1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of_device.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_opp.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spinlock.h> 21 22 #include <video/mipi_display.h> 23 24 #include "dsi.h" 25 #include "dsi.xml.h" 26 #include "sfpb.xml.h" 27 #include "dsi_cfg.h" 28 #include "msm_kms.h" 29 #include "msm_gem.h" 30 #include "phy/dsi_phy.h" 31 32 #define DSI_RESET_TOGGLE_DELAY_MS 20 33 34 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 35 { 36 u32 ver; 37 38 if (!major || !minor) 39 return -EINVAL; 40 41 /* 42 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 43 * makes all other registers 4-byte shifted down. 44 * 45 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 46 * older, we read the DSI_VERSION register without any shift(offset 47 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 48 * the case of DSI6G, this has to be zero (the offset points to a 49 * scratch register which we never touch) 50 */ 51 52 ver = msm_readl(base + REG_DSI_VERSION); 53 if (ver) { 54 /* older dsi host, there is no register shift */ 55 ver = FIELD(ver, DSI_VERSION_MAJOR); 56 if (ver <= MSM_DSI_VER_MAJOR_V2) { 57 /* old versions */ 58 *major = ver; 59 *minor = 0; 60 return 0; 61 } else { 62 return -EINVAL; 63 } 64 } else { 65 /* 66 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 67 * registers are shifted down, read DSI_VERSION again with 68 * the shifted offset 69 */ 70 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 71 ver = FIELD(ver, DSI_VERSION_MAJOR); 72 if (ver == MSM_DSI_VER_MAJOR_6G) { 73 /* 6G version */ 74 *major = ver; 75 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 76 return 0; 77 } else { 78 return -EINVAL; 79 } 80 } 81 } 82 83 #define DSI_ERR_STATE_ACK 0x0000 84 #define DSI_ERR_STATE_TIMEOUT 0x0001 85 #define DSI_ERR_STATE_DLN0_PHY 0x0002 86 #define DSI_ERR_STATE_FIFO 0x0004 87 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 88 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 89 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 90 91 #define DSI_CLK_CTRL_ENABLE_CLKS \ 92 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 93 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 94 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 95 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 96 97 struct msm_dsi_host { 98 struct mipi_dsi_host base; 99 100 struct platform_device *pdev; 101 struct drm_device *dev; 102 103 int id; 104 105 void __iomem *ctrl_base; 106 phys_addr_t ctrl_size; 107 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; 108 109 int num_bus_clks; 110 struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX]; 111 112 struct clk *byte_clk; 113 struct clk *esc_clk; 114 struct clk *pixel_clk; 115 struct clk *byte_clk_src; 116 struct clk *pixel_clk_src; 117 struct clk *byte_intf_clk; 118 119 unsigned long byte_clk_rate; 120 unsigned long pixel_clk_rate; 121 unsigned long esc_clk_rate; 122 123 /* DSI v2 specific clocks */ 124 struct clk *src_clk; 125 struct clk *esc_clk_src; 126 struct clk *dsi_clk_src; 127 128 unsigned long src_clk_rate; 129 130 struct gpio_desc *disp_en_gpio; 131 struct gpio_desc *te_gpio; 132 133 const struct msm_dsi_cfg_handler *cfg_hnd; 134 135 struct completion dma_comp; 136 struct completion video_comp; 137 struct mutex dev_mutex; 138 struct mutex cmd_mutex; 139 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 140 141 u32 err_work_state; 142 struct work_struct err_work; 143 struct work_struct hpd_work; 144 struct workqueue_struct *workqueue; 145 146 /* DSI 6G TX buffer*/ 147 struct drm_gem_object *tx_gem_obj; 148 149 /* DSI v2 TX buffer */ 150 void *tx_buf; 151 dma_addr_t tx_buf_paddr; 152 153 int tx_size; 154 155 u8 *rx_buf; 156 157 struct regmap *sfpb; 158 159 struct drm_display_mode *mode; 160 161 /* connected device info */ 162 struct device_node *device_node; 163 unsigned int channel; 164 unsigned int lanes; 165 enum mipi_dsi_pixel_format format; 166 unsigned long mode_flags; 167 168 /* lane data parsed via DT */ 169 int dlane_swap; 170 int num_data_lanes; 171 172 /* from phy DT */ 173 bool cphy_mode; 174 175 u32 dma_cmd_ctrl_restore; 176 177 bool registered; 178 bool power_on; 179 bool enabled; 180 int irq; 181 }; 182 183 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 184 { 185 switch (fmt) { 186 case MIPI_DSI_FMT_RGB565: return 16; 187 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 188 case MIPI_DSI_FMT_RGB666: 189 case MIPI_DSI_FMT_RGB888: 190 default: return 24; 191 } 192 } 193 194 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 195 { 196 return msm_readl(msm_host->ctrl_base + reg); 197 } 198 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 199 { 200 msm_writel(data, msm_host->ctrl_base + reg); 201 } 202 203 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); 204 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); 205 206 static const struct msm_dsi_cfg_handler *dsi_get_config( 207 struct msm_dsi_host *msm_host) 208 { 209 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 210 struct device *dev = &msm_host->pdev->dev; 211 struct clk *ahb_clk; 212 int ret; 213 u32 major = 0, minor = 0; 214 215 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 216 if (IS_ERR(ahb_clk)) { 217 pr_err("%s: cannot get interface clock\n", __func__); 218 goto exit; 219 } 220 221 pm_runtime_get_sync(dev); 222 223 ret = clk_prepare_enable(ahb_clk); 224 if (ret) { 225 pr_err("%s: unable to enable ahb_clk\n", __func__); 226 goto runtime_put; 227 } 228 229 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 230 if (ret) { 231 pr_err("%s: Invalid version\n", __func__); 232 goto disable_clks; 233 } 234 235 cfg_hnd = msm_dsi_cfg_get(major, minor); 236 237 DBG("%s: Version %x:%x\n", __func__, major, minor); 238 239 disable_clks: 240 clk_disable_unprepare(ahb_clk); 241 runtime_put: 242 pm_runtime_put_sync(dev); 243 exit: 244 return cfg_hnd; 245 } 246 247 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 248 { 249 return container_of(host, struct msm_dsi_host, base); 250 } 251 252 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) 253 { 254 struct regulator_bulk_data *s = msm_host->supplies; 255 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 256 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 257 int i; 258 259 DBG(""); 260 for (i = num - 1; i >= 0; i--) 261 if (regs[i].disable_load >= 0) 262 regulator_set_load(s[i].consumer, 263 regs[i].disable_load); 264 265 regulator_bulk_disable(num, s); 266 } 267 268 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) 269 { 270 struct regulator_bulk_data *s = msm_host->supplies; 271 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 272 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 273 int ret, i; 274 275 DBG(""); 276 for (i = 0; i < num; i++) { 277 if (regs[i].enable_load >= 0) { 278 ret = regulator_set_load(s[i].consumer, 279 regs[i].enable_load); 280 if (ret < 0) { 281 pr_err("regulator %d set op mode failed, %d\n", 282 i, ret); 283 goto fail; 284 } 285 } 286 } 287 288 ret = regulator_bulk_enable(num, s); 289 if (ret < 0) { 290 pr_err("regulator enable failed, %d\n", ret); 291 goto fail; 292 } 293 294 return 0; 295 296 fail: 297 for (i--; i >= 0; i--) 298 regulator_set_load(s[i].consumer, regs[i].disable_load); 299 return ret; 300 } 301 302 static int dsi_regulator_init(struct msm_dsi_host *msm_host) 303 { 304 struct regulator_bulk_data *s = msm_host->supplies; 305 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 306 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 307 int i, ret; 308 309 for (i = 0; i < num; i++) 310 s[i].supply = regs[i].name; 311 312 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); 313 if (ret < 0) { 314 pr_err("%s: failed to init regulator, ret=%d\n", 315 __func__, ret); 316 return ret; 317 } 318 319 return 0; 320 } 321 322 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 323 { 324 struct platform_device *pdev = msm_host->pdev; 325 int ret = 0; 326 327 msm_host->src_clk = msm_clk_get(pdev, "src"); 328 329 if (IS_ERR(msm_host->src_clk)) { 330 ret = PTR_ERR(msm_host->src_clk); 331 pr_err("%s: can't find src clock. ret=%d\n", 332 __func__, ret); 333 msm_host->src_clk = NULL; 334 return ret; 335 } 336 337 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 338 if (!msm_host->esc_clk_src) { 339 ret = -ENODEV; 340 pr_err("%s: can't get esc clock parent. ret=%d\n", 341 __func__, ret); 342 return ret; 343 } 344 345 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 346 if (!msm_host->dsi_clk_src) { 347 ret = -ENODEV; 348 pr_err("%s: can't get src clock parent. ret=%d\n", 349 __func__, ret); 350 } 351 352 return ret; 353 } 354 355 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 356 { 357 struct platform_device *pdev = msm_host->pdev; 358 int ret = 0; 359 360 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 361 if (IS_ERR(msm_host->byte_intf_clk)) { 362 ret = PTR_ERR(msm_host->byte_intf_clk); 363 pr_err("%s: can't find byte_intf clock. ret=%d\n", 364 __func__, ret); 365 } 366 367 return ret; 368 } 369 370 static int dsi_clk_init(struct msm_dsi_host *msm_host) 371 { 372 struct platform_device *pdev = msm_host->pdev; 373 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 374 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 375 int i, ret = 0; 376 377 /* get bus clocks */ 378 for (i = 0; i < cfg->num_bus_clks; i++) 379 msm_host->bus_clks[i].id = cfg->bus_clk_names[i]; 380 msm_host->num_bus_clks = cfg->num_bus_clks; 381 382 ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks); 383 if (ret < 0) { 384 dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret); 385 goto exit; 386 } 387 388 /* get link and source clocks */ 389 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 390 if (IS_ERR(msm_host->byte_clk)) { 391 ret = PTR_ERR(msm_host->byte_clk); 392 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 393 __func__, ret); 394 msm_host->byte_clk = NULL; 395 goto exit; 396 } 397 398 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 399 if (IS_ERR(msm_host->pixel_clk)) { 400 ret = PTR_ERR(msm_host->pixel_clk); 401 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 402 __func__, ret); 403 msm_host->pixel_clk = NULL; 404 goto exit; 405 } 406 407 msm_host->esc_clk = msm_clk_get(pdev, "core"); 408 if (IS_ERR(msm_host->esc_clk)) { 409 ret = PTR_ERR(msm_host->esc_clk); 410 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 411 __func__, ret); 412 msm_host->esc_clk = NULL; 413 goto exit; 414 } 415 416 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 417 if (IS_ERR(msm_host->byte_clk_src)) { 418 ret = PTR_ERR(msm_host->byte_clk_src); 419 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 420 goto exit; 421 } 422 423 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 424 if (IS_ERR(msm_host->pixel_clk_src)) { 425 ret = PTR_ERR(msm_host->pixel_clk_src); 426 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 427 goto exit; 428 } 429 430 if (cfg_hnd->ops->clk_init_ver) 431 ret = cfg_hnd->ops->clk_init_ver(msm_host); 432 exit: 433 return ret; 434 } 435 436 int msm_dsi_runtime_suspend(struct device *dev) 437 { 438 struct platform_device *pdev = to_platform_device(dev); 439 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 440 struct mipi_dsi_host *host = msm_dsi->host; 441 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 442 443 if (!msm_host->cfg_hnd) 444 return 0; 445 446 clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks); 447 448 return 0; 449 } 450 451 int msm_dsi_runtime_resume(struct device *dev) 452 { 453 struct platform_device *pdev = to_platform_device(dev); 454 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 455 struct mipi_dsi_host *host = msm_dsi->host; 456 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 457 458 if (!msm_host->cfg_hnd) 459 return 0; 460 461 return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks); 462 } 463 464 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) 465 { 466 unsigned long byte_intf_rate; 467 int ret; 468 469 DBG("Set clk rates: pclk=%d, byteclk=%lu", 470 msm_host->mode->clock, msm_host->byte_clk_rate); 471 472 ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, 473 msm_host->byte_clk_rate); 474 if (ret) { 475 pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); 476 return ret; 477 } 478 479 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 480 if (ret) { 481 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 482 return ret; 483 } 484 485 if (msm_host->byte_intf_clk) { 486 /* For CPHY, byte_intf_clk is same as byte_clk */ 487 if (msm_host->cphy_mode) 488 byte_intf_rate = msm_host->byte_clk_rate; 489 else 490 byte_intf_rate = msm_host->byte_clk_rate / 2; 491 492 ret = clk_set_rate(msm_host->byte_intf_clk, byte_intf_rate); 493 if (ret) { 494 pr_err("%s: Failed to set rate byte intf clk, %d\n", 495 __func__, ret); 496 return ret; 497 } 498 } 499 500 return 0; 501 } 502 503 504 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 505 { 506 int ret; 507 508 ret = clk_prepare_enable(msm_host->esc_clk); 509 if (ret) { 510 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 511 goto error; 512 } 513 514 ret = clk_prepare_enable(msm_host->byte_clk); 515 if (ret) { 516 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 517 goto byte_clk_err; 518 } 519 520 ret = clk_prepare_enable(msm_host->pixel_clk); 521 if (ret) { 522 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 523 goto pixel_clk_err; 524 } 525 526 ret = clk_prepare_enable(msm_host->byte_intf_clk); 527 if (ret) { 528 pr_err("%s: Failed to enable byte intf clk\n", 529 __func__); 530 goto byte_intf_clk_err; 531 } 532 533 return 0; 534 535 byte_intf_clk_err: 536 clk_disable_unprepare(msm_host->pixel_clk); 537 pixel_clk_err: 538 clk_disable_unprepare(msm_host->byte_clk); 539 byte_clk_err: 540 clk_disable_unprepare(msm_host->esc_clk); 541 error: 542 return ret; 543 } 544 545 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) 546 { 547 int ret; 548 549 DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu", 550 msm_host->mode->clock, msm_host->byte_clk_rate, 551 msm_host->esc_clk_rate, msm_host->src_clk_rate); 552 553 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 554 if (ret) { 555 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 556 return ret; 557 } 558 559 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 560 if (ret) { 561 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 562 return ret; 563 } 564 565 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 566 if (ret) { 567 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 568 return ret; 569 } 570 571 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 572 if (ret) { 573 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 574 return ret; 575 } 576 577 return 0; 578 } 579 580 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 581 { 582 int ret; 583 584 ret = clk_prepare_enable(msm_host->byte_clk); 585 if (ret) { 586 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 587 goto error; 588 } 589 590 ret = clk_prepare_enable(msm_host->esc_clk); 591 if (ret) { 592 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 593 goto esc_clk_err; 594 } 595 596 ret = clk_prepare_enable(msm_host->src_clk); 597 if (ret) { 598 pr_err("%s: Failed to enable dsi src clk\n", __func__); 599 goto src_clk_err; 600 } 601 602 ret = clk_prepare_enable(msm_host->pixel_clk); 603 if (ret) { 604 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 605 goto pixel_clk_err; 606 } 607 608 return 0; 609 610 pixel_clk_err: 611 clk_disable_unprepare(msm_host->src_clk); 612 src_clk_err: 613 clk_disable_unprepare(msm_host->esc_clk); 614 esc_clk_err: 615 clk_disable_unprepare(msm_host->byte_clk); 616 error: 617 return ret; 618 } 619 620 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 621 { 622 /* Drop the performance state vote */ 623 dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); 624 clk_disable_unprepare(msm_host->esc_clk); 625 clk_disable_unprepare(msm_host->pixel_clk); 626 clk_disable_unprepare(msm_host->byte_intf_clk); 627 clk_disable_unprepare(msm_host->byte_clk); 628 } 629 630 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 631 { 632 clk_disable_unprepare(msm_host->pixel_clk); 633 clk_disable_unprepare(msm_host->src_clk); 634 clk_disable_unprepare(msm_host->esc_clk); 635 clk_disable_unprepare(msm_host->byte_clk); 636 } 637 638 static unsigned long dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 639 { 640 struct drm_display_mode *mode = msm_host->mode; 641 unsigned long pclk_rate; 642 643 pclk_rate = mode->clock * 1000; 644 645 /* 646 * For bonded DSI mode, the current DRM mode has the complete width of the 647 * panel. Since, the complete panel is driven by two DSI controllers, 648 * the clock rates have to be split between the two dsi controllers. 649 * Adjust the byte and pixel clock rates for each dsi host accordingly. 