xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision da2ef666)
1 /*
2  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/gpio.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_device.h>
21 #include <linux/of_gpio.h>
22 #include <linux/of_irq.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/of_graph.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/spinlock.h>
27 #include <linux/mfd/syscon.h>
28 #include <linux/regmap.h>
29 #include <video/mipi_display.h>
30 
31 #include "dsi.h"
32 #include "dsi.xml.h"
33 #include "sfpb.xml.h"
34 #include "dsi_cfg.h"
35 #include "msm_kms.h"
36 
37 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
38 {
39 	u32 ver;
40 
41 	if (!major || !minor)
42 		return -EINVAL;
43 
44 	/*
45 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
46 	 * makes all other registers 4-byte shifted down.
47 	 *
48 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
49 	 * older, we read the DSI_VERSION register without any shift(offset
50 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
51 	 * the case of DSI6G, this has to be zero (the offset points to a
52 	 * scratch register which we never touch)
53 	 */
54 
55 	ver = msm_readl(base + REG_DSI_VERSION);
56 	if (ver) {
57 		/* older dsi host, there is no register shift */
58 		ver = FIELD(ver, DSI_VERSION_MAJOR);
59 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
60 			/* old versions */
61 			*major = ver;
62 			*minor = 0;
63 			return 0;
64 		} else {
65 			return -EINVAL;
66 		}
67 	} else {
68 		/*
69 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
70 		 * registers are shifted down, read DSI_VERSION again with
71 		 * the shifted offset
72 		 */
73 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
74 		ver = FIELD(ver, DSI_VERSION_MAJOR);
75 		if (ver == MSM_DSI_VER_MAJOR_6G) {
76 			/* 6G version */
77 			*major = ver;
78 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
79 			return 0;
80 		} else {
81 			return -EINVAL;
82 		}
83 	}
84 }
85 
86 #define DSI_ERR_STATE_ACK			0x0000
87 #define DSI_ERR_STATE_TIMEOUT			0x0001
88 #define DSI_ERR_STATE_DLN0_PHY			0x0002
89 #define DSI_ERR_STATE_FIFO			0x0004
90 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
91 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
92 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
93 
94 #define DSI_CLK_CTRL_ENABLE_CLKS	\
95 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
96 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
97 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
98 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
99 
100 struct msm_dsi_host {
101 	struct mipi_dsi_host base;
102 
103 	struct platform_device *pdev;
104 	struct drm_device *dev;
105 
106 	int id;
107 
108 	void __iomem *ctrl_base;
109 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
110 
111 	struct clk *bus_clks[DSI_BUS_CLK_MAX];
112 
113 	struct clk *byte_clk;
114 	struct clk *esc_clk;
115 	struct clk *pixel_clk;
116 	struct clk *byte_clk_src;
117 	struct clk *pixel_clk_src;
118 	struct clk *byte_intf_clk;
119 
120 	u32 byte_clk_rate;
121 	u32 pixel_clk_rate;
122 	u32 esc_clk_rate;
123 
124 	/* DSI v2 specific clocks */
125 	struct clk *src_clk;
126 	struct clk *esc_clk_src;
127 	struct clk *dsi_clk_src;
128 
129 	u32 src_clk_rate;
130 
131 	struct gpio_desc *disp_en_gpio;
132 	struct gpio_desc *te_gpio;
133 
134 	const struct msm_dsi_cfg_handler *cfg_hnd;
135 
136 	struct completion dma_comp;
137 	struct completion video_comp;
138 	struct mutex dev_mutex;
139 	struct mutex cmd_mutex;
140 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
141 
142 	u32 err_work_state;
143 	struct work_struct err_work;
144 	struct work_struct hpd_work;
145 	struct workqueue_struct *workqueue;
146 
147 	/* DSI 6G TX buffer*/
148 	struct drm_gem_object *tx_gem_obj;
149 
150 	/* DSI v2 TX buffer */
151 	void *tx_buf;
152 	dma_addr_t tx_buf_paddr;
153 
154 	int tx_size;
155 
156 	u8 *rx_buf;
157 
158 	struct regmap *sfpb;
159 
160 	struct drm_display_mode *mode;
161 
162 	/* connected device info */
163 	struct device_node *device_node;
164 	unsigned int channel;
165 	unsigned int lanes;
166 	enum mipi_dsi_pixel_format format;
167 	unsigned long mode_flags;
168 
169 	/* lane data parsed via DT */
170 	int dlane_swap;
171 	int num_data_lanes;
172 
173 	u32 dma_cmd_ctrl_restore;
174 
175 	bool registered;
176 	bool power_on;
177 	bool enabled;
178 	int irq;
179 };
180 
181 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
182 {
183 	switch (fmt) {
184 	case MIPI_DSI_FMT_RGB565:		return 16;
185 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
186 	case MIPI_DSI_FMT_RGB666:
187 	case MIPI_DSI_FMT_RGB888:
188 	default:				return 24;
189 	}
190 }
191 
192 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
193 {
194 	return msm_readl(msm_host->ctrl_base + reg);
195 }
196 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
197 {
198 	msm_writel(data, msm_host->ctrl_base + reg);
199 }
200 
201 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
202 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
203 
204 static const struct msm_dsi_cfg_handler *dsi_get_config(
205 						struct msm_dsi_host *msm_host)
206 {
207 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
208 	struct device *dev = &msm_host->pdev->dev;
209 	struct regulator *gdsc_reg;
210 	struct clk *ahb_clk;
211 	int ret;
212 	u32 major = 0, minor = 0;
213 
214 	gdsc_reg = regulator_get(dev, "gdsc");
215 	if (IS_ERR(gdsc_reg)) {
216 		pr_err("%s: cannot get gdsc\n", __func__);
217 		goto exit;
218 	}
219 
220 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
221 	if (IS_ERR(ahb_clk)) {
222 		pr_err("%s: cannot get interface clock\n", __func__);
223 		goto put_gdsc;
224 	}
225 
226 	pm_runtime_get_sync(dev);
227 
228 	ret = regulator_enable(gdsc_reg);
229 	if (ret) {
230 		pr_err("%s: unable to enable gdsc\n", __func__);
231 		goto put_gdsc;
232 	}
233 
234 	ret = clk_prepare_enable(ahb_clk);
235 	if (ret) {
236 		pr_err("%s: unable to enable ahb_clk\n", __func__);
237 		goto disable_gdsc;
238 	}
239 
240 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
241 	if (ret) {
242 		pr_err("%s: Invalid version\n", __func__);
243 		goto disable_clks;
244 	}
245 
246 	cfg_hnd = msm_dsi_cfg_get(major, minor);
247 
248 	DBG("%s: Version %x:%x\n", __func__, major, minor);
249 
250 disable_clks:
251 	clk_disable_unprepare(ahb_clk);
252 disable_gdsc:
253 	regulator_disable(gdsc_reg);
254 	pm_runtime_put_sync(dev);
255 put_gdsc:
256 	regulator_put(gdsc_reg);
257 exit:
258 	return cfg_hnd;
259 }
260 
261 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
262 {
263 	return container_of(host, struct msm_dsi_host, base);
264 }
265 
266 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
267 {
268 	struct regulator_bulk_data *s = msm_host->supplies;
269 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
270 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
271 	int i;
272 
273 	DBG("");
274 	for (i = num - 1; i >= 0; i--)
275 		if (regs[i].disable_load >= 0)
276 			regulator_set_load(s[i].consumer,
277 					   regs[i].disable_load);
278 
279 	regulator_bulk_disable(num, s);
280 }
281 
282 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
283 {
284 	struct regulator_bulk_data *s = msm_host->supplies;
285 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
286 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
287 	int ret, i;
288 
289 	DBG("");
290 	for (i = 0; i < num; i++) {
291 		if (regs[i].enable_load >= 0) {
292 			ret = regulator_set_load(s[i].consumer,
293 						 regs[i].enable_load);
294 			if (ret < 0) {
295 				pr_err("regulator %d set op mode failed, %d\n",
296 					i, ret);
297 				goto fail;
298 			}
299 		}
300 	}
301 
302 	ret = regulator_bulk_enable(num, s);
303 	if (ret < 0) {
304 		pr_err("regulator enable failed, %d\n", ret);
305 		goto fail;
306 	}
307 
308 	return 0;
309 
310 fail:
311 	for (i--; i >= 0; i--)
312 		regulator_set_load(s[i].consumer, regs[i].disable_load);
313 	return ret;
314 }
315 
316 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
317 {
318 	struct regulator_bulk_data *s = msm_host->supplies;
319 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
320 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
321 	int i, ret;
322 
323 	for (i = 0; i < num; i++)
324 		s[i].supply = regs[i].name;
325 
326 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
327 	if (ret < 0) {
328 		pr_err("%s: failed to init regulator, ret=%d\n",
329 						__func__, ret);
330 		return ret;
331 	}
332 
333 	return 0;
334 }
335 
336 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
337 {
338 	struct platform_device *pdev = msm_host->pdev;
339 	int ret = 0;
340 
341 	msm_host->src_clk = msm_clk_get(pdev, "src");
342 
343 	if (IS_ERR(msm_host->src_clk)) {
344 		ret = PTR_ERR(msm_host->src_clk);
345 		pr_err("%s: can't find src clock. ret=%d\n",
346 			__func__, ret);
347 		msm_host->src_clk = NULL;
348 		return ret;
349 	}
350 
351 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
