1 /* 2 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 and 6 * only version 2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/err.h> 17 #include <linux/gpio.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_device.h> 21 #include <linux/of_gpio.h> 22 #include <linux/of_irq.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/of_graph.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/spinlock.h> 27 #include <linux/mfd/syscon.h> 28 #include <linux/regmap.h> 29 #include <video/mipi_display.h> 30 31 #include "dsi.h" 32 #include "dsi.xml.h" 33 #include "sfpb.xml.h" 34 #include "dsi_cfg.h" 35 #include "msm_kms.h" 36 37 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 38 { 39 u32 ver; 40 41 if (!major || !minor) 42 return -EINVAL; 43 44 /* 45 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 46 * makes all other registers 4-byte shifted down. 47 * 48 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 49 * older, we read the DSI_VERSION register without any shift(offset 50 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 51 * the case of DSI6G, this has to be zero (the offset points to a 52 * scratch register which we never touch) 53 */ 54 55 ver = msm_readl(base + REG_DSI_VERSION); 56 if (ver) { 57 /* older dsi host, there is no register shift */ 58 ver = FIELD(ver, DSI_VERSION_MAJOR); 59 if (ver <= MSM_DSI_VER_MAJOR_V2) { 60 /* old versions */ 61 *major = ver; 62 *minor = 0; 63 return 0; 64 } else { 65 return -EINVAL; 66 } 67 } else { 68 /* 69 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 70 * registers are shifted down, read DSI_VERSION again with 71 * the shifted offset 72 */ 73 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 74 ver = FIELD(ver, DSI_VERSION_MAJOR); 75 if (ver == MSM_DSI_VER_MAJOR_6G) { 76 /* 6G version */ 77 *major = ver; 78 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 79 return 0; 80 } else { 81 return -EINVAL; 82 } 83 } 84 } 85 86 #define DSI_ERR_STATE_ACK 0x0000 87 #define DSI_ERR_STATE_TIMEOUT 0x0001 88 #define DSI_ERR_STATE_DLN0_PHY 0x0002 89 #define DSI_ERR_STATE_FIFO 0x0004 90 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 91 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 92 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 93 94 #define DSI_CLK_CTRL_ENABLE_CLKS \ 95 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 96 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 97 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 98 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 99 100 struct msm_dsi_host { 101 struct mipi_dsi_host base; 102 103 struct platform_device *pdev; 104 struct drm_device *dev; 105 106 int id; 107 108 void __iomem *ctrl_base; 109 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; 110 111 struct clk *bus_clks[DSI_BUS_CLK_MAX]; 112 113 struct clk *byte_clk; 114 struct clk *esc_clk; 115 struct clk *pixel_clk; 116 struct clk *byte_clk_src; 117 struct clk *pixel_clk_src; 118 struct clk *byte_intf_clk; 119 120 u32 byte_clk_rate; 121 u32 pixel_clk_rate; 122 u32 esc_clk_rate; 123 124 /* DSI v2 specific clocks */ 125 struct clk *src_clk; 126 struct clk *esc_clk_src; 127 struct clk *dsi_clk_src; 128 129 u32 src_clk_rate; 130 131 struct gpio_desc *disp_en_gpio; 132 struct gpio_desc *te_gpio; 133 134 const struct msm_dsi_cfg_handler *cfg_hnd; 135 136 struct completion dma_comp; 137 struct completion video_comp; 138 struct mutex dev_mutex; 139 struct mutex cmd_mutex; 140 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 141 142 u32 err_work_state; 143 struct work_struct err_work; 144 struct work_struct hpd_work; 145 struct workqueue_struct *workqueue; 146 147 /* DSI 6G TX buffer*/ 148 struct drm_gem_object *tx_gem_obj; 149 150 /* DSI v2 TX buffer */ 151 void *tx_buf; 152 dma_addr_t tx_buf_paddr; 153 154 int tx_size; 155 156 u8 *rx_buf; 157 158 struct regmap *sfpb; 159 160 struct drm_display_mode *mode; 161 162 /* connected device info */ 163 struct device_node *device_node; 164 unsigned int channel; 165 unsigned int lanes; 166 enum mipi_dsi_pixel_format format; 167 unsigned long mode_flags; 168 169 /* lane data parsed via DT */ 170 int dlane_swap; 171 int num_data_lanes; 172 173 u32 dma_cmd_ctrl_restore; 174 175 bool registered; 176 bool power_on; 177 bool enabled; 178 int irq; 179 }; 180 181 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 182 { 183 switch (fmt) { 184 case MIPI_DSI_FMT_RGB565: return 16; 185 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 