650 */ 651 if (is_bonded_dsi) 652 pclk_rate /= 2; 653 654 return pclk_rate; 655 } 656 657 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 658 { 659 u8 lanes = msm_host->lanes; 660 u32 bpp = dsi_get_bpp(msm_host->format); 661 unsigned long pclk_rate = dsi_get_pclk_rate(msm_host, is_bonded_dsi); 662 u64 pclk_bpp = (u64)pclk_rate * bpp; 663 664 if (lanes == 0) { 665 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 666 lanes = 1; 667 } 668 669 /* CPHY "byte_clk" is in units of 16 bits */ 670 if (msm_host->cphy_mode) 671 do_div(pclk_bpp, (16 * lanes)); 672 else 673 do_div(pclk_bpp, (8 * lanes)); 674 675 msm_host->pixel_clk_rate = pclk_rate; 676 msm_host->byte_clk_rate = pclk_bpp; 677 678 DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate, 679 msm_host->byte_clk_rate); 680 681 } 682 683 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 684 { 685 if (!msm_host->mode) { 686 pr_err("%s: mode not set\n", __func__); 687 return -EINVAL; 688 } 689 690 dsi_calc_pclk(msm_host, is_bonded_dsi); 691 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 692 return 0; 693 } 694 695 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 696 { 697 u32 bpp = dsi_get_bpp(msm_host->format); 698 u64 pclk_bpp; 699 unsigned int esc_mhz, esc_div; 700 unsigned long byte_mhz; 701 702 dsi_calc_pclk(msm_host, is_bonded_dsi); 703 704 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_bonded_dsi) * bpp; 705 do_div(pclk_bpp, 8); 706 msm_host->src_clk_rate = pclk_bpp; 707 708 /* 709 * esc clock is byte clock followed by a 4 bit divider, 710 * we need to find an escape clock frequency within the 711 * mipi DSI spec range within the maximum divider limit 712 * We iterate here between an escape clock frequencey 713 * between 20 Mhz to 5 Mhz and pick up the first one 714 * that can be supported by our divider 715 */ 716 717 byte_mhz = msm_host->byte_clk_rate / 1000000; 718 719 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 720 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 721 722 /* 723 * TODO: Ideally, we shouldn't know what sort of divider 724 * is available in mmss_cc, we're just assuming that 725 * it'll always be a 4 bit divider. Need to come up with 726 * a better way here. 727 */ 728 if (esc_div >= 1 && esc_div <= 16) 729 break; 730 } 731 732 if (esc_mhz < 5) 733 return -EINVAL; 734 735 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 736 737 DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate, 738 msm_host->src_clk_rate); 739 740 return 0; 741 } 742 743 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 744 { 745 u32 intr; 746 unsigned long flags; 747 748 spin_lock_irqsave(&msm_host->intr_lock, flags); 749 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 750 751 if (enable) 752 intr |= mask; 753 else 754 intr &= ~mask; 755 756 DBG("intr=%x enable=%d", intr, enable); 757 758 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 759 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 760 } 761 762 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 763 { 764 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 765 return BURST_MODE; 766 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 767 return NON_BURST_SYNCH_PULSE; 768 769 return NON_BURST_SYNCH_EVENT; 770 } 771 772 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 773 const enum mipi_dsi_pixel_format mipi_fmt) 774 { 775 switch (mipi_fmt) { 776 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 777 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 778 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 779 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 780 default: return VID_DST_FORMAT_RGB888; 781 } 782 } 783 784 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 785 const enum mipi_dsi_pixel_format mipi_fmt) 786 { 787 switch (mipi_fmt) { 788 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 789 case MIPI_DSI_FMT_RGB666_PACKED: 790 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 791 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 792 default: return CMD_DST_FORMAT_RGB888; 793 } 794 } 795 796 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 797 struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy) 798 { 799 u32 flags = msm_host->mode_flags; 800 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 801 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 802 u32 data = 0, lane_ctrl = 0; 803 804 if (!enable) { 805 dsi_write(msm_host, REG_DSI_CTRL, 0); 806 return; 807 } 808 809 if (flags & MIPI_DSI_MODE_VIDEO) { 810 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 811 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 812 if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP) 813 data |= DSI_VID_CFG0_HFP_POWER_STOP; 814 if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP) 815 data |= DSI_VID_CFG0_HBP_POWER_STOP; 816 if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA) 817 data |= DSI_VID_CFG0_HSA_POWER_STOP; 818 /* Always set low power stop mode for BLLP 819 * to let command engine send packets 820 */ 821 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 822 DSI_VID_CFG0_BLLP_POWER_STOP; 823 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 824 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 825 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 826 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 827 828 /* Do not swap RGB colors */ 829 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 830 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 831 } else { 832 /* Do not swap RGB colors */ 833 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 834 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 835 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 836 837 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 838 DSI_CMD_CFG1_WR_MEM_CONTINUE( 839 MIPI_DCS_WRITE_MEMORY_CONTINUE); 840 /* Always insert DCS command */ 841 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 842 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 843 } 844 845 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 846 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 847 DSI_CMD_DMA_CTRL_LOW_POWER); 848 849 data = 0; 850 /* Always assume dedicated TE pin */ 851 data |= DSI_TRIG_CTRL_TE; 852 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 853 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 854 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 855 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 856 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 857 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 858 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 859 860 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 861 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 862 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 863 864 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 865 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 866 phy_shared_timings->clk_pre_inc_by_2) 867 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 868 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 869 870 data = 0; 871 if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET)) 872 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 873 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 874 875 /* allow only ack-err-status to generate interrupt */ 876 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 877 878 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 879 880 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 881 882 data = DSI_CTRL_CLK_EN; 883 884 DBG("lane number=%d", msm_host->lanes); 885 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 886 887 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 888 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 889 890 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { 891 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); 892 893 if (msm_dsi_phy_set_continuous_clock(phy, enable)) 894 lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY; 895 896 dsi_write(msm_host, REG_DSI_LANE_CTRL, 897 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 898 } 899 900 data |= DSI_CTRL_ENABLE; 901 902 dsi_write(msm_host, REG_DSI_CTRL, data); 903 904 if (msm_host->cphy_mode) 905 dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0)); 906 } 907 908 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 909 { 910 struct drm_display_mode *mode = msm_host->mode; 911 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 912 u32 h_total = mode->htotal; 913 u32 v_total = mode->vtotal; 914 u32 hs_end = mode->hsync_end - mode->hsync_start; 915 u32 vs_end = mode->vsync_end - mode->vsync_start; 916 u32 ha_start = h_total - mode->hsync_start; 917 u32 ha_end = ha_start + mode->hdisplay; 918 u32 va_start = v_total - mode->vsync_start; 919 u32 va_end = va_start + mode->vdisplay; 920 u32 hdisplay = mode->hdisplay; 921 u32 wc; 922 923 DBG(""); 924 925 /* 926 * For bonded DSI mode, the current DRM mode has 927 * the complete width of the panel. Since, the complete 928 * panel is driven by two DSI controllers, the horizontal 929 * timings have to be split between the two dsi controllers. 930 * Adjust the DSI host timing values accordingly. 