352 	if (!msm_host->esc_clk_src) {
353 		ret = -ENODEV;
354 		pr_err("%s: can't get esc clock parent. ret=%d\n",
355 			__func__, ret);
356 		return ret;
357 	}
358 
359 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
360 	if (!msm_host->dsi_clk_src) {
361 		ret = -ENODEV;
362 		pr_err("%s: can't get src clock parent. ret=%d\n",
363 			__func__, ret);
364 	}
365 
366 	return ret;
367 }
368 
369 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
370 {
371 	struct platform_device *pdev = msm_host->pdev;
372 	int ret = 0;
373 
374 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
375 	if (IS_ERR(msm_host->byte_intf_clk)) {
376 		ret = PTR_ERR(msm_host->byte_intf_clk);
377 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
378 			__func__, ret);
379 	}
380 
381 	return ret;
382 }
383 
384 static int dsi_clk_init(struct msm_dsi_host *msm_host)
385 {
386 	struct platform_device *pdev = msm_host->pdev;
387 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
388 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
389 	int i, ret = 0;
390 
391 	/* get bus clocks */
392 	for (i = 0; i < cfg->num_bus_clks; i++) {
393 		msm_host->bus_clks[i] = msm_clk_get(pdev,
394 						cfg->bus_clk_names[i]);
395 		if (IS_ERR(msm_host->bus_clks[i])) {
396 			ret = PTR_ERR(msm_host->bus_clks[i]);
397 			pr_err("%s: Unable to get %s clock, ret = %d\n",
398 				__func__, cfg->bus_clk_names[i], ret);
399 			goto exit;
400 		}
401 	}
402 
403 	/* get link and source clocks */
404 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
405 	if (IS_ERR(msm_host->byte_clk)) {
406 		ret = PTR_ERR(msm_host->byte_clk);
407 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
408 			__func__, ret);
409 		msm_host->byte_clk = NULL;
410 		goto exit;
411 	}
412 
413 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
414 	if (IS_ERR(msm_host->pixel_clk)) {
415 		ret = PTR_ERR(msm_host->pixel_clk);
416 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
417 			__func__, ret);
418 		msm_host->pixel_clk = NULL;
419 		goto exit;
420 	}
421 
422 	msm_host->esc_clk = msm_clk_get(pdev, "core");
423 	if (IS_ERR(msm_host->esc_clk)) {
424 		ret = PTR_ERR(msm_host->esc_clk);
425 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
426 			__func__, ret);
427 		msm_host->esc_clk = NULL;
428 		goto exit;
429 	}
430 
431 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
432 	if (!msm_host->byte_clk_src) {
433 		ret = -ENODEV;
434 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
435 		goto exit;
436 	}
437 
438 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
439 	if (!msm_host->pixel_clk_src) {
440 		ret = -ENODEV;
441 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
442 		goto exit;
443 	}
444 
445 	if (cfg_hnd->ops->clk_init_ver)
446 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
447 exit:
448 	return ret;
449 }
450 
451 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
452 {
453 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
454 	int i, ret;
455 
456 	DBG("id=%d", msm_host->id);
457 
458 	for (i = 0; i < cfg->num_bus_clks; i++) {
459 		ret = clk_prepare_enable(msm_host->bus_clks[i]);
460 		if (ret) {
461 			pr_err("%s: failed to enable bus clock %d ret %d\n",
462 				__func__, i, ret);
463 			goto err;
464 		}
465 	}
466 
467 	return 0;
468 err:
469 	for (; i > 0; i--)
470 		clk_disable_unprepare(msm_host->bus_clks[i]);
471 
472 	return ret;
473 }
474 
475 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
476 {
477 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
478 	int i;
479 
480 	DBG("");
481 
482 	for (i = cfg->num_bus_clks - 1; i >= 0; i--)
483 		clk_disable_unprepare(msm_host->bus_clks[i]);
484 }
485 
486 int msm_dsi_runtime_suspend(struct device *dev)
487 {
488 	struct platform_device *pdev = to_platform_device(dev);
489 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
490 	struct mipi_dsi_host *host = msm_dsi->host;
491 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
492 
493 	if (!msm_host->cfg_hnd)
494 		return 0;
495 
496 	dsi_bus_clk_disable(msm_host);
497 
498 	return 0;
499 }
500 
501 int msm_dsi_runtime_resume(struct device *dev)
502 {
503 	struct platform_device *pdev = to_platform_device(dev);
504 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
505 	struct mipi_dsi_host *host = msm_dsi->host;
506 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
507 
508 	if (!msm_host->cfg_hnd)
509 		return 0;
510 
511 	return dsi_bus_clk_enable(msm_host);
512 }
513 
514 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
515 {
516 	int ret;
517 
518 	DBG("Set clk rates: pclk=%d, byteclk=%d",
519 		msm_host->mode->clock, msm_host->byte_clk_rate);
520 
521 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
522 	if (ret) {
523 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
524 		goto error;
525 	}
526 
527 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
528 	if (ret) {
529 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
530 		goto error;
531 	}
532 
533 	if (msm_host->byte_intf_clk) {
534 		ret = clk_set_rate(msm_host->byte_intf_clk,
535 				   msm_host->byte_clk_rate / 2);
536 		if (ret) {
537 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
538 			       __func__, ret);
539 			goto error;
540 		}
541 	}
542 
543 	ret = clk_prepare_enable(msm_host->esc_clk);
544 	if (ret) {
545 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
546 		goto error;
547 	}
548 
549 	ret = clk_prepare_enable(msm_host->byte_clk);
550 	if (ret) {
551 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
552 		goto byte_clk_err;
553 	}
554 
555 	ret = clk_prepare_enable(msm_host->pixel_clk);
556 	if (ret) {
557 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
558 		goto pixel_clk_err;
559 	}
560 
561 	if (msm_host->byte_intf_clk) {
562 		ret = clk_prepare_enable(msm_host->byte_intf_clk);
563 		if (ret) {
564 			pr_err("%s: Failed to enable byte intf clk\n",
565 			       __func__);
566 			goto byte_intf_clk_err;
567 		}
568 	}
569 
570 	return 0;
571 
572 byte_intf_clk_err:
573 	clk_disable_unprepare(msm_host->pixel_clk);
574 pixel_clk_err:
575 	clk_disable_unprepare(msm_host->byte_clk);
576 byte_clk_err:
577 	clk_disable_unprepare(msm_host->esc_clk);
578 error:
579 	return ret;
580 }
581 
582 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
583 {
584 	int ret;
585 
586 	DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
587 		msm_host->mode->clock, msm_host->byte_clk_rate,
588 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
589 
590 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
591 	if (ret) {
592 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
593 		goto error;
594 	}
595 
596 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
597 	if (ret) {
598 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
599 		goto error;
600 	}
601 
602 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
603 	if (ret) {
604 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
605 		goto error;
606 	}
607 
608 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
609 	if (ret) {
610 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
611 		goto error;
612 	}
613 
614 	ret = clk_prepare_enable(msm_host->byte_clk);
615 	if (ret) {
616 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
617 		goto error;
618 	}
619 
620 	ret = clk_prepare_enable(msm_host->esc_clk);
621 	if (ret) {
622 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
623 		goto esc_clk_err;
624 	}
625 
626 	ret = clk_prepare_enable(msm_host->src_clk);
627 	if (ret) {
628 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
629 		goto src_clk_err;
630 	}
631 
632 	ret = clk_prepare_enable(msm_host->pixel_clk);
633 	if (ret) {
634 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
635 		goto pixel_clk_err;
636 	}
637 
638 	return 0;
639 
640 pixel_clk_err:
641 	clk_disable_unprepare(msm_host->src_clk);
642 src_clk_err:
643 	clk_disable_unprepare(msm_host->esc_clk);
644 esc_clk_err:
645 	clk_disable_unprepare(msm_host->byte_clk);
646 error:
647 	return ret;
648 }
649 
650 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
651 {
652 	clk_disable_unprepare(msm_host->esc_clk);
653 	clk_disable_unprepare(msm_host->pixel_clk);
654 	if (msm_host->byte_intf_clk)
655 		clk_disable_unprepare(msm_host->byte_intf_clk);
656 	clk_disable_unprepare(msm_host->byte_clk);
657 }
658 
659 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
660 {
661 	clk_disable_unprepare(msm_host->pixel_clk);
662 	clk_disable_unprepare(msm_host->src_clk);
663 	clk_disable_unprepare(msm_host->esc_clk);
664 	clk_disable_unprepare(msm_host->byte_clk);
665 }
666 
667 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
668 {
669 	struct drm_display_mode *mode = msm_host->mode;
670 	u32 pclk_rate;
671 
672 	pclk_rate = mode->clock * 1000;
673 
674 	/*
675 	 * For dual DSI mode, the current DRM mode has the complete width of the
676 	 * panel. Since, the complete panel is driven by two DSI controllers,
677 	 * the clock rates have to be split between the two dsi controllers.
