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2609 
2610 	DBG("Video test pattern setup done\n");
2611 }
2612 
2613 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host)
2614 {
2615 	u32 reg;
2616 
2617 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2618 
2619 	/* initial value for test pattern */
2620 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff);
2621 
2622 	reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN);
2623 
2624 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2625 	/* draw checkered rectangle pattern */
2626 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2,
2627 			DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN);
2628 
2629 	DBG("Cmd test pattern setup done\n");
2630 }
2631 
2632 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host)
2633 {
2634 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2635 	bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO);
2636 	u32 reg;
2637 
2638 	if (is_video_mode)
2639 		msm_dsi_host_video_test_pattern_setup(msm_host);
2640 	else
2641 		msm_dsi_host_cmd_test_pattern_setup(msm_host);
2642 
2643 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2644 	/* enable the test pattern generator */
2645 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN));
2646 
2647 	/* for command mode need to trigger one frame from tpg */
2648 	if (!is_video_mode)
2649 		dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER,
2650 				DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER);
2651 }
2652 
2653 struct drm_dsc_config *msm_dsi_host_get_dsc_config(struct mipi_dsi_host *host)
2654 {
2655 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2656 
2657 	return msm_host->dsc;
2658 }
2659