931 */ 932 if (is_bonded_dsi) { 933 h_total /= 2; 934 hs_end /= 2; 935 ha_start /= 2; 936 ha_end /= 2; 937 hdisplay /= 2; 938 } 939 940 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 941 dsi_write(msm_host, REG_DSI_ACTIVE_H, 942 DSI_ACTIVE_H_START(ha_start) | 943 DSI_ACTIVE_H_END(ha_end)); 944 dsi_write(msm_host, REG_DSI_ACTIVE_V, 945 DSI_ACTIVE_V_START(va_start) | 946 DSI_ACTIVE_V_END(va_end)); 947 dsi_write(msm_host, REG_DSI_TOTAL, 948 DSI_TOTAL_H_TOTAL(h_total - 1) | 949 DSI_TOTAL_V_TOTAL(v_total - 1)); 950 951 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 952 DSI_ACTIVE_HSYNC_START(hs_start) | 953 DSI_ACTIVE_HSYNC_END(hs_end)); 954 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 955 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 956 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 957 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 958 } else { /* command mode */ 959 /* image data and 1 byte write_memory_start cmd */ 960 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 961 962 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, 963 DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | 964 DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( 965 msm_host->channel) | 966 DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( 967 MIPI_DSI_DCS_LONG_WRITE)); 968 969 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, 970 DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | 971 DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); 972 } 973 } 974 975 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 976 { 977 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 978 wmb(); /* clocks need to be enabled before reset */ 979 980 dsi_write(msm_host, REG_DSI_RESET, 1); 981 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 982 dsi_write(msm_host, REG_DSI_RESET, 0); 983 } 984 985 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 986 bool video_mode, bool enable) 987 { 988 u32 dsi_ctrl; 989 990 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 991 992 if (!enable) { 993 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 994 DSI_CTRL_CMD_MODE_EN); 995 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 996 DSI_IRQ_MASK_VIDEO_DONE, 0); 997 } else { 998 if (video_mode) { 999 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1000 } else { /* command mode */ 1001 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1002 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1003 } 1004 dsi_ctrl |= DSI_CTRL_ENABLE; 1005 } 1006 1007 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1008 } 1009 1010 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1011 { 1012 u32 data; 1013 1014 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1015 1016 if (mode == 0) 1017 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1018 else 1019 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1020 1021 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1022 } 1023 1024 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1025 { 1026 u32 ret = 0; 1027 struct device *dev = &msm_host->pdev->dev; 1028 1029 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1030 1031 reinit_completion(&msm_host->video_comp); 1032 1033 ret = wait_for_completion_timeout(&msm_host->video_comp, 1034 msecs_to_jiffies(70)); 1035 1036 if (ret == 0) 1037 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1038 1039 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1040 } 1041 1042 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1043 { 1044 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1045 return; 1046 1047 if (msm_host->power_on && msm_host->enabled) { 1048 dsi_wait4video_done(msm_host); 1049 /* delay 4 ms to skip BLLP */ 1050 usleep_range(2000, 4000); 1051 } 1052 } 1053 1054 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1055 { 1056 struct drm_device *dev = msm_host->dev; 1057 struct msm_drm_private *priv = dev->dev_private; 1058 uint64_t iova; 1059 u8 *data; 1060 1061 data = msm_gem_kernel_new(dev, size, MSM_BO_WC, 1062 priv->kms->aspace, 1063 &msm_host->tx_gem_obj, &iova); 1064 1065 if (IS_ERR(data)) { 1066 msm_host->tx_gem_obj = NULL; 1067 return PTR_ERR(data); 1068 } 1069 1070 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1071 1072 msm_host->tx_size = msm_host->tx_gem_obj->size; 1073 1074 return 0; 1075 } 1076 1077 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1078 { 1079 struct drm_device *dev = msm_host->dev; 1080 1081 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1082 &msm_host->tx_buf_paddr, GFP_KERNEL); 1083 if (!msm_host->tx_buf) 1084 return -ENOMEM; 1085 1086 msm_host->tx_size = size; 1087 1088 return 0; 1089 } 1090 1091 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1092 { 1093 struct drm_device *dev = msm_host->dev; 1094 struct msm_drm_private *priv; 1095 1096 /* 1097 * This is possible if we're tearing down before we've had a chance to 1098 * fully initialize. A very real possibility if our probe is deferred, 1099 * in which case we'll hit msm_dsi_host_destroy() without having run 1100 * through the dsi_tx_buf_alloc(). 1101 */ 1102 if (!dev) 1103 return; 1104 1105 priv = dev->dev_private; 1106 if (msm_host->tx_gem_obj) { 1107 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1108 drm_gem_object_put(msm_host->tx_gem_obj); 1109 msm_host->tx_gem_obj = NULL; 1110 } 1111 1112 if (msm_host->tx_buf) 1113 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1114 msm_host->tx_buf_paddr); 1115 } 1116 1117 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1118 { 1119 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1120 } 1121 1122 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1123 { 1124 return msm_host->tx_buf; 1125 } 1126 1127 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1128 { 1129 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1130 } 1131 1132 /* 1133 * prepare cmd buffer to be txed 1134 */ 1135 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1136 const struct mipi_dsi_msg *msg) 1137 { 1138 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1139 struct mipi_dsi_packet packet; 1140 int len; 1141 int ret; 1142 u8 *data; 1143 1144 ret = mipi_dsi_create_packet(&packet, msg); 1145 if (ret) { 1146 pr_err("%s: create packet failed, %d\n", __func__, ret); 1147 return ret; 1148 } 1149 len = (packet.size + 3) & (~0x3); 1150 1151 if (len > msm_host->tx_size) { 1152 pr_err("%s: packet size is too big\n", __func__); 1153 return -EINVAL; 1154 } 1155 1156 data = cfg_hnd->ops->tx_buf_get(msm_host); 1157 if (IS_ERR(data)) { 1158 ret = PTR_ERR(data); 1159 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1160 return ret; 1161 } 1162 1163 /* MSM specific command format in memory */ 1164 data[0] = packet.header[1]; 1165 data[1] = packet.header[2]; 1166 data[2] = packet.header[0]; 1167 data[3] = BIT(7); /* Last packet */ 1168 if (mipi_dsi_packet_format_is_long(msg->type)) 1169 data[3] |= BIT(6); 1170 if (msg->rx_buf && msg->rx_len) 1171 data[3] |= BIT(5); 1172 1173 /* Long packet */ 1174 if (packet.payload && packet.payload_length) 1175 memcpy(data + 4, packet.payload, packet.payload_length); 1176 1177 /* Append 0xff to the end */ 1178 if (packet.size < len) 1179 memset(data + packet.size, 0xff, len - packet.size); 1180 1181 if (cfg_hnd->ops->tx_buf_put) 1182 cfg_hnd->ops->tx_buf_put(msm_host); 1183 1184 return len; 1185 } 1186 1187 /* 1188 * dsi_short_read1_resp: 1 parameter 1189 */ 1190 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1191 { 1192 u8 *data = msg->rx_buf; 1193 if (data && (msg->rx_len >= 1)) { 1194 *data = buf[1]; /* strip out dcs type */ 1195 return 1; 1196 } else { 1197 pr_err("%s: read data does not match with rx_buf len %zu\n", 1198 __func__, msg->rx_len); 1199 return -EINVAL; 1200 } 1201 } 1202 1203 /* 1204 * dsi_short_read2_resp: 2 parameter 1205 */ 1206 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1207 { 1208 u8 *data = msg->rx_buf; 1209 if (data && (msg->rx_len >= 2)) { 1210 data[0] = buf[1]; /* strip out dcs type */ 1211 data[1] = buf[2]; 1212 return 2; 1213 } else { 1214 pr_err("%s: read data does not match with rx_buf len %zu\n", 1215 __func__, msg->rx_len); 1216 return -EINVAL; 1217 } 1218 } 1219 1220 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1221 { 1222 /* strip out 4 byte dcs header */ 1223 if (msg->rx_buf && msg->rx_len) 1224 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1225 1226 return msg->rx_len; 1227 } 1228 1229 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1230 { 1231 struct drm_device *dev = msm_host->dev; 1232 struct msm_drm_private *priv = dev->dev_private; 1233 1234 if (!dma_base) 1235 return -EINVAL; 1236 1237 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1238 priv->kms->aspace, dma_base); 1239 } 1240 1241 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1242 { 1243 if (!dma_base) 1244 return -EINVAL; 1245 1246 *dma_base = msm_host->tx_buf_paddr; 1247 return 0; 1248 } 1249 1250 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1251 { 1252 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1253 int ret; 1254 uint64_t dma_base; 1255 bool triggered; 1256 1257 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1258 if (ret) { 1259 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1260 return ret; 1261 } 1262 1263 reinit_completion(&msm_host->dma_comp); 1264 1265 dsi_wait4video_eng_busy(msm_host); 1266 1267 triggered = msm_dsi_manager_cmd_xfer_trigger( 1268 msm_host->id, dma_base, len); 1269 if (triggered) { 1270 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1271 msecs_to_jiffies(200)); 1272 DBG("ret=%d", ret); 1273 if (ret == 0) 1274 ret = -ETIMEDOUT; 1275 else 1276 ret = len; 1277 } else 1278 ret = len; 1279 1280 return ret; 1281 } 1282 1283 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1284 u8 *buf, int rx_byte, int pkt_size) 1285 { 1286 u32 *temp, data; 1287 int i, j = 0, cnt; 1288 u32 read_cnt; 1289 u8 reg[16]; 1290 int repeated_bytes = 0; 1291 int buf_offset = buf - msm_host->rx_buf; 1292 1293 temp = (u32 *)reg; 1294 cnt = (rx_byte + 3) >> 2; 1295 if (cnt > 4) 1296 cnt = 4; /* 4 x 32 bits registers only */ 1297 1298 if (rx_byte == 4) 1299 read_cnt = 4; 1300 else 1301 read_cnt = pkt_size + 6; 1302 1303 /* 1304 * In case of multiple reads from the panel, after the first read, there 1305 * is possibility that there are some bytes in the payload repeating in 1306 * the RDBK_DATA registers. Since we read all the parameters from the 1307 * panel right from the first byte for every pass. We need to skip the 1308 * repeating bytes and then append the new parameters to the rx buffer. 