678 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
679 	 */
680 	if (is_dual_dsi)
681 		pclk_rate /= 2;
682 
683 	return pclk_rate;
684 }
685 
686 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
687 {
688 	u8 lanes = msm_host->lanes;
689 	u32 bpp = dsi_get_bpp(msm_host->format);
690 	u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
691 	u64 pclk_bpp = (u64)pclk_rate * bpp;
692 
693 	if (lanes == 0) {
694 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
695 		lanes = 1;
696 	}
697 
698 	do_div(pclk_bpp, (8 * lanes));
699 
700 	msm_host->pixel_clk_rate = pclk_rate;
701 	msm_host->byte_clk_rate = pclk_bpp;
702 
703 	DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
704 				msm_host->byte_clk_rate);
705 
706 }
707 
708 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
709 {
710 	if (!msm_host->mode) {
711 		pr_err("%s: mode not set\n", __func__);
712 		return -EINVAL;
713 	}
714 
715 	dsi_calc_pclk(msm_host, is_dual_dsi);
716 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
717 	return 0;
718 }
719 
720 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
721 {
722 	u32 bpp = dsi_get_bpp(msm_host->format);
723 	u64 pclk_bpp;
724 	unsigned int esc_mhz, esc_div;
725 	unsigned long byte_mhz;
726 
727 	dsi_calc_pclk(msm_host, is_dual_dsi);
728 
729 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
730 	do_div(pclk_bpp, 8);
731 	msm_host->src_clk_rate = pclk_bpp;
732 
733 	/*
734 	 * esc clock is byte clock followed by a 4 bit divider,
735 	 * we need to find an escape clock frequency within the
736 	 * mipi DSI spec range within the maximum divider limit
737 	 * We iterate here between an escape clock frequencey
738 	 * between 20 Mhz to 5 Mhz and pick up the first one
739 	 * that can be supported by our divider
740 	 */
741 
742 	byte_mhz = msm_host->byte_clk_rate / 1000000;
743 
744 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
745 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
746 
747 		/*
748 		 * TODO: Ideally, we shouldn't know what sort of divider
749 		 * is available in mmss_cc, we're just assuming that
750 		 * it'll always be a 4 bit divider. Need to come up with
751 		 * a better way here.
752 		 */
753 		if (esc_div >= 1 && esc_div <= 16)
754 			break;
755 	}
756 
757 	if (esc_mhz < 5)
758 		return -EINVAL;
759 
760 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
761 
762 	DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
763 		msm_host->src_clk_rate);
764 
765 	return 0;
766 }
767 
768 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
769 {
770 	u32 intr;
771 	unsigned long flags;
772 
773 	spin_lock_irqsave(&msm_host->intr_lock, flags);
774 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
775 
776 	if (enable)
777 		intr |= mask;
778 	else
779 		intr &= ~mask;
780 
781 	DBG("intr=%x enable=%d", intr, enable);
782 
783 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
784 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
785 }
786 
787 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
788 {
789 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
790 		return BURST_MODE;
791 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
792 		return NON_BURST_SYNCH_PULSE;
793 
794 	return NON_BURST_SYNCH_EVENT;
795 }
796 
797 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
798 				const enum mipi_dsi_pixel_format mipi_fmt)
799 {
800 	switch (mipi_fmt) {
801 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
802 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
803 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
804 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
805 	default:			return VID_DST_FORMAT_RGB888;
806 	}
807 }
808 
809 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
810 				const enum mipi_dsi_pixel_format mipi_fmt)
811 {
812 	switch (mipi_fmt) {
813 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
814 	case MIPI_DSI_FMT_RGB666_PACKED:
815 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
816 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
817 	default:			return CMD_DST_FORMAT_RGB888;
818 	}
819 }
820 
821 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
822 			struct msm_dsi_phy_shared_timings *phy_shared_timings)
823 {
824 	u32 flags = msm_host->mode_flags;
825 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
826 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
827 	u32 data = 0;
828 
829 	if (!enable) {
830 		dsi_write(msm_host, REG_DSI_CTRL, 0);
831 		return;
832 	}
833 
834 	if (flags & MIPI_DSI_MODE_VIDEO) {
835 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
836 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
837 		if (flags & MIPI_DSI_MODE_VIDEO_HFP)
838 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
839 		if (flags & MIPI_DSI_MODE_VIDEO_HBP)
840 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
841 		if (flags & MIPI_DSI_MODE_VIDEO_HSA)
842 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
843 		/* Always set low power stop mode for BLLP
844 		 * to let command engine send packets
845 		 */
846 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
847 			DSI_VID_CFG0_BLLP_POWER_STOP;
848 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
849 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
850 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
851 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
852 
853 		/* Do not swap RGB colors */
854 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
855 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
856 	} else {
857 		/* Do not swap RGB colors */
858 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
859 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
860 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
861 
862 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
863 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
864 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
865 		/* Always insert DCS command */
866 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
867 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
868 	}
869 
870 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
871 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
872 			DSI_CMD_DMA_CTRL_LOW_POWER);
873 
874 	data = 0;
875 	/* Always assume dedicated TE pin */
876 	data |= DSI_TRIG_CTRL_TE;
877 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
878 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
879 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
880 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
881 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
882 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
883 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
884 
885 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
886 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
887 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
888 
889 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
890 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
891 	    phy_shared_timings->clk_pre_inc_by_2)
892 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
893 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
894 
895 	data = 0;
896 	if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
897 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
898 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
899 
900 	/* allow only ack-err-status to generate interrupt */
901 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
902 
903 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
904 
905 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
906 
907 	data = DSI_CTRL_CLK_EN;
908 
909 	DBG("lane number=%d", msm_host->lanes);
910 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
911 
912 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
913 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
914 
915 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
916 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
917 			DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
918 
919 	data |= DSI_CTRL_ENABLE;
920 
921 	dsi_write(msm_host, REG_DSI_CTRL, data);
922 }
923 
924 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
925 {
926 	struct drm_display_mode *mode = msm_host->mode;
927 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
928 	u32 h_total = mode->htotal;
929 	u32 v_total = mode->vtotal;
930 	u32 hs_end = mode->hsync_end - mode->hsync_start;
931 	u32 vs_end = mode->vsync_end - mode->vsync_start;
932 	u32 ha_start = h_total - mode->hsync_start;
933 	u32 ha_end = ha_start + mode->hdisplay;
934 	u32 va_start = v_total - mode->vsync_start;
935 	u32 va_end = va_start + mode->vdisplay;
936 	u32 hdisplay = mode->hdisplay;
937 	u32 wc;
938 
939 	DBG("");
940 
941 	/*
942 	 * For dual DSI mode, the current DRM mode has
943 	 * the complete width of the panel. Since, the complete
944 	 * panel is driven by two DSI controllers, the horizontal
945 	 * timings have to be split between the two dsi controllers.