186 case MIPI_DSI_FMT_RGB666: 187 case MIPI_DSI_FMT_RGB888: 188 default: return 24; 189 } 190 } 191 192 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 193 { 194 return msm_readl(msm_host->ctrl_base + reg); 195 } 196 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 197 { 198 msm_writel(data, msm_host->ctrl_base + reg); 199 } 200 201 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); 202 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); 203 204 static const struct msm_dsi_cfg_handler *dsi_get_config( 205 struct msm_dsi_host *msm_host) 206 { 207 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 208 struct device *dev = &msm_host->pdev->dev; 209 struct regulator *gdsc_reg; 210 struct clk *ahb_clk; 211 int ret; 212 u32 major = 0, minor = 0; 213 214 gdsc_reg = regulator_get(dev, "gdsc"); 215 if (IS_ERR(gdsc_reg)) { 216 pr_err("%s: cannot get gdsc\n", __func__); 217 goto exit; 218 } 219 220 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 221 if (IS_ERR(ahb_clk)) { 222 pr_err("%s: cannot get interface clock\n", __func__); 223 goto put_gdsc; 224 } 225 226 pm_runtime_get_sync(dev); 227 228 ret = regulator_enable(gdsc_reg); 229 if (ret) { 230 pr_err("%s: unable to enable gdsc\n", __func__); 231 goto put_gdsc; 232 } 233 234 ret = clk_prepare_enable(ahb_clk); 235 if (ret) { 236 pr_err("%s: unable to enable ahb_clk\n", __func__); 237 goto disable_gdsc; 238 } 239 240 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 241 if (ret) { 242 pr_err("%s: Invalid version\n", __func__); 243 goto disable_clks; 244 } 245 246 cfg_hnd = msm_dsi_cfg_get(major, minor); 247 248 DBG("%s: Version %x:%x\n", __func__, major, minor); 249 250 disable_clks: 251 clk_disable_unprepare(ahb_clk); 252 disable_gdsc: 253 regulator_disable(gdsc_reg); 254 pm_runtime_put_sync(dev); 255 put_gdsc: 256 regulator_put(gdsc_reg); 257 exit: 258 return cfg_hnd; 259 } 260 261 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 262 { 263 return container_of(host, struct msm_dsi_host, base); 264 } 265 266 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) 267 { 268 struct regulator_bulk_data *s = msm_host->supplies; 269 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 270 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 271 int i; 272 273 DBG(""); 274 for (i = num - 1; i >= 0; i--) 275 if (regs[i].disable_load >= 0) 276 regulator_set_load(s[i].consumer, 277 regs[i].disable_load); 278 279 regulator_bulk_disable(num, s); 280 } 281 282 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) 283 { 284 struct regulator_bulk_data *s = msm_host->supplies; 285 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 286 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 287 int ret, i; 288 289 DBG(""); 290 for (i = 0; i < num; i++) { 291 if (regs[i].enable_load >= 0) { 292 ret = regulator_set_load(s[i].consumer, 293 regs[i].enable_load); 294 if (ret < 0) { 295 pr_err("regulator %d set op mode failed, %d\n", 296 i, ret); 297 goto fail; 298 } 299 } 300 } 301 302 ret = regulator_bulk_enable(num, s); 303 if (ret < 0) { 304 pr_err("regulator enable failed, %d\n", ret); 305 goto fail; 306 } 307 308 return 0; 309 310 fail: 311 for (i--; i >= 0; i--) 312 regulator_set_load(s[i].consumer, regs[i].disable_load); 313 return ret; 314 } 315 316 static int dsi_regulator_init(struct msm_dsi_host *msm_host) 317 { 318 struct regulator_bulk_data *s = msm_host->supplies; 319 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 320 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 321 int i, ret; 322 323 for (i = 0; i < num; i++) 324 s[i].supply = regs[i].name; 325 326 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); 327 if (ret < 0) { 328 pr_err("%s: failed to init regulator, ret=%d\n", 329 __func__, ret); 330 return ret; 331 } 332 333 return 0; 334 } 335 336 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 337 { 338 struct platform_device *pdev = msm_host->pdev; 339 int ret = 0; 340 341 msm_host->src_clk = msm_clk_get(pdev, "src"); 342 343 if (IS_ERR(msm_host->src_clk)) { 344 ret = PTR_ERR(msm_host->src_clk); 345 pr_err("%s: can't find src clock. ret=%d\n", 346 __func__, ret); 347 msm_host->src_clk = NULL; 348 return ret; 349 } 350 351 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 352 if (!msm_host->esc_clk_src) { 353 ret = -ENODEV; 354 pr_err("%s: can't get esc clock parent. ret=%d\n", 355 __func__, ret); 356 return ret; 357 } 358 359 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 360 if (!msm_host->dsi_clk_src) { 361 ret = -ENODEV; 362 pr_err("%s: can't get src clock parent. ret=%d\n", 363 __func__, ret); 364 } 365 366 return ret; 367 } 368 369 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 370 { 371 struct platform_device *pdev = msm_host->pdev; 372 int ret = 0; 373 374 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 375 if (IS_ERR(msm_host->byte_intf_clk)) { 376 ret = PTR_ERR(msm_host->byte_intf_clk); 377 pr_err("%s: can't find byte_intf clock. ret=%d\n", 378 __func__, ret); 379 } 380 381 return ret; 382 } 383 384 static int dsi_clk_init(struct msm_dsi_host *msm_host) 385 { 386 struct platform_device *pdev = msm_host->pdev; 387 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 388 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 389 int i, ret = 0; 390 391 /* get bus clocks */ 392 for (i = 0; i < cfg->num_bus_clks; i++) { 393 msm_host->bus_clks[i] = msm_clk_get(pdev, 394 cfg->bus_clk_names[i]); 395 if (IS_ERR(msm_host->bus_clks[i])) { 396 ret = PTR_ERR(msm_host->bus_clks[i]); 397 pr_err("%s: Unable to get %s clock, ret = %d\n", 398 __func__, cfg->bus_clk_names[i], ret); 399 goto exit; 400 } 401 } 402 403 /* get link and source clocks */ 404 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 405 if (IS_ERR(msm_host->byte_clk)) { 406 ret = PTR_ERR(msm_host->byte_clk); 407 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 408 __func__, ret); 409 msm_host->byte_clk = NULL; 410 goto exit; 411 } 412 413 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 414 if (IS_ERR(msm_host->pixel_clk)) { 415 ret = PTR_ERR(msm_host->pixel_clk); 416 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 417 __func__, ret); 418 msm_host->pixel_clk = NULL; 419 goto exit; 420 } 421 422 msm_host->esc_clk = msm_clk_get(pdev, "core"); 423 if (IS_ERR(msm_host->esc_clk)) { 424 ret = PTR_ERR(msm_host->esc_clk); 425 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 426 __func__, ret); 427 msm_host->esc_clk = NULL; 428 goto exit; 429 } 430 431 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 432 if (!msm_host->byte_clk_src) { 433 ret = -ENODEV; 434 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 435 goto exit; 436 } 437 438 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 439 if (!msm_host->pixel_clk_src) { 440 ret = -ENODEV; 441 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 442 goto exit; 443 } 444 445 if (cfg_hnd->ops->clk_init_ver) 446 ret = cfg_hnd->ops->clk_init_ver(msm_host); 447 exit: 448 return ret; 449 } 450 451 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host) 452 { 453 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 454 int i, ret; 455 456 DBG("id=%d", msm_host->id); 457 458 for (i = 0; i < cfg->num_bus_clks; i++) { 459 ret = clk_prepare_enable(msm_host->bus_clks[i]); 460 if (ret) { 461 pr_err("%s: failed to enable bus clock %d ret %d\n", 462 __func__, i, ret); 463 goto err; 464 } 465 } 466 467 return 0; 468 err: 469 for (; i > 0; i--) 470 clk_disable_unprepare(msm_host->bus_clks[i]); 471 472 return ret; 473 } 474 475 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host) 476 { 477 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 478 int i; 479 480 DBG(""); 481 482 for (i = cfg->num_bus_clks - 1; i >= 0; i--) 483 clk_disable_unprepare(msm_host->bus_clks[i]); 484 } 485 486 int msm_dsi_runtime_suspend(struct device *dev) 487 { 488 struct platform_device *pdev = to_platform_device(dev); 489 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 490 struct mipi_dsi_host *host = msm_dsi->host; 491 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 492 493 if (!msm_host->cfg_hnd) 494 return 0; 495 496 dsi_bus_clk_disable(msm_host); 497 498 return 0; 499 } 500 501 int msm_dsi_runtime_resume(struct device *dev) 502 { 503 struct platform_device *pdev = to_platform_device(dev); 504 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 505 struct mipi_dsi_host *host = msm_dsi->host; 506 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 507 508 if (!msm_host->cfg_hnd) 509 return 0; 510 511 return dsi_bus_clk_enable(msm_host); 512 } 513 514 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 515 { 516 int ret; 517 518 DBG("Set clk rates: pclk=%d, byteclk=%d", 519 msm_host->mode->clock, msm_host->byte_clk_rate); 520 521 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 522 if (ret) { 523 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 524 goto error; 525 } 526 527 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 