1309 */ 1310 if (read_cnt > 16) { 1311 int bytes_shifted; 1312 /* Any data more than 16 bytes will be shifted out. 1313 * The temp read buffer should already contain these bytes. 1314 * The remaining bytes in read buffer are the repeated bytes. 1315 */ 1316 bytes_shifted = read_cnt - 16; 1317 repeated_bytes = buf_offset - bytes_shifted; 1318 } 1319 1320 for (i = cnt - 1; i >= 0; i--) { 1321 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1322 *temp++ = ntohl(data); /* to host byte order */ 1323 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1324 } 1325 1326 for (i = repeated_bytes; i < 16; i++) 1327 buf[j++] = reg[i]; 1328 1329 return j; 1330 } 1331 1332 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1333 const struct mipi_dsi_msg *msg) 1334 { 1335 int len, ret; 1336 int bllp_len = msm_host->mode->hdisplay * 1337 dsi_get_bpp(msm_host->format) / 8; 1338 1339 len = dsi_cmd_dma_add(msm_host, msg); 1340 if (!len) { 1341 pr_err("%s: failed to add cmd type = 0x%x\n", 1342 __func__, msg->type); 1343 return -EINVAL; 1344 } 1345 1346 /* for video mode, do not send cmds more than 1347 * one pixel line, since it only transmit it 1348 * during BLLP. 1349 */ 1350 /* TODO: if the command is sent in LP mode, the bit rate is only 1351 * half of esc clk rate. In this case, if the video is already 1352 * actively streaming, we need to check more carefully if the 1353 * command can be fit into one BLLP. 1354 */ 1355 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1356 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1357 __func__, len); 1358 return -EINVAL; 1359 } 1360 1361 ret = dsi_cmd_dma_tx(msm_host, len); 1362 if (ret < len) { 1363 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", 1364 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); 1365 return -ECOMM; 1366 } 1367 1368 return len; 1369 } 1370 1371 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) 1372 { 1373 u32 data0, data1; 1374 1375 data0 = dsi_read(msm_host, REG_DSI_CTRL); 1376 data1 = data0; 1377 data1 &= ~DSI_CTRL_ENABLE; 1378 dsi_write(msm_host, REG_DSI_CTRL, data1); 1379 /* 1380 * dsi controller need to be disabled before 1381 * clocks turned on 1382 */ 1383 wmb(); 1384 1385 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1386 wmb(); /* make sure clocks enabled */ 1387 1388 /* dsi controller can only be reset while clocks are running */ 1389 dsi_write(msm_host, REG_DSI_RESET, 1); 1390 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1391 dsi_write(msm_host, REG_DSI_RESET, 0); 1392 wmb(); /* controller out of reset */ 1393 dsi_write(msm_host, REG_DSI_CTRL, data0); 1394 wmb(); /* make sure dsi controller enabled again */ 1395 } 1396 1397 static void dsi_hpd_worker(struct work_struct *work) 1398 { 1399 struct msm_dsi_host *msm_host = 1400 container_of(work, struct msm_dsi_host, hpd_work); 1401 1402 drm_helper_hpd_irq_event(msm_host->dev); 1403 } 1404 1405 static void dsi_err_worker(struct work_struct *work) 1406 { 1407 struct msm_dsi_host *msm_host = 1408 container_of(work, struct msm_dsi_host, err_work); 1409 u32 status = msm_host->err_work_state; 1410 1411 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1412 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1413 dsi_sw_reset_restore(msm_host); 1414 1415 /* It is safe to clear here because error irq is disabled. */ 1416 msm_host->err_work_state = 0; 1417 1418 /* enable dsi error interrupt */ 1419 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1420 } 1421 1422 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1423 { 1424 u32 status; 1425 1426 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1427 1428 if (status) { 1429 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1430 /* Writing of an extra 0 needed to clear error bits */ 1431 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1432 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1433 } 1434 } 1435 1436 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1437 { 1438 u32 status; 1439 1440 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1441 1442 if (status) { 1443 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1444 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1445 } 1446 } 1447 1448 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1449 { 1450 u32 status; 1451 1452 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1453 1454 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1455 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1456 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1457 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1458 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1459 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1460 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1461 } 1462 } 1463 1464 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1465 { 1466 u32 status; 1467 1468 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1469 1470 /* fifo underflow, overflow */ 1471 if (status) { 1472 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1473 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1474 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1475 msm_host->err_work_state |= 1476 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1477 } 1478 } 1479 1480 static void dsi_status(struct msm_dsi_host *msm_host) 1481 { 1482 u32 status; 1483 1484 status = dsi_read(msm_host, REG_DSI_STATUS0); 1485 1486 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1487 dsi_write(msm_host, REG_DSI_STATUS0, status); 1488 msm_host->err_work_state |= 1489 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1490 } 1491 } 1492 1493 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1494 { 1495 u32 status; 1496 1497 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1498 1499 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1500 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1501 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1502 } 1503 } 1504 1505 static void dsi_error(struct msm_dsi_host *msm_host) 1506 { 1507 /* disable dsi error interrupt */ 1508 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1509 1510 dsi_clk_status(msm_host); 1511 dsi_fifo_status(msm_host); 1512 dsi_ack_err_status(msm_host); 1513 dsi_timeout_status(msm_host); 1514 dsi_status(msm_host); 1515 dsi_dln0_phy_err(msm_host); 1516 1517 queue_work(msm_host->workqueue, &msm_host->err_work); 1518 } 1519 1520 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1521 { 1522 struct msm_dsi_host *msm_host = ptr; 1523 u32 isr; 1524 unsigned long flags; 1525 1526 if (!msm_host->ctrl_base) 1527 return IRQ_HANDLED; 1528 1529 spin_lock_irqsave(&msm_host->intr_lock, flags); 1530 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1531 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1532 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1533 1534 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1535 1536 if (isr & DSI_IRQ_ERROR) 1537 dsi_error(msm_host); 1538 1539 if (isr & DSI_IRQ_VIDEO_DONE) 1540 complete(&msm_host->video_comp); 1541 1542 if (isr & DSI_IRQ_CMD_DMA_DONE) 1543 complete(&msm_host->dma_comp); 1544 1545 return IRQ_HANDLED; 1546 } 1547 1548 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1549 struct device *panel_device) 1550 { 1551 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1552 "disp-enable", 1553 GPIOD_OUT_LOW); 1554 if (IS_ERR(msm_host->disp_en_gpio)) { 1555 DBG("cannot get disp-enable-gpios %ld", 1556 PTR_ERR(msm_host->disp_en_gpio)); 1557 return PTR_ERR(msm_host->disp_en_gpio); 1558 } 1559 1560 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1561 GPIOD_IN); 1562 