946 	 * Adjust the DSI host timing values accordingly.
947 	 */
948 	if (is_dual_dsi) {
949 		h_total /= 2;
950 		hs_end /= 2;
951 		ha_start /= 2;
952 		ha_end /= 2;
953 		hdisplay /= 2;
954 	}
955 
956 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
957 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
958 			DSI_ACTIVE_H_START(ha_start) |
959 			DSI_ACTIVE_H_END(ha_end));
960 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
961 			DSI_ACTIVE_V_START(va_start) |
962 			DSI_ACTIVE_V_END(va_end));
963 		dsi_write(msm_host, REG_DSI_TOTAL,
964 			DSI_TOTAL_H_TOTAL(h_total - 1) |
965 			DSI_TOTAL_V_TOTAL(v_total - 1));
966 
967 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
968 			DSI_ACTIVE_HSYNC_START(hs_start) |
969 			DSI_ACTIVE_HSYNC_END(hs_end));
970 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
971 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
972 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
973 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
974 	} else {		/* command mode */
975 		/* image data and 1 byte write_memory_start cmd */
976 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
977 
978 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
979 			DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
980 			DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
981 					msm_host->channel) |
982 			DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
983 					MIPI_DSI_DCS_LONG_WRITE));
984 
985 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
986 			DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
987 			DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
988 	}
989 }
990 
991 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
992 {
993 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
994 	wmb(); /* clocks need to be enabled before reset */
995 
996 	dsi_write(msm_host, REG_DSI_RESET, 1);
997 	wmb(); /* make sure reset happen */
998 	dsi_write(msm_host, REG_DSI_RESET, 0);
999 }
1000 
1001 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
1002 					bool video_mode, bool enable)
1003 {
1004 	u32 dsi_ctrl;
1005 
1006 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1007 
1008 	if (!enable) {
1009 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1010 				DSI_CTRL_CMD_MODE_EN);
1011 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1012 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1013 	} else {
1014 		if (video_mode) {
1015 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1016 		} else {		/* command mode */
1017 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1018 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1019 		}
1020 		dsi_ctrl |= DSI_CTRL_ENABLE;
1021 	}
1022 
1023 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1024 }
1025 
1026 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1027 {
1028 	u32 data;
1029 
1030 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1031 
1032 	if (mode == 0)
1033 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1034 	else
1035 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1036 
1037 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1038 }
1039 
1040 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1041 {
1042 	u32 ret = 0;
1043 	struct device *dev = &msm_host->pdev->dev;
1044 
1045 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1046 
1047 	reinit_completion(&msm_host->video_comp);
1048 
1049 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1050 			msecs_to_jiffies(70));
1051 
1052 	if (ret <= 0)
1053 		dev_err(dev, "wait for video done timed out\n");
1054 
1055 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1056 }
1057 
1058 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1059 {
1060 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1061 		return;
1062 
1063 	if (msm_host->power_on && msm_host->enabled) {
1064 		dsi_wait4video_done(msm_host);
1065 		/* delay 4 ms to skip BLLP */
1066 		usleep_range(2000, 4000);
1067 	}
1068 }
1069 
1070 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1071 {
1072 	struct drm_device *dev = msm_host->dev;
1073 	struct msm_drm_private *priv = dev->dev_private;
1074 	uint64_t iova;
1075 	u8 *data;
1076 
1077 	data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
1078 					priv->kms->aspace,
1079 					&msm_host->tx_gem_obj, &iova);
1080 
1081 	if (IS_ERR(data)) {
1082 		msm_host->tx_gem_obj = NULL;
1083 		return PTR_ERR(data);
1084 	}
1085 
1086 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1087 
1088 	return 0;
1089 }
1090 
1091 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1092 {
1093 	struct drm_device *dev = msm_host->dev;
1094 
1095 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1096 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1097 	if (!msm_host->tx_buf)
1098 		return -ENOMEM;
1099 
1100 	msm_host->tx_size = size;
1101 
1102 	return 0;
1103 }
1104 
1105 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1106 {
1107 	struct drm_device *dev = msm_host->dev;
1108 	struct msm_drm_private *priv;
1109 
1110 	/*
1111 	 * This is possible if we're tearing down before we've had a chance to
1112 	 * fully initialize. A very real possibility if our probe is deferred,
1113 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1114 	 * through the dsi_tx_buf_alloc().
1115 	 */
1116 	if (!dev)
1117 		return;
1118 
1119 	priv = dev->dev_private;
1120 	if (msm_host->tx_gem_obj) {
1121 		msm_gem_put_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1122 		drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
1123 		msm_host->tx_gem_obj = NULL;
1124 	}
1125 
1126 	if (msm_host->tx_buf)
1127 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1128 			msm_host->tx_buf_paddr);
1129 }
1130 
1131 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1132 {
1133 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1134 }
1135 
1136 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1137 {
1138 	return msm_host->tx_buf;
1139 }
1140 
1141 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1142 {
1143 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1144 }
1145 
1146 /*
1147  * prepare cmd buffer to be txed
1148  */
1149 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1150 			   const struct mipi_dsi_msg *msg)
1151 {
1152 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1153 	struct mipi_dsi_packet packet;
1154 	int len;
1155 	int ret;
1156 	u8 *data;
1157 
1158 	ret = mipi_dsi_create_packet(&packet, msg);
1159 	if (ret) {
1160 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1161 		return ret;
1162 	}
1163 	len = (packet.size + 3) & (~0x3);
1164 
1165 	if (len > msm_host->tx_size) {
1166 		pr_err("%s: packet size is too big\n", __func__);
1167 		return -EINVAL;
1168 	}
1169 
1170 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1171 	if (IS_ERR(data)) {
1172 		ret = PTR_ERR(data);
1173 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1174 		return ret;
1175 	}
1176 
1177 	/* MSM specific command format in memory */
1178 	data[0] = packet.header[1];
1179 	data[1] = packet.header[2];
1180 	data[2] = packet.header[0];
1181 	data[3] = BIT(7); /* Last packet */
1182 	if (mipi_dsi_packet_format_is_long(msg->type))
1183 		data[3] |= BIT(6);
1184 	if (msg->rx_buf && msg->rx_len)
1185 		data[3] |= BIT(5);
1186 
1187 	/* Long packet */
1188 	if (packet.payload && packet.payload_length)
1189 		memcpy(data + 4, packet.payload, packet.payload_length);
1190 
1191 	/* Append 0xff to the end */
1192 	if (packet.size < len)
1193 		memset(data + packet.size, 0xff, len - packet.size);
1194 
1195 	if (cfg_hnd->ops->tx_buf_put)
1196 		cfg_hnd->ops->tx_buf_put(msm_host);
1197 
1198 	return len;
1199 }
1200 
1201 /*
1202  * dsi_short_read1_resp: 1 parameter
1203  */
1204 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1205 {
1206 	u8 *data = msg->rx_buf;
1207 	if (data && (msg->rx_len >= 1)) {
1208 		*data = buf[1]; /* strip out dcs type */
1209 		return 1;
1210 	} else {
1211 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1212 			__func__, msg->rx_len);
1213 		return -EINVAL;
1214 	}
1215 }
1216 
1217 /*
1218  * dsi_short_read2_resp: 2 parameter
1219  */
1220 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1221 {
1222 	u8 *data = msg->rx_buf;
1223 	if (data && (msg->rx_len >= 2)) {
1224 		data[0] = buf[1]; /* strip out dcs type */
1225 		data[1] = buf[2];
1226 		return 2;
1227 	} else {
1228 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1229 			__func__, msg->rx_len);
1230 		return -EINVAL;
1231 	}
1232 }
1233 
1234 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1235 {
1236 	/* strip out 4 byte dcs header */
1237 	if (msg->rx_buf && msg->rx_len)
1238 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1239 
1240 	return msg->rx_len;
1241 }
1242 
1243 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1244 {
1245 	struct drm_device *dev = msm_host->dev;
1246 	struct msm_drm_private *priv = dev->dev_private;
1247 
1248 	if (!dma_base)
1249 		return -EINVAL;
1250 
1251 	return msm_gem_get_iova(msm_host->tx_gem_obj,
1252 				priv->kms->aspace, dma_base);
1253 }
1254 
1255 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1256 {
1257 	if (!dma_base)
1258 		return -EINVAL;
1259 
1260 	*dma_base = msm_host->tx_buf_paddr;
1261 	return 0;
1262 }
1263 
1264 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1265 {
1266 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1267 	int ret;
1268 	uint64_t dma_base;
1269 	bool triggered;
1270 
1271 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1272 	if (ret) {
1273 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1274 		return ret;
1275 	}
1276 
1277 	reinit_completion(&msm_host->dma_comp);
1278 
1279 	dsi_wait4video_eng_busy(msm_host);
1280 
1281 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1282 						msm_host->id, dma_base, len);
1283 	if (triggered) {
1284 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1285 					msecs_to_jiffies(200));
1286 		DBG("ret=%d", ret);
1287 		if (ret == 0)
1288 			ret = -ETIMEDOUT;
1289 		else
1290 			ret = len;
1291 	} else
1292 		ret = len;
1293 
1294 	return ret;
1295 }
1296 
1297 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1298 			u8 *buf, int rx_byte, int pkt_size)
1299 {
1300 	u32 *lp, *temp, data;
1301 	int i, j = 0, cnt;
1302 	u32 read_cnt;
1303 	u8 reg[16];
1304 	int repeated_bytes = 0;
1305 	int buf_offset = buf - msm_host->rx_buf;
1306 
1307 	lp = (u32 *)buf;
1308 	temp = (u32 *)reg;
1309 	cnt = (rx_byte + 3) >> 2;
1310 	if (cnt > 4)
1311 		cnt = 4; /* 4 x 32 bits registers only */
1312 
1313 	if (rx_byte == 4)
1314 		read_cnt = 4;
1315 	else
1316 		read_cnt = pkt_size + 6;
1317 
1318 	/*
1319 	 * In case of multiple reads from the panel, after the first read, there
1320 	 * is possibility that there are some bytes in the payload repeating in
1321 	 * the RDBK_DATA registers. Since we read all the parameters from the
1322 	 * panel right from the first byte for every pass. We need to skip the
1323 	 * repeating bytes and then append the new parameters to the rx buffer.