528 if (ret) { 529 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 530 goto error; 531 } 532 533 if (msm_host->byte_intf_clk) { 534 ret = clk_set_rate(msm_host->byte_intf_clk, 535 msm_host->byte_clk_rate / 2); 536 if (ret) { 537 pr_err("%s: Failed to set rate byte intf clk, %d\n", 538 __func__, ret); 539 goto error; 540 } 541 } 542 543 ret = clk_prepare_enable(msm_host->esc_clk); 544 if (ret) { 545 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 546 goto error; 547 } 548 549 ret = clk_prepare_enable(msm_host->byte_clk); 550 if (ret) { 551 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 552 goto byte_clk_err; 553 } 554 555 ret = clk_prepare_enable(msm_host->pixel_clk); 556 if (ret) { 557 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 558 goto pixel_clk_err; 559 } 560 561 if (msm_host->byte_intf_clk) { 562 ret = clk_prepare_enable(msm_host->byte_intf_clk); 563 if (ret) { 564 pr_err("%s: Failed to enable byte intf clk\n", 565 __func__); 566 goto byte_intf_clk_err; 567 } 568 } 569 570 return 0; 571 572 byte_intf_clk_err: 573 clk_disable_unprepare(msm_host->pixel_clk); 574 pixel_clk_err: 575 clk_disable_unprepare(msm_host->byte_clk); 576 byte_clk_err: 577 clk_disable_unprepare(msm_host->esc_clk); 578 error: 579 return ret; 580 } 581 582 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 583 { 584 int ret; 585 586 DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d", 587 msm_host->mode->clock, msm_host->byte_clk_rate, 588 msm_host->esc_clk_rate, msm_host->src_clk_rate); 589 590 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 591 if (ret) { 592 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 593 goto error; 594 } 595 596 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 597 if (ret) { 598 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 599 goto error; 600 } 601 602 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 603 if (ret) { 604 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 605 goto error; 606 } 607 608 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 609 if (ret) { 610 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 611 goto error; 612 } 613 614 ret = clk_prepare_enable(msm_host->byte_clk); 615 if (ret) { 616 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 617 goto error; 618 } 619 620 ret = clk_prepare_enable(msm_host->esc_clk); 621 if (ret) { 622 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 623 goto esc_clk_err; 624 } 625 626 ret = clk_prepare_enable(msm_host->src_clk); 627 if (ret) { 628 pr_err("%s: Failed to enable dsi src clk\n", __func__); 629 goto src_clk_err; 630 } 631 632 ret = clk_prepare_enable(msm_host->pixel_clk); 633 if (ret) { 634 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 635 goto pixel_clk_err; 636 } 637 638 return 0; 639 640 pixel_clk_err: 641 clk_disable_unprepare(msm_host->src_clk); 642 src_clk_err: 643 clk_disable_unprepare(msm_host->esc_clk); 644 esc_clk_err: 645 clk_disable_unprepare(msm_host->byte_clk); 646 error: 647 return ret; 648 } 649 650 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 651 { 652 clk_disable_unprepare(msm_host->esc_clk); 653 clk_disable_unprepare(msm_host->pixel_clk); 654 if (msm_host->byte_intf_clk) 655 clk_disable_unprepare(msm_host->byte_intf_clk); 656 clk_disable_unprepare(msm_host->byte_clk); 657 } 658 659 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 660 { 661 clk_disable_unprepare(msm_host->pixel_clk); 662 clk_disable_unprepare(msm_host->src_clk); 663 clk_disable_unprepare(msm_host->esc_clk); 664 clk_disable_unprepare(msm_host->byte_clk); 665 } 666 667 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi) 668 { 669 struct drm_display_mode *mode = msm_host->mode; 670 u32 pclk_rate; 671 672 pclk_rate = mode->clock * 1000; 673 674 /* 675 * For dual DSI mode, the current DRM mode has the complete width of the 676 * panel. Since, the complete panel is driven by two DSI controllers, 677 * the clock rates have to be split between the two dsi controllers. 678 * Adjust the byte and pixel clock rates for each dsi host accordingly. 