if (IS_ERR(msm_host->te_gpio)) { 1563 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1564 return PTR_ERR(msm_host->te_gpio); 1565 } 1566 1567 return 0; 1568 } 1569 1570 static int dsi_host_attach(struct mipi_dsi_host *host, 1571 struct mipi_dsi_device *dsi) 1572 { 1573 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1574 int ret; 1575 1576 if (dsi->lanes > msm_host->num_data_lanes) 1577 return -EINVAL; 1578 1579 msm_host->channel = dsi->channel; 1580 msm_host->lanes = dsi->lanes; 1581 msm_host->format = dsi->format; 1582 msm_host->mode_flags = dsi->mode_flags; 1583 1584 /* Some gpios defined in panel DT need to be controlled by host */ 1585 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1586 if (ret) 1587 return ret; 1588 1589 ret = dsi_dev_attach(msm_host->pdev); 1590 if (ret) 1591 return ret; 1592 1593 DBG("id=%d", msm_host->id); 1594 if (msm_host->dev) 1595 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1596 1597 return 0; 1598 } 1599 1600 static int dsi_host_detach(struct mipi_dsi_host *host, 1601 struct mipi_dsi_device *dsi) 1602 { 1603 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1604 1605 dsi_dev_detach(msm_host->pdev); 1606 1607 msm_host->device_node = NULL; 1608 1609 DBG("id=%d", msm_host->id); 1610 if (msm_host->dev) 1611 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1612 1613 return 0; 1614 } 1615 1616 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1617 const struct mipi_dsi_msg *msg) 1618 { 1619 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1620 int ret; 1621 1622 if (!msg || !msm_host->power_on) 1623 return -EINVAL; 1624 1625 mutex_lock(&msm_host->cmd_mutex); 1626 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1627 mutex_unlock(&msm_host->cmd_mutex); 1628 1629 return ret; 1630 } 1631 1632 static const struct mipi_dsi_host_ops dsi_host_ops = { 1633 .attach = dsi_host_attach, 1634 .detach = dsi_host_detach, 1635 .transfer = dsi_host_transfer, 1636 }; 1637 1638 /* 1639 * List of supported physical to logical lane mappings. 1640 * For example, the 2nd entry represents the following mapping: 1641 * 1642 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1643 */ 1644 static const int supported_data_lane_swaps[][4] = { 1645 { 0, 1, 2, 3 }, 1646 { 3, 0, 1, 2 }, 1647 { 2, 3, 0, 1 }, 1648 { 1, 2, 3, 0 }, 1649 { 0, 3, 2, 1 }, 1650 { 1, 0, 3, 2 }, 1651 { 2, 1, 0, 3 }, 1652 { 3, 2, 1, 0 }, 1653 }; 1654 1655 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1656 struct device_node *ep) 1657 { 1658 struct device *dev = &msm_host->pdev->dev; 1659 struct property *prop; 1660 u32 lane_map[4]; 1661 int ret, i, len, num_lanes; 1662 1663 prop = of_find_property(ep, "data-lanes", &len); 1664 if (!prop) { 1665 DRM_DEV_DEBUG(dev, 1666 "failed to find data lane mapping, using default\n"); 1667 /* Set the number of date lanes to 4 by default. */ 1668 msm_host->num_data_lanes = 4; 1669 return 0; 1670 } 1671 1672 num_lanes = len / sizeof(u32); 1673 1674 if (num_lanes < 1 || num_lanes > 4) { 1675 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1676 return -EINVAL; 1677 } 1678 1679 msm_host->num_data_lanes = num_lanes; 1680 1681 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1682 num_lanes); 1683 if (ret) { 1684 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1685 return ret; 1686 } 1687 1688 /* 1689 * compare DT specified physical-logical lane mappings with the ones 1690 * supported by hardware 1691 */ 1692 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1693 const int *swap = supported_data_lane_swaps[i]; 1694 int j; 1695 1696 /* 1697 * the data-lanes array we get from DT has a logical->physical 1698 * mapping. The "data lane swap" register field represents 1699 * supported configurations in a physical->logical mapping. 1700 * Translate the DT mapping to what we understand and find a 1701 * configuration that works. 1702 */ 1703 for (j = 0; j < num_lanes; j++) { 1704 if (lane_map[j] < 0 || lane_map[j] > 3) 1705 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1706 lane_map[j]); 1707 1708 if (swap[lane_map[j]] != j) 1709 break; 1710 } 1711 1712 if (j == num_lanes) { 1713 msm_host->dlane_swap = i; 1714 return 0; 1715 } 1716 } 1717 1718 return -EINVAL; 1719 } 1720 1721 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1722 { 1723 struct device *dev = &msm_host->pdev->dev; 1724 struct device_node *np = dev->of_node; 1725 struct device_node *endpoint, *device_node; 1726 int ret = 0; 1727 1728 /* 1729 * Get the endpoint of the output port of the DSI host. In our case, 1730 * this is mapped to port number with reg = 1. Don't return an error if 1731 * the remote endpoint isn't defined. It's possible that there is 1732 * nothing connected to the dsi output. 1733 */ 1734 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1735 if (!endpoint) { 1736 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1737 return 0; 1738 } 1739 1740 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1741 if (ret) { 1742 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1743 __func__, ret); 1744 ret = -EINVAL; 1745 goto err; 1746 } 1747 1748 /* Get panel node from the output port's endpoint data */ 1749 device_node = of_graph_get_remote_node(np, 1, 0); 1750 if (!device_node) { 1751 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__); 1752 ret = -ENODEV; 1753 goto err; 1754 } 1755 1756 msm_host->device_node = device_node; 1757 1758 if (of_property_read_bool(np, "syscon-sfpb")) { 1759 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1760 "syscon-sfpb"); 1761 if (IS_ERR(msm_host->sfpb)) { 1762 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1763 __func__); 1764 ret = PTR_ERR(msm_host->sfpb); 1765 } 1766 } 1767 1768 of_node_put(device_node); 1769 1770 err: 1771 of_node_put(endpoint); 1772 1773 return ret; 1774 } 1775 1776 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1777 { 1778 struct platform_device *pdev = msm_host->pdev; 1779 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1780 struct resource *res; 1781 int i; 1782 1783 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1784 if (!res) 1785 return -EINVAL; 1786 1787 for (i = 0; i < cfg->num_dsi; i++) { 1788 if (cfg->io_start[i] == res->start) 1789 return i; 1790 } 1791 1792 return -EINVAL; 1793 } 1794 1795 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1796 { 1797 struct msm_dsi_host *msm_host = NULL; 1798 struct platform_device *pdev = msm_dsi->pdev; 1799 int ret; 1800 1801 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1802 if (!msm_host) { 1803 ret = -ENOMEM; 1804 goto fail; 1805 } 1806 1807 msm_host->pdev = pdev; 1808 msm_dsi->host = &msm_host->base; 1809 1810 ret = dsi_host_parse_dt(msm_host); 1811 if (ret) { 1812 pr_err("%s: failed to parse dt\n", __func__); 1813 goto fail; 1814 } 1815 1816 msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", "DSI CTRL", &msm_host->ctrl_size); 1817 if (IS_ERR(msm_host->ctrl_base)) { 1818 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1819 ret = PTR_ERR(msm_host->ctrl_base); 1820 goto fail; 1821 } 1822 1823 pm_runtime_enable(&pdev->dev); 1824 1825 msm_host->cfg_hnd = dsi_get_config(msm_host); 1826 if (!msm_host->cfg_hnd) { 1827 ret = -EINVAL; 1828 pr_err("%s: get config failed\n", __func__); 1829 goto fail; 1830 } 1831 1832 msm_host->id = dsi_host_get_id(msm_host); 1833 if (msm_host->id < 0) { 1834 ret = msm_host->id; 1835 pr_err("%s: unable to identify DSI host index\n", __func__); 1836 goto fail; 1837 } 1838 1839 /* fixup base address by io offset */ 1840 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset; 1841 1842 ret = dsi_regulator_init(msm_host); 1843 if (ret) { 1844 pr_err("%s: regulator init failed\n", __func__); 1845 goto fail; 1846 } 1847 1848 ret = dsi_clk_init(msm_host); 1849 if (ret) { 1850 pr_err("%s: unable to initialize dsi clks\n", __func__); 1851 goto fail; 1852 } 1853 1854 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1855 if (!msm_host->rx_buf) { 1856 ret = -ENOMEM; 1857 pr_err("%s: alloc rx temp buf failed\n", __func__); 1858 goto fail; 1859 } 1860 1861 ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); 1862 if (ret) 1863 return ret; 1864 /* OPP table is optional */ 1865 ret = devm_pm_opp_of_add_table(&pdev->dev); 1866 if (ret && ret != -ENODEV) { 1867 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1868 return ret; 1869 } 1870 1871 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1872 if (msm_host->irq < 0) { 1873 ret = msm_host->irq; 1874 dev_err(&pdev->dev, "failed to get irq: %d\n", ret); 1875 return ret; 1876 } 1877 1878 /* do not autoenable, will be enabled later */ 1879 ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, 1880 IRQF_TRIGGER_HIGH | IRQF_ONESHOT | IRQF_NO_AUTOEN, 1881 "dsi_isr", msm_host); 1882 if (ret < 0) { 1883 dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", 1884 msm_host->irq, ret); 1885 return ret; 1886 } 1887 1888 init_completion(&msm_host->dma_comp); 