1324 	 */
1325 	if (read_cnt > 16) {
1326 		int bytes_shifted;
1327 		/* Any data more than 16 bytes will be shifted out.
1328 		 * The temp read buffer should already contain these bytes.
1329 		 * The remaining bytes in read buffer are the repeated bytes.
1330 		 */
1331 		bytes_shifted = read_cnt - 16;
1332 		repeated_bytes = buf_offset - bytes_shifted;
1333 	}
1334 
1335 	for (i = cnt - 1; i >= 0; i--) {
1336 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1337 		*temp++ = ntohl(data); /* to host byte order */
1338 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1339 	}
1340 
1341 	for (i = repeated_bytes; i < 16; i++)
1342 		buf[j++] = reg[i];
1343 
1344 	return j;
1345 }
1346 
1347 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1348 				const struct mipi_dsi_msg *msg)
1349 {
1350 	int len, ret;
1351 	int bllp_len = msm_host->mode->hdisplay *
1352 			dsi_get_bpp(msm_host->format) / 8;
1353 
1354 	len = dsi_cmd_dma_add(msm_host, msg);
1355 	if (!len) {
1356 		pr_err("%s: failed to add cmd type = 0x%x\n",
1357 			__func__,  msg->type);
1358 		return -EINVAL;
1359 	}
1360 
1361 	/* for video mode, do not send cmds more than
1362 	* one pixel line, since it only transmit it
1363 	* during BLLP.
1364 	*/
1365 	/* TODO: if the command is sent in LP mode, the bit rate is only
1366 	 * half of esc clk rate. In this case, if the video is already
1367 	 * actively streaming, we need to check more carefully if the
1368 	 * command can be fit into one BLLP.
1369 	 */
1370 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1371 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1372 			__func__, len);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ret = dsi_cmd_dma_tx(msm_host, len);
1377 	if (ret < len) {
1378 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1379 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1380 		return -ECOMM;
1381 	}
1382 
1383 	return len;
1384 }
1385 
1386 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1387 {
1388 	u32 data0, data1;
1389 
1390 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1391 	data1 = data0;
1392 	data1 &= ~DSI_CTRL_ENABLE;
1393 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1394 	/*
1395 	 * dsi controller need to be disabled before
1396 	 * clocks turned on
1397 	 */
1398 	wmb();
1399 
1400 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1401 	wmb();	/* make sure clocks enabled */
1402 
1403 	/* dsi controller can only be reset while clocks are running */
1404 	dsi_write(msm_host, REG_DSI_RESET, 1);
1405 	wmb();	/* make sure reset happen */
1406 	dsi_write(msm_host, REG_DSI_RESET, 0);
1407 	wmb();	/* controller out of reset */
1408 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1409 	wmb();	/* make sure dsi controller enabled again */
1410 }
1411 
1412 static void dsi_hpd_worker(struct work_struct *work)
1413 {
1414 	struct msm_dsi_host *msm_host =
1415 		container_of(work, struct msm_dsi_host, hpd_work);
1416 
1417 	drm_helper_hpd_irq_event(msm_host->dev);
1418 }
1419 
1420 static void dsi_err_worker(struct work_struct *work)
1421 {
1422 	struct msm_dsi_host *msm_host =
1423 		container_of(work, struct msm_dsi_host, err_work);
1424 	u32 status = msm_host->err_work_state;
1425 
1426 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1427 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1428 		dsi_sw_reset_restore(msm_host);
1429 
1430 	/* It is safe to clear here because error irq is disabled. */
1431 	msm_host->err_work_state = 0;
1432 
1433 	/* enable dsi error interrupt */
1434 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1435 }
1436 
1437 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1438 {
1439 	u32 status;
1440 
1441 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1442 
1443 	if (status) {
1444 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1445 		/* Writing of an extra 0 needed to clear error bits */
1446 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1447 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1448 	}
1449 }
1450 
1451 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1452 {
1453 	u32 status;
1454 
1455 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1456 
1457 	if (status) {
1458 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1459 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1460 	}
1461 }
1462 
1463 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1464 {
1465 	u32 status;
1466 
1467 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1468 
1469 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1470 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1471 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1472 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1473 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1474 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1475 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1476 	}
1477 }
1478 
1479 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1480 {
1481 	u32 status;
1482 
1483 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1484 
1485 	/* fifo underflow, overflow */
1486 	if (status) {
1487 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1488 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1489 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1490 			msm_host->err_work_state |=
1491 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1492 	}
1493 }
1494 
1495 static void dsi_status(struct msm_dsi_host *msm_host)
1496 {
1497 	u32 status;
1498 
1499 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1500 
1501 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1502 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1503 		msm_host->err_work_state |=
1504 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1505 	}
1506 }
1507 
1508 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1509 {
1510 	u32 status;
1511 
1512 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1513 
1514 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1515 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1516 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1517 	}
1518 }
1519 
1520 static void dsi_error(struct msm_dsi_host *msm_host)
1521 {
1522 	/* disable dsi error interrupt */
1523 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1524 
1525 	dsi_clk_status(msm_host);
1526 	dsi_fifo_status(msm_host);
1527 	dsi_ack_err_status(msm_host);
1528 	dsi_timeout_status(msm_host);
1529 	dsi_status(msm_host);
1530 	dsi_dln0_phy_err(msm_host);
1531 
1532 	queue_work(msm_host->workqueue, &msm_host->err_work);
1533 }
1534 
1535 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1536 {
1537 	struct msm_dsi_host *msm_host = ptr;
1538 	u32 isr;
1539 	unsigned long flags;
1540 
1541 	if (!msm_host->ctrl_base)
1542 		return IRQ_HANDLED;
1543 
1544 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1545 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1546 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1547 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1548 
1549 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1550 
1551 	if (isr & DSI_IRQ_ERROR)
1552 		dsi_error(msm_host);
1553 
1554 	if (isr & DSI_IRQ_VIDEO_DONE)
1555 		complete(&msm_host->video_comp);
1556 
1557 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1558 		complete(&msm_host->dma_comp);
1559 
1560 	return IRQ_HANDLED;
1561 }
1562 
1563 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1564 			struct device *panel_device)
1565 {
1566 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1567 							 "disp-enable",
1568 							 GPIOD_OUT_LOW);
1569 	if (IS_ERR(msm_host->disp_en_gpio)) {
1570 		DBG("cannot get disp-enable-gpios %ld",
1571 				PTR_ERR(msm_host->disp_en_gpio));
1572 		return PTR_ERR(msm_host->disp_en_gpio);
1573 	}
1574 
1575 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1576 								GPIOD_IN);
1577 	if (IS_ERR(msm_host->te_gpio)) {
1578 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1579 		return PTR_ERR(msm_host->te_gpio);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static int dsi_host_attach(struct mipi_dsi_host *host,
1586 					struct mipi_dsi_device *dsi)