679 */ 680 if (is_dual_dsi) 681 pclk_rate /= 2; 682 683 return pclk_rate; 684 } 685 686 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi) 687 { 688 u8 lanes = msm_host->lanes; 689 u32 bpp = dsi_get_bpp(msm_host->format); 690 u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi); 691 u64 pclk_bpp = (u64)pclk_rate * bpp; 692 693 if (lanes == 0) { 694 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 695 lanes = 1; 696 } 697 698 do_div(pclk_bpp, (8 * lanes)); 699 700 msm_host->pixel_clk_rate = pclk_rate; 701 msm_host->byte_clk_rate = pclk_bpp; 702 703 DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate, 704 msm_host->byte_clk_rate); 705 706 } 707 708 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi) 709 { 710 if (!msm_host->mode) { 711 pr_err("%s: mode not set\n", __func__); 712 return -EINVAL; 713 } 714 715 dsi_calc_pclk(msm_host, is_dual_dsi); 716 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 717 return 0; 718 } 719 720 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi) 721 { 722 u32 bpp = dsi_get_bpp(msm_host->format); 723 u64 pclk_bpp; 724 unsigned int esc_mhz, esc_div; 725 unsigned long byte_mhz; 726 727 dsi_calc_pclk(msm_host, is_dual_dsi); 728 729 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp; 730 do_div(pclk_bpp, 8); 731 msm_host->src_clk_rate = pclk_bpp; 732 733 /* 734 * esc clock is byte clock followed by a 4 bit divider, 735 * we need to find an escape clock frequency within the 736 * mipi DSI spec range within the maximum divider limit 737 * We iterate here between an escape clock frequencey 738 * between 20 Mhz to 5 Mhz and pick up the first one 739 * that can be supported by our divider 740 */ 741 742 byte_mhz = msm_host->byte_clk_rate / 1000000; 743 744 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 745 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 746 747 /* 748 * TODO: Ideally, we shouldn't know what sort of divider 749 * is available in mmss_cc, we're just assuming that 750 * it'll always be a 4 bit divider. Need to come up with 751 * a better way here. 752 */ 753 if (esc_div >= 1 && esc_div <= 16) 754 break; 755 } 756 757 if (esc_mhz < 5) 758 return -EINVAL; 759 760 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 761 762 DBG("esc=%d, src=%d", msm_host->esc_clk_rate, 763 msm_host->src_clk_rate); 764 765 return 0; 766 } 767 768 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 769 { 770 u32 intr; 771 unsigned long flags; 772 773 spin_lock_irqsave(&msm_host->intr_lock, flags); 774 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 775 776 if (enable) 777 intr |= mask; 778 else 779 intr &= ~mask; 780 781 DBG("intr=%x enable=%d", intr, enable); 782 783 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 784 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 785 } 786 787 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 788 { 789 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 790 return BURST_MODE; 791 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 792 return NON_BURST_SYNCH_PULSE; 793 794 return NON_BURST_SYNCH_EVENT; 795 } 796 797 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 798 const enum mipi_dsi_pixel_format mipi_fmt) 799 { 800 switch (mipi_fmt) { 801 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 802 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 803 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 804 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 805 default: return VID_DST_FORMAT_RGB888; 806 } 807 } 808 809 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 810 const enum mipi_dsi_pixel_format mipi_fmt) 811 { 812 switch (mipi_fmt) { 813 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 814 case MIPI_DSI_FMT_RGB666_PACKED: 815 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 816 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 817 default: return CMD_DST_FORMAT_RGB888; 818 } 819 } 820 821 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 822 struct msm_dsi_phy_shared_timings *phy_shared_timings) 823 { 824 u32 flags = msm_host->mode_flags; 825 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 826 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 827 u32 data = 0; 828 829 if (!enable) { 830 dsi_write(msm_host, REG_DSI_CTRL, 0); 831 return; 832 } 833 834 if (flags & MIPI_DSI_MODE_VIDEO) { 835 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 836 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 837 if (flags & MIPI_DSI_MODE_VIDEO_HFP) 838 data |= DSI_VID_CFG0_HFP_POWER_STOP; 839 if (flags & MIPI_DSI_MODE_VIDEO_HBP) 840 data |= DSI_VID_CFG0_HBP_POWER_STOP; 841 if (flags & MIPI_DSI_MODE_VIDEO_HSA) 842 data |= DSI_VID_CFG0_HSA_POWER_STOP; 843 /* Always set low power stop mode for BLLP 844 * to let command engine send packets 845 */ 846 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 847 DSI_VID_CFG0_BLLP_POWER_STOP; 