1889 init_completion(&msm_host->video_comp); 1890 mutex_init(&msm_host->dev_mutex); 1891 mutex_init(&msm_host->cmd_mutex); 1892 spin_lock_init(&msm_host->intr_lock); 1893 1894 /* setup workqueue */ 1895 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1896 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1897 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker); 1898 1899 msm_dsi->id = msm_host->id; 1900 1901 DBG("Dsi Host %d initialized", msm_host->id); 1902 return 0; 1903 1904 fail: 1905 return ret; 1906 } 1907 1908 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1909 { 1910 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1911 1912 DBG(""); 1913 dsi_tx_buf_free(msm_host); 1914 if (msm_host->workqueue) { 1915 destroy_workqueue(msm_host->workqueue); 1916 msm_host->workqueue = NULL; 1917 } 1918 1919 mutex_destroy(&msm_host->cmd_mutex); 1920 mutex_destroy(&msm_host->dev_mutex); 1921 1922 pm_runtime_disable(&msm_host->pdev->dev); 1923 } 1924 1925 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1926 struct drm_device *dev) 1927 { 1928 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1929 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1930 int ret; 1931 1932 msm_host->dev = dev; 1933 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1934 if (ret) { 1935 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1936 return ret; 1937 } 1938 1939 return 0; 1940 } 1941 1942 int msm_dsi_host_register(struct mipi_dsi_host *host) 1943 { 1944 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1945 int ret; 1946 1947 /* Register mipi dsi host */ 1948 if (!msm_host->registered) { 1949 host->dev = &msm_host->pdev->dev; 1950 host->ops = &dsi_host_ops; 1951 ret = mipi_dsi_host_register(host); 1952 if (ret) 1953 return ret; 1954 1955 msm_host->registered = true; 1956 } 1957 1958 return 0; 1959 } 1960 1961 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 1962 { 1963 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1964 1965 if (msm_host->registered) { 1966 mipi_dsi_host_unregister(host); 1967 host->dev = NULL; 1968 host->ops = NULL; 1969 msm_host->registered = false; 1970 } 1971 } 1972 1973 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 1974 const struct mipi_dsi_msg *msg) 1975 { 1976 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1977 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1978 1979 /* TODO: make sure dsi_cmd_mdp is idle. 1980 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 1981 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 1982 * How to handle the old versions? Wait for mdp cmd done? 1983 */ 1984 1985 /* 1986 * mdss interrupt is generated in mdp core clock domain 1987 * mdp clock need to be enabled to receive dsi interrupt 1988 */ 1989 pm_runtime_get_sync(&msm_host->pdev->dev); 1990 cfg_hnd->ops->link_clk_set_rate(msm_host); 1991 cfg_hnd->ops->link_clk_enable(msm_host); 1992 1993 /* TODO: vote for bus bandwidth */ 1994 1995 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 1996 dsi_set_tx_power_mode(0, msm_host); 1997 1998 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 1999 dsi_write(msm_host, REG_DSI_CTRL, 2000 msm_host->dma_cmd_ctrl_restore | 2001 DSI_CTRL_CMD_MODE_EN | 2002 DSI_CTRL_ENABLE); 2003 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2004 2005 return 0; 2006 } 2007 2008 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2009 const struct mipi_dsi_msg *msg) 2010 { 2011 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2012 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2013 2014 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2015 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2016 2017 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2018 dsi_set_tx_power_mode(1, msm_host); 2019 2020 /* TODO: unvote for bus bandwidth */ 2021 2022 cfg_hnd->ops->link_clk_disable(msm_host); 2023 pm_runtime_put(&msm_host->pdev->dev); 2024 } 2025 2026 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2027 const struct mipi_dsi_msg *msg) 2028 { 2029 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2030 2031 return dsi_cmds2buf_tx(msm_host, msg); 2032 } 2033 2034 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2035 const struct mipi_dsi_msg *msg) 2036 { 2037 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2038 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2039 int data_byte, rx_byte, dlen, end; 2040 int short_response, diff, pkt_size, ret = 0; 2041 char cmd; 2042 int rlen = msg->rx_len; 2043 u8 *buf; 2044 2045 if (rlen <= 2) { 2046 short_response = 1; 2047 pkt_size = rlen; 2048 rx_byte = 4; 2049 } else { 2050 short_response = 0; 2051 data_byte = 10; /* first read */ 2052 if (rlen < data_byte) 2053 pkt_size = rlen; 2054 else 2055 pkt_size = data_byte; 2056 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2057 } 2058 2059 buf = msm_host->rx_buf; 2060 end = 0; 2061 while (!end) { 2062 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2063 struct mipi_dsi_msg max_pkt_size_msg = { 2064 .channel = msg->channel, 2065 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2066 .tx_len = 2, 2067 .tx_buf = tx, 2068 }; 2069 2070 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2071 rlen, pkt_size, rx_byte); 2072 2073 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2074 if (ret < 2) { 2075 pr_err("%s: Set max pkt size failed, %d\n", 2076 __func__, ret); 2077 return -EINVAL; 2078 } 2079 2080 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2081 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2082 /* Clear the RDBK_DATA registers */ 2083 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2084 DSI_RDBK_DATA_CTRL_CLR); 2085 wmb(); /* make sure the RDBK registers are cleared */ 2086 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2087 wmb(); /* release cleared status before transfer */ 2088 } 2089 2090 ret = dsi_cmds2buf_tx(msm_host, msg); 2091 if (ret < msg->tx_len) { 2092 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2093 return ret; 2094 } 2095 2096 /* 2097 * once cmd_dma_done interrupt received, 2098 * return data from client is ready and stored 2099 * at RDBK_DATA register already 2100 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2101 * after that dcs header lost during shift into registers 2102 */ 2103 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2104 2105 if (dlen <= 0) 2106 return 0; 2107 2108 if (short_response) 2109 break; 2110 2111 if (rlen <= data_byte) { 2112 diff = data_byte - rlen; 2113 end = 1; 2114 } else { 2115 diff = 0; 2116 rlen -= data_byte; 2117 } 2118 2119 if (!end) { 2120 dlen -= 2; /* 2 crc */ 2121 dlen -= diff; 2122 buf += dlen; /* next start position */ 2123 data_byte = 14; /* NOT first read */ 2124 if (rlen < data_byte) 2125 pkt_size += rlen; 2126 else 2127 pkt_size += data_byte; 2128 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2129 } 2130 } 2131 2132 /* 2133 * For single Long read, if the requested rlen < 10, 2134 * we need to shift the start position of rx 2135 * data buffer to skip the bytes which are not 2136 * updated. 2137 */ 2138 if (pkt_size < 10 && !short_response) 2139 buf = msm_host->rx_buf + (10 - rlen); 2140 else 2141 buf = msm_host->rx_buf; 2142 2143 cmd = buf[0]; 2144 switch (cmd) { 2145 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2146 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2147 ret = 0; 2148 break; 2149 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2150 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2151 ret = dsi_short_read1_resp(buf, msg); 2152 break; 2153 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2154 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2155 ret = dsi_short_read2_resp(buf, msg); 2156 break; 2157 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2158 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2159 ret = dsi_long_read_resp(buf, msg); 2160 break; 2161 default: 2162 pr_warn("%s:Invalid response cmd\n", __func__); 2163 ret = 0; 2164 } 2165 2166 return ret; 2167 } 2168 2169 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2170 u32 len) 2171 { 2172 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2173 2174 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2175 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2176 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2177 2178 /* Make sure trigger happens */ 2179 wmb(); 2180 } 2181 2182 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host, 2183 struct msm_dsi_phy *src_phy) 2184 { 2185 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2186 2187 msm_host->cphy_mode = src_phy->cphy_mode; 2188 } 2189 2190 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2191 { 2192 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2193 2194 DBG(""); 2195 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2196 /* Make sure fully reset */ 2197 wmb(); 2198 