1587 {
1588 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1589 	int ret;
1590 
1591 	if (dsi->lanes > msm_host->num_data_lanes)
1592 		return -EINVAL;
1593 
1594 	msm_host->channel = dsi->channel;
1595 	msm_host->lanes = dsi->lanes;
1596 	msm_host->format = dsi->format;
1597 	msm_host->mode_flags = dsi->mode_flags;
1598 
1599 	msm_dsi_manager_attach_dsi_device(msm_host->id, dsi->mode_flags);
1600 
1601 	/* Some gpios defined in panel DT need to be controlled by host */
1602 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1603 	if (ret)
1604 		return ret;
1605 
1606 	DBG("id=%d", msm_host->id);
1607 	if (msm_host->dev)
1608 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1609 
1610 	return 0;
1611 }
1612 
1613 static int dsi_host_detach(struct mipi_dsi_host *host,
1614 					struct mipi_dsi_device *dsi)
1615 {
1616 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1617 
1618 	msm_host->device_node = NULL;
1619 
1620 	DBG("id=%d", msm_host->id);
1621 	if (msm_host->dev)
1622 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1623 
1624 	return 0;
1625 }
1626 
1627 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1628 					const struct mipi_dsi_msg *msg)
1629 {
1630 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1631 	int ret;
1632 
1633 	if (!msg || !msm_host->power_on)
1634 		return -EINVAL;
1635 
1636 	mutex_lock(&msm_host->cmd_mutex);
1637 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1638 	mutex_unlock(&msm_host->cmd_mutex);
1639 
1640 	return ret;
1641 }
1642 
1643 static struct mipi_dsi_host_ops dsi_host_ops = {
1644 	.attach = dsi_host_attach,
1645 	.detach = dsi_host_detach,
1646 	.transfer = dsi_host_transfer,
1647 };
1648 
1649 /*
1650  * List of supported physical to logical lane mappings.
1651  * For example, the 2nd entry represents the following mapping:
1652  *
1653  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1654  */
1655 static const int supported_data_lane_swaps[][4] = {
1656 	{ 0, 1, 2, 3 },
1657 	{ 3, 0, 1, 2 },
1658 	{ 2, 3, 0, 1 },
1659 	{ 1, 2, 3, 0 },
1660 	{ 0, 3, 2, 1 },
1661 	{ 1, 0, 3, 2 },
1662 	{ 2, 1, 0, 3 },
1663 	{ 3, 2, 1, 0 },
1664 };
1665 
1666 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1667 				    struct device_node *ep)
1668 {
1669 	struct device *dev = &msm_host->pdev->dev;
1670 	struct property *prop;
1671 	u32 lane_map[4];
1672 	int ret, i, len, num_lanes;
1673 
1674 	prop = of_find_property(ep, "data-lanes", &len);
1675 	if (!prop) {
1676 		dev_dbg(dev,
1677 			"failed to find data lane mapping, using default\n");
1678 		return 0;
1679 	}
1680 
1681 	num_lanes = len / sizeof(u32);
1682 
1683 	if (num_lanes < 1 || num_lanes > 4) {
1684 		dev_err(dev, "bad number of data lanes\n");
1685 		return -EINVAL;
1686 	}
1687 
1688 	msm_host->num_data_lanes = num_lanes;
1689 
1690 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1691 					 num_lanes);
1692 	if (ret) {
1693 		dev_err(dev, "failed to read lane data\n");
1694 		return ret;
1695 	}
1696 
1697 	/*
1698 	 * compare DT specified physical-logical lane mappings with the ones
1699 	 * supported by hardware
1700 	 */
1701 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1702 		const int *swap = supported_data_lane_swaps[i];
1703 		int j;
1704 
1705 		/*
1706 		 * the data-lanes array we get from DT has a logical->physical
1707 		 * mapping. The "data lane swap" register field represents
1708 		 * supported configurations in a physical->logical mapping.
1709 		 * Translate the DT mapping to what we understand and find a
1710 		 * configuration that works.
1711 		 */
1712 		for (j = 0; j < num_lanes; j++) {
1713 			if (lane_map[j] < 0 || lane_map[j] > 3)
1714 				dev_err(dev, "bad physical lane entry %u\n",
1715 					lane_map[j]);
1716 
1717 			if (swap[lane_map[j]] != j)
1718 				break;
1719 		}
1720 
1721 		if (j == num_lanes) {
1722 			msm_host->dlane_swap = i;
1723 			return 0;
1724 		}
1725 	}
1726 
1727 	return -EINVAL;
1728 }
1729 
1730 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1731 {
1732 	struct device *dev = &msm_host->pdev->dev;
1733 	struct device_node *np = dev->of_node;
1734 	struct device_node *endpoint, *device_node;
1735 	int ret = 0;
1736 
1737 	/*
1738 	 * Get the endpoint of the output port of the DSI host. In our case,
1739 	 * this is mapped to port number with reg = 1. Don't return an error if
1740 	 * the remote endpoint isn't defined. It's possible that there is
1741 	 * nothing connected to the dsi output.
1742 	 */
1743 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1744 	if (!endpoint) {
1745 		dev_dbg(dev, "%s: no endpoint\n", __func__);
1746 		return 0;
1747 	}
1748 
1749 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1750 	if (ret) {
1751 		dev_err(dev, "%s: invalid lane configuration %d\n",
1752 			__func__, ret);
1753 		goto err;
1754 	}
1755 
1756 	/* Get panel node from the output port's endpoint data */
1757 	device_node = of_graph_get_remote_node(np, 1, 0);
1758 	if (!device_node) {
1759 		dev_dbg(dev, "%s: no valid device\n", __func__);
1760 		goto err;
1761 	}
1762 
1763 	msm_host->device_node = device_node;
1764 
1765 	if (of_property_read_bool(np, "syscon-sfpb")) {
1766 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1767 					"syscon-sfpb");
1768 		if (IS_ERR(msm_host->sfpb)) {
1769 			dev_err(dev, "%s: failed to get sfpb regmap\n",
1770 				__func__);
1771 			ret = PTR_ERR(msm_host->sfpb);
1772 		}
1773 	}
1774 
1775 	of_node_put(device_node);
1776 
1777 err:
1778 	of_node_put(endpoint);
1779 
1780 	return ret;
1781 }
1782 
1783 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1784 {
1785 	struct platform_device *pdev = msm_host->pdev;
1786 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1787 	struct resource *res;
1788 	int i;
1789 
1790 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1791 	if (!res)
1792 		return -EINVAL;
1793 
1794 	for (i = 0; i < cfg->num_dsi; i++) {
1795 		if (cfg->io_start[i] == res->start)
1796 			return i;
1797 	}
1798 
1799 	return -EINVAL;
1800 }
1801 
1802 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1803 {
1804 	struct msm_dsi_host *msm_host = NULL;
1805 	struct platform_device *pdev = msm_dsi->pdev;
1806 	int ret;
1807 
1808 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1809 	if (!msm_host) {
1810 		pr_err("%s: FAILED: cannot alloc dsi host\n",
1811 		       __func__);
1812 		ret = -ENOMEM;
1813 		goto fail;
1814 	}
1815 
1816 	msm_host->pdev = pdev;
1817 	msm_dsi->host = &msm_host->base;
1818 
1819 	ret = dsi_host_parse_dt(msm_host);
1820 	if (ret) {
1821 		pr_err("%s: failed to parse dt\n", __func__);
1822 		goto fail;
1823 	}
1824 
1825 	msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
1826 	if (IS_ERR(msm_host->ctrl_base)) {
1827 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1828 		ret = PTR_ERR(msm_host->ctrl_base);
1829 		goto fail;
1830 	}
1831 
1832 	pm_runtime_enable(&pdev->dev);
1833 
1834 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1835 	if (!msm_host->cfg_hnd) {
1836 		ret = -EINVAL;
1837 		pr_err("%s: get config failed\n", __func__);
1838 		goto fail;
1839 	}
1840 
1841 	msm_host->id = dsi_host_get_id(msm_host);
1842 	if (msm_host->id < 0) {
1843 		ret = msm_host->id;
1844 		pr_err("%s: unable to identify DSI host index\n", __func__);
1845 		goto fail;
1846 	}
1847 
1848 	/* fixup base address by io offset */
1849 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1850 
1851 	ret = dsi_regulator_init(msm_host);
1852 	if (ret) {
1853 		pr_err("%s: regulator init failed\n", __func__);
1854 		goto fail;
1855 	}
1856 
1857 	ret = dsi_clk_init(msm_host);
1858 	if (ret) {
1859 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1860 		goto fail;
1861 	}
1862 
1863 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1864 	if (!msm_host->rx_buf) {
1865 		ret = -ENOMEM;
1866 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1867 		goto fail;
1868 	}
1869 
1870 	init_completion(&msm_host->dma_comp);
1871 	init_completion(&msm_host->video_comp);
1872 	mutex_init(&msm_host->dev_mutex);
1873 	mutex_init(&msm_host->cmd_mutex);
1874 	spin_lock_init(&msm_host->intr_lock);
1875 
1876 	/* setup workqueue */