848 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 849 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 850 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 851 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 852 853 /* Do not swap RGB colors */ 854 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 855 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 856 } else { 857 /* Do not swap RGB colors */ 858 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 859 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 860 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 861 862 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 863 DSI_CMD_CFG1_WR_MEM_CONTINUE( 864 MIPI_DCS_WRITE_MEMORY_CONTINUE); 865 /* Always insert DCS command */ 866 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 867 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 868 } 869 870 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 871 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 872 DSI_CMD_DMA_CTRL_LOW_POWER); 873 874 data = 0; 875 /* Always assume dedicated TE pin */ 876 data |= DSI_TRIG_CTRL_TE; 877 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 878 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 879 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 880 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 881 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 882 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 883 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 884 885 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 886 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 887 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 888 889 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 890 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 891 phy_shared_timings->clk_pre_inc_by_2) 892 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 893 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 894 895 data = 0; 896 if (!(flags & MIPI_DSI_MODE_EOT_PACKET)) 897 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 898 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 899 900 /* allow only ack-err-status to generate interrupt */ 901 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 902 903 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 904 905 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 906 907 data = DSI_CTRL_CLK_EN; 908 909 DBG("lane number=%d", msm_host->lanes); 910 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 911 912 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 913 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 914 915 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) 916 dsi_write(msm_host, REG_DSI_LANE_CTRL, 917 DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 918 919 data |= DSI_CTRL_ENABLE; 920 921 dsi_write(msm_host, REG_DSI_CTRL, data); 922 } 923 924 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi) 925 { 926 struct drm_display_mode *mode = msm_host->mode; 927 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 928 u32 h_total = mode->htotal; 929 u32 v_total = mode->vtotal; 930 u32 hs_end = mode->hsync_end - mode->hsync_start; 931 u32 vs_end = mode->vsync_end - mode->vsync_start; 932 u32 ha_start = h_total - mode->hsync_start; 933 u32 ha_end = ha_start + mode->hdisplay; 934 u32 va_start = v_total - mode->vsync_start; 935 u32 va_end = va_start + mode->vdisplay; 936 u32 hdisplay = mode->hdisplay; 937 u32 wc; 938 939 DBG(""); 940 941 /* 942 * For dual DSI mode, the current DRM mode has 943 * the complete width of the panel. Since, the complete 944 * panel is driven by two DSI controllers, the horizontal 945 * timings have to be split between the two dsi controllers. 946 * Adjust the DSI host timing values accordingly. 