udelay(1000); 2199 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2200 udelay(100); 2201 } 2202 2203 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2204 struct msm_dsi_phy_clk_request *clk_req, 2205 bool is_bonded_dsi) 2206 { 2207 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2208 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2209 int ret; 2210 2211 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi); 2212 if (ret) { 2213 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2214 return; 2215 } 2216 2217 /* CPHY transmits 16 bits over 7 clock cycles 2218 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk), 2219 * so multiply by 7 to get the "bitclk rate" 2220 */ 2221 if (msm_host->cphy_mode) 2222 clk_req->bitclk_rate = msm_host->byte_clk_rate * 7; 2223 else 2224 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2225 clk_req->escclk_rate = msm_host->esc_clk_rate; 2226 } 2227 2228 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host) 2229 { 2230 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2231 2232 enable_irq(msm_host->irq); 2233 } 2234 2235 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host) 2236 { 2237 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2238 2239 disable_irq(msm_host->irq); 2240 } 2241 2242 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2243 { 2244 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2245 2246 dsi_op_mode_config(msm_host, 2247 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2248 2249 /* TODO: clock should be turned off for command mode, 2250 * and only turned on before MDP START. 2251 * This part of code should be enabled once mdp driver support it. 2252 */ 2253 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2254 * dsi_link_clk_disable(msm_host); 2255 * pm_runtime_put(&msm_host->pdev->dev); 2256 * } 2257 */ 2258 msm_host->enabled = true; 2259 return 0; 2260 } 2261 2262 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2263 { 2264 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2265 2266 msm_host->enabled = false; 2267 dsi_op_mode_config(msm_host, 2268 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2269 2270 /* Since we have disabled INTF, the video engine won't stop so that 2271 * the cmd engine will be blocked. 2272 * Reset to disable video engine so that we can send off cmd. 2273 */ 2274 dsi_sw_reset(msm_host); 2275 2276 return 0; 2277 } 2278 2279 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2280 { 2281 enum sfpb_ahb_arb_master_port_en en; 2282 2283 if (!msm_host->sfpb) 2284 return; 2285 2286 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2287 2288 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2289 SFPB_GPREG_MASTER_PORT_EN__MASK, 2290 SFPB_GPREG_MASTER_PORT_EN(en)); 2291 } 2292 2293 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2294 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2295 bool is_bonded_dsi, struct msm_dsi_phy *phy) 2296 { 2297 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2298 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2299 int ret = 0; 2300 2301 mutex_lock(&msm_host->dev_mutex); 2302 if (msm_host->power_on) { 2303 DBG("dsi host already on"); 2304 goto unlock_ret; 2305 } 2306 2307 msm_dsi_sfpb_config(msm_host, true); 2308 2309 ret = dsi_host_regulator_enable(msm_host); 2310 if (ret) { 2311 pr_err("%s:Failed to enable vregs.ret=%d\n", 2312 __func__, ret); 2313 goto unlock_ret; 2314 } 2315 2316 pm_runtime_get_sync(&msm_host->pdev->dev); 2317 ret = cfg_hnd->ops->link_clk_set_rate(msm_host); 2318 if (!ret) 2319 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2320 if (ret) { 2321 pr_err("%s: failed to enable link clocks. ret=%d\n", 2322 __func__, ret); 2323 goto fail_disable_reg; 2324 } 2325 2326 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2327 if (ret) { 2328 pr_err("%s: failed to set pinctrl default state, %d\n", 2329 __func__, ret); 2330 goto fail_disable_clk; 2331 } 2332 2333 dsi_timing_setup(msm_host, is_bonded_dsi); 2334 dsi_sw_reset(msm_host); 2335 dsi_ctrl_config(msm_host, true, phy_shared_timings, phy); 2336 2337 if (msm_host->disp_en_gpio) 2338 gpiod_set_value(msm_host->disp_en_gpio, 1); 2339 2340 msm_host->power_on = true; 2341 mutex_unlock(&msm_host->dev_mutex); 2342 2343 return 0; 2344 2345 fail_disable_clk: 2346 cfg_hnd->ops->link_clk_disable(msm_host); 2347 pm_runtime_put(&msm_host->pdev->dev); 2348 fail_disable_reg: 2349 dsi_host_regulator_disable(msm_host); 2350 unlock_ret: 2351 mutex_unlock(&msm_host->dev_mutex); 2352 return ret; 2353 } 2354 2355 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2356 { 2357 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2358 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2359 2360 mutex_lock(&msm_host->dev_mutex); 2361 if (!msm_host->power_on) { 2362 DBG("dsi host already off"); 2363 goto unlock_ret; 2364 } 2365 2366 dsi_ctrl_config(msm_host, false, NULL, NULL); 2367 2368 if (msm_host->disp_en_gpio) 2369 gpiod_set_value(msm_host->disp_en_gpio, 0); 2370 2371 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2372 2373 cfg_hnd->ops->link_clk_disable(msm_host); 2374 pm_runtime_put(&msm_host->pdev->dev); 2375 2376 dsi_host_regulator_disable(msm_host); 2377 2378 msm_dsi_sfpb_config(msm_host, false); 2379 2380 DBG("-"); 2381 2382 msm_host->power_on = false; 2383 2384 unlock_ret: 2385 mutex_unlock(&msm_host->dev_mutex); 2386 return 0; 2387 } 2388 2389 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2390 const struct drm_display_mode *mode) 2391 { 2392 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2393 2394 if (msm_host->mode) { 2395 drm_mode_destroy(msm_host->dev, msm_host->mode); 2396 msm_host->mode = NULL; 2397 } 2398 2399 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2400 if (!msm_host->mode) { 2401 pr_err("%s: cannot duplicate mode\n", __func__); 2402 return -ENOMEM; 2403 } 2404 2405 return 0; 2406 } 2407 2408 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host) 2409 { 2410 return of_drm_find_panel(to_msm_dsi_host(host)->device_node); 2411 } 2412 2413 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2414 { 2415 return to_msm_dsi_host(host)->mode_flags; 2416 } 2417 2418 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host) 2419 { 2420 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2421 2422 return of_drm_find_bridge(msm_host->device_node); 2423 } 2424 2425 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) 2426 { 2427 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2428 2429 pm_runtime_get_sync(&msm_host->pdev->dev); 2430 2431 msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, 2432 msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); 2433 2434 pm_runtime_put_sync(&msm_host->pdev->dev); 2435 } 2436 2437 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host) 2438 { 2439 u32 reg; 2440 2441 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2442 2443 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff); 2444 /* draw checkered rectangle pattern */ 2445 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL, 2446 DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN); 2447 /* use 24-bit RGB test pttern */ 2448 dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG, 2449 DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) | 2450 DSI_TPG_VIDEO_CONFIG_RGB); 2451 2452 reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN); 2453 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2454 2455 DBG("Video test pattern setup done\n"); 2456 } 2457 2458 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host) 2459 { 2460 u32 reg; 2461 2462 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2463 2464 /* initial value for test pattern */ 2465 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff); 2466 2467 reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN); 2468 2469 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2470 /* draw checkered rectangle pattern */ 2471 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2, 2472 DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN); 2473 2474 DBG("Cmd test pattern setup done\n"); 2475 } 2476 2477 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host) 2478 { 2479 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2480 bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO); 2481 u32 reg; 2482 2483 if (is_video_mode) 2484 msm_dsi_host_video_test_pattern_setup(msm_host); 2485 else 2486 msm_dsi_host_cmd_test_pattern_setup(msm_host); 2487 2488 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2489 /* enable the test pattern generator */ 2490 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN)); 2491 2492 /* for command mode need to trigger one frame from tpg */ 2493 if (!is_video_mode) 2494 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, 2495 DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER); 2496 } 2497