1877 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1878 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1879 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1880 
1881 	msm_dsi->id = msm_host->id;
1882 
1883 	DBG("Dsi Host %d initialized", msm_host->id);
1884 	return 0;
1885 
1886 fail:
1887 	return ret;
1888 }
1889 
1890 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1891 {
1892 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1893 
1894 	DBG("");
1895 	dsi_tx_buf_free(msm_host);
1896 	if (msm_host->workqueue) {
1897 		flush_workqueue(msm_host->workqueue);
1898 		destroy_workqueue(msm_host->workqueue);
1899 		msm_host->workqueue = NULL;
1900 	}
1901 
1902 	mutex_destroy(&msm_host->cmd_mutex);
1903 	mutex_destroy(&msm_host->dev_mutex);
1904 
1905 	pm_runtime_disable(&msm_host->pdev->dev);
1906 }
1907 
1908 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1909 					struct drm_device *dev)
1910 {
1911 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1912 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1913 	struct platform_device *pdev = msm_host->pdev;
1914 	int ret;
1915 
1916 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1917 	if (msm_host->irq < 0) {
1918 		ret = msm_host->irq;
1919 		dev_err(dev->dev, "failed to get irq: %d\n", ret);
1920 		return ret;
1921 	}
1922 
1923 	ret = devm_request_irq(&pdev->dev, msm_host->irq,
1924 			dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1925 			"dsi_isr", msm_host);
1926 	if (ret < 0) {
1927 		dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
1928 				msm_host->irq, ret);
1929 		return ret;
1930 	}
1931 
1932 	msm_host->dev = dev;
1933 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1934 	if (ret) {
1935 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1936 		return ret;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
1943 {
1944 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1945 	int ret;
1946 
1947 	/* Register mipi dsi host */
1948 	if (!msm_host->registered) {
1949 		host->dev = &msm_host->pdev->dev;
1950 		host->ops = &dsi_host_ops;
1951 		ret = mipi_dsi_host_register(host);
1952 		if (ret)
1953 			return ret;
1954 
1955 		msm_host->registered = true;
1956 
1957 		/* If the panel driver has not been probed after host register,
1958 		 * we should defer the host's probe.
1959 		 * It makes sure panel is connected when fbcon detects
1960 		 * connector status and gets the proper display mode to
1961 		 * create framebuffer.
1962 		 * Don't try to defer if there is nothing connected to the dsi
1963 		 * output
1964 		 */
1965 		if (check_defer && msm_host->device_node) {
1966 			if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
1967 				if (!of_drm_find_bridge(msm_host->device_node))
1968 					return -EPROBE_DEFER;
1969 		}
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1976 {
1977 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1978 
1979 	if (msm_host->registered) {
1980 		mipi_dsi_host_unregister(host);
1981 		host->dev = NULL;
1982 		host->ops = NULL;
1983 		msm_host->registered = false;
1984 	}
1985 }
1986 
1987 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
1988 				const struct mipi_dsi_msg *msg)
1989 {
1990 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1991 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1992 
1993 	/* TODO: make sure dsi_cmd_mdp is idle.
1994 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
1995 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
1996 	 * How to handle the old versions? Wait for mdp cmd done?
1997 	 */
1998 
1999 	/*
2000 	 * mdss interrupt is generated in mdp core clock domain
2001 	 * mdp clock need to be enabled to receive dsi interrupt
2002 	 */
2003 	pm_runtime_get_sync(&msm_host->pdev->dev);
2004 	cfg_hnd->ops->link_clk_enable(msm_host);
2005 
2006 	/* TODO: vote for bus bandwidth */
2007 
2008 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2009 		dsi_set_tx_power_mode(0, msm_host);
2010 
2011 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2012 	dsi_write(msm_host, REG_DSI_CTRL,
2013 		msm_host->dma_cmd_ctrl_restore |
2014 		DSI_CTRL_CMD_MODE_EN |
2015 		DSI_CTRL_ENABLE);
2016 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2017 
2018 	return 0;
2019 }
2020 
2021 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2022 				const struct mipi_dsi_msg *msg)
2023 {
2024 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2025 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2026 
2027 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2028 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2029 
2030 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2031 		dsi_set_tx_power_mode(1, msm_host);
2032 
2033 	/* TODO: unvote for bus bandwidth */
2034 
2035 	cfg_hnd->ops->link_clk_disable(msm_host);
2036 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2037 }
2038 
2039 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2040 				const struct mipi_dsi_msg *msg)
2041 {
2042 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2043 
2044 	return dsi_cmds2buf_tx(msm_host, msg);
2045 }
2046 
2047 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2048 				const struct mipi_dsi_msg *msg)
2049 {
2050 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2051 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2052 	int data_byte, rx_byte, dlen, end;
2053 	int short_response, diff, pkt_size, ret = 0;
2054 	char cmd;
2055 	int rlen = msg->rx_len;
2056 	u8 *buf;
2057 
2058 	if (rlen <= 2) {
2059 		short_response = 1;
2060 		pkt_size = rlen;
2061 		rx_byte = 4;
2062 	} else {
2063 		short_response = 0;
2064 		data_byte = 10;	/* first read */
2065 		if (rlen < data_byte)
2066 			pkt_size = rlen;
2067 		else
2068 			pkt_size = data_byte;
2069 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2070 	}
2071 
2072 	buf = msm_host->rx_buf;
2073 	end = 0;
2074 	while (!end) {
2075 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2076 		struct mipi_dsi_msg max_pkt_size_msg = {
2077 			.channel = msg->channel,
2078 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2079 			.tx_len = 2,
2080 			.tx_buf = tx,
2081 		};
2082 
2083 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2084 			rlen, pkt_size, rx_byte);
2085 
2086 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2087 		if (ret < 2) {
2088 			pr_err("%s: Set max pkt size failed, %d\n",
2089 				__func__, ret);
2090 			return -EINVAL;
2091 		}
2092 
2093 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2094 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2095 			/* Clear the RDBK_DATA registers */
2096 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2097 					DSI_RDBK_DATA_CTRL_CLR);
2098 			wmb(); /* make sure the RDBK registers are cleared */
2099 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2100 			wmb(); /* release cleared status before transfer */
2101 		}
2102 
2103 		ret = dsi_cmds2buf_tx(msm_host, msg);
2104 		if (ret < msg->tx_len) {
2105 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2106 			return ret;
2107 		}
2108 
2109 		/*
2110 		 * once cmd_dma_done interrupt received,
2111 		 * return data from client is ready and stored
2112 		 * at RDBK_DATA register already
2113 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2114 		 * after that dcs header lost during shift into registers
2115 		 */
2116 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2117 
2118 		if (dlen <= 0)
2119 			return 0;
2120 
2121 		if (short_response)
2122 			break;
2123 
2124 		if (rlen <= data_byte) {
2125 			diff = data_byte - rlen;
2126 			end = 1;
2127 		} else {
2128 			diff = 0;
2129 			rlen -= data_byte;
2130 		}
2131 
2132 		if (!end) {
2133 			dlen -= 2; /* 2 crc */
2134 			dlen -= diff;
2135 			buf += dlen;	/* next start position */
2136 			data_byte = 14;	/* NOT first read */
2137 			if (rlen < data_byte)
2138 				pkt_size += rlen;
2139 			else
2140 				pkt_size += data_byte;
2141 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2142 		}
2143 	}
2144 
2145 	/*
2146 	 * For single Long read, if the requested rlen < 10,
2147 	 * we need to shift the start position of rx
2148 	 * data buffer to skip the bytes which are not
2149 	 * updated.
2150 	 */
2151 	if (pkt_size < 10 && !short_response)
2152 		buf = msm_host->rx_buf + (10 - rlen);
2153 	else
2154 		buf = msm_host->rx_buf;
2155 
2156 	cmd = buf[0];
2157 	switch (cmd) {
2158 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2159 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2160 		ret = 0;
2161 		break;
2162 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2163 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2164 		ret = dsi_short_read1_resp(buf, msg);
2165 		break;
2166 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2167 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2168 		ret = dsi_short_read2_resp(buf, msg);
2169 		break;
2170 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2171 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2172 		ret = dsi_long_read_resp(buf, msg);
2173 		break;
2174 	default:
2175 		pr_warn("%s:Invalid response cmd\n", __func__);
2176 		ret = 0;
2177 	}
2178 
2179 	return ret;
2180 }
2181 
2182 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2183 				  u32 len)
2184 {
2185 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2186 
2187 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2188 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2189 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2190 
2191 	/* Make sure trigger happens */
2192 	wmb();
2193 }
2194 
2195 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
2196 	struct msm_dsi_pll *src_pll)
2197 {
2198 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2199 	struct clk *byte_clk_provider, *pixel_clk_provider;
2200 	int ret;
2201 
2202 	ret = msm_dsi_pll_get_clk_provider(src_pll,
2203 				&byte_clk_provider, &pixel_clk_provider);
2204 	if (ret) {
2205 		pr_info("%s: can't get provider from pll, don't set parent\n",
2206 			__func__);
2207 		return 0;
2208 	}
2209 
2210 	ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
2211 	if (ret) {
2212 		pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
2213 			__func__, ret);
2214 		goto exit;
2215 	}
2216 
2217 	ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
2218 	if (ret) {
2219 		pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
2220 			__func__, ret);
2221 		goto exit;
2222 	}
2223 
2224 	if (msm_host->dsi_clk_src) {
2225 		ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
2226 		if (ret) {
2227 			pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
2228 				__func__, ret);
2229 			goto exit;
2230 		}
2231 	}
2232 
2233 	if (msm_host->esc_clk_src) {
2234 		ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
2235 		if (ret) {
2236 			pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
2237 				__func__, ret);
2238 			goto exit;
2239 		}
2240 	}
2241 
2242 exit:
2243 	return ret;
2244 }
2245 
2246 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2247 {
2248 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2249 
2250 	DBG("");
2251 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2252 	/* Make sure fully reset */
2253 	wmb();
2254 	udelay(1000);
2255 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2256 	udelay(100);
2257 }
2258 
2259 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2260 			struct msm_dsi_phy_clk_request *clk_req,
2261 			bool is_dual_dsi)
2262 {
2263 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2264 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2265 	int ret;
2266 
2267 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
2268 	if (ret) {
2269 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2270 		return;
2271 	}
2272 
2273 	clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2274 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2275 }
2276 
2277 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2278 {
2279 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2280 
2281 	dsi_op_mode_config(msm_host,
2282 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2283 
2284 	/* TODO: clock should be turned off for command mode,
2285 	 * and only turned on before MDP START.
2286 	 * This part of code should be enabled once mdp driver support it.
2287 	 */
2288 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2289 	 *	dsi_link_clk_disable(msm_host);
2290 	 *	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2291 	 * }
2292 	 */
2293 	msm_host->enabled = true;
2294 	return 0;
2295 }
2296 
2297 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2298 {
2299 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2300 
2301 	msm_host->enabled = false;
2302 	dsi_op_mode_config(msm_host,
2303 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2304 
2305 	/* Since we have disabled INTF, the video engine won't stop so that
2306 	 * the cmd engine will be blocked.
2307 	 * Reset to disable video engine so that we can send off cmd.
2308 	 */
2309 	dsi_sw_reset(msm_host);
2310 
2311 	return 0;
2312 }
2313 
2314 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2315 {
2316 	enum sfpb_ahb_arb_master_port_en en;
2317 
2318 	if (!msm_host->sfpb)
2319 		return;
2320 
2321 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2322 
2323 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2324 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2325 			SFPB_GPREG_MASTER_PORT_EN(en));
2326 }
2327 
2328 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2329 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2330 			bool is_dual_dsi)
2331 {
2332 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2333 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2334 	int ret = 0;
2335 
2336 	mutex_lock(&msm_host->dev_mutex);
2337 	if (msm_host->power_on) {
2338 		DBG("dsi host already on");
2339 		goto unlock_ret;
2340 	}
2341 
2342 	msm_dsi_sfpb_config(msm_host, true);
2343 
2344 	ret = dsi_host_regulator_enable(msm_host);
2345 	if (ret) {
2346 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2347 			__func__, ret);
2348 		goto unlock_ret;
2349 	}
2350 
2351 	pm_runtime_get_sync(&msm_host->pdev->dev);
2352 	ret = cfg_hnd->ops->link_clk_enable(msm_host);
2353 	if (ret) {
2354 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2355 		       __func__, ret);
2356 		goto fail_disable_reg;
2357 	}
2358 
2359 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2360 	if (ret) {
2361 		pr_err("%s: failed to set pinctrl default state, %d\n",
2362 			__func__, ret);
2363 		goto fail_disable_clk;
2364 	}
2365 
2366 	dsi_timing_setup(msm_host, is_dual_dsi);
2367 	dsi_sw_reset(msm_host);
2368 	dsi_ctrl_config(msm_host, true, phy_shared_timings);
2369 
2370 	if (msm_host->disp_en_gpio)
2371 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2372 
2373 	msm_host->power_on = true;
2374 	mutex_unlock(&msm_host->dev_mutex);
2375 
2376 	return 0;
2377 
2378 fail_disable_clk:
2379 	cfg_hnd->ops->link_clk_disable(msm_host);
2380 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2381 fail_disable_reg:
2382 	dsi_host_regulator_disable(msm_host);
2383 unlock_ret:
2384 	mutex_unlock(&msm_host->dev_mutex);
2385 	return ret;
2386 }
2387 
2388 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2389 {
2390 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2391 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2392 
2393 	mutex_lock(&msm_host->dev_mutex);
2394 	if (!msm_host->power_on) {
2395 		DBG("dsi host already off");
2396 		goto unlock_ret;
2397 	}
2398 
2399 	dsi_ctrl_config(msm_host, false, NULL);
2400 
2401 	if (msm_host->disp_en_gpio)
2402 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2403 
2404 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2405 
2406 	cfg_hnd->ops->link_clk_disable(msm_host);
2407 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2408 
2409 	dsi_host_regulator_disable(msm_host);
2410 
2411 	msm_dsi_sfpb_config(msm_host, false);
2412 
2413 	DBG("-");
2414 
2415 	msm_host->power_on = false;
2416 
2417 unlock_ret:
2418 	mutex_unlock(&msm_host->dev_mutex);
2419 	return 0;
2420 }
2421 
2422 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2423 					struct drm_display_mode *mode)
2424 {
2425 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2426 
2427 	if (msm_host->mode) {
2428 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2429 		msm_host->mode = NULL;
2430 	}
2431 
2432 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2433 	if (!msm_host->mode) {
2434 		pr_err("%s: cannot duplicate mode\n", __func__);
2435 		return -ENOMEM;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
2441 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host,
2442 				unsigned long *panel_flags)
2443 {
2444 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2445 	struct drm_panel *panel;
2446 
2447 	panel = of_drm_find_panel(msm_host->device_node);
2448 	if (panel_flags)
2449 			*panel_flags = msm_host->mode_flags;
2450 
2451 	return panel;
2452 }
2453 
2454 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2455 {
2456 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2457 
2458 	return of_drm_find_bridge(msm_host->device_node);
2459 }
2460