947 */ 948 if (is_dual_dsi) { 949 h_total /= 2; 950 hs_end /= 2; 951 ha_start /= 2; 952 ha_end /= 2; 953 hdisplay /= 2; 954 } 955 956 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 957 dsi_write(msm_host, REG_DSI_ACTIVE_H, 958 DSI_ACTIVE_H_START(ha_start) | 959 DSI_ACTIVE_H_END(ha_end)); 960 dsi_write(msm_host, REG_DSI_ACTIVE_V, 961 DSI_ACTIVE_V_START(va_start) | 962 DSI_ACTIVE_V_END(va_end)); 963 dsi_write(msm_host, REG_DSI_TOTAL, 964 DSI_TOTAL_H_TOTAL(h_total - 1) | 965 DSI_TOTAL_V_TOTAL(v_total - 1)); 966 967 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 968 DSI_ACTIVE_HSYNC_START(hs_start) | 969 DSI_ACTIVE_HSYNC_END(hs_end)); 970 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 971 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 972 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 973 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 974 } else { /* command mode */ 975 /* image data and 1 byte write_memory_start cmd */ 976 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 977 978 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL, 979 DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) | 980 DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL( 981 msm_host->channel) | 982 DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE( 983 MIPI_DSI_DCS_LONG_WRITE)); 984 985 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL, 986 DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) | 987 DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay)); 988 } 989 } 990 991 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 992 { 993 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 994 wmb(); /* clocks need to be enabled before reset */ 995 996 dsi_write(msm_host, REG_DSI_RESET, 1); 997 wmb(); /* make sure reset happen */ 998 dsi_write(msm_host, REG_DSI_RESET, 0); 999 } 1000 1001 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 1002 bool video_mode, bool enable) 1003 { 1004 u32 dsi_ctrl; 1005 1006 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1007 1008 if (!enable) { 1009 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1010 DSI_CTRL_CMD_MODE_EN); 1011 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1012 DSI_IRQ_MASK_VIDEO_DONE, 0); 1013 } else { 1014 if (video_mode) { 1015 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1016 } else { /* command mode */ 1017 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1018 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1019 } 1020 dsi_ctrl |= DSI_CTRL_ENABLE; 1021 } 1022 1023 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1024 } 1025 1026 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1027 { 1028 u32 data; 1029 1030 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1031 1032 if (mode == 0) 1033 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1034 else 1035 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1036 1037 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1038 } 1039 1040 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1041 { 1042 u32 ret = 0; 1043 struct device *dev = &msm_host->pdev->dev; 1044 1045 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1046 1047 reinit_completion(&msm_host->video_comp); 1048 1049 ret = wait_for_completion_timeout(&msm_host->video_comp, 1050 msecs_to_jiffies(70)); 1051 1052 if (ret <= 0) 1053 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1054 1055 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1056 } 1057 1058 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1059 { 1060 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1061 return; 1062 1063 if (msm_host->power_on && msm_host->enabled) { 1064 dsi_wait4video_done(msm_host); 1065 /* delay 4 ms to skip BLLP */ 1066 usleep_range(2000, 4000); 1067 } 1068 } 1069 1070 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1071 { 1072 struct drm_device *dev = msm_host->dev; 1073 struct msm_drm_private *priv = dev->dev_private; 1074 uint64_t iova; 1075 u8 *data; 1076 1077 data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED, 1078 priv->kms->aspace, 1079 &msm_host->tx_gem_obj, &iova); 1080 1081 if (IS_ERR(data)) { 1082 msm_host->tx_gem_obj = NULL; 1083 return PTR_ERR(data); 1084 } 1085 1086 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1087 1088 msm_host->tx_size = msm_host->tx_gem_obj->size; 1089 1090 return 0; 1091 } 1092 1093 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1094 { 1095 struct drm_device *dev = msm_host->dev; 1096 1097 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1098 &msm_host->tx_buf_paddr, GFP_KERNEL); 1099 if (!msm_host->tx_buf) 1100 return -ENOMEM; 1101 1102 msm_host->tx_size = size; 1103 1104 return 0; 1105 } 1106 1107 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1108 { 1109 struct drm_device *dev = msm_host->dev; 1110 struct msm_drm_private *priv; 1111 1112 /* 1113 * This is possible if we're tearing down before we've had a chance to 1114 * fully initialize. A very real possibility if our probe is deferred, 1115 * in which case we'll hit msm_dsi_host_destroy() without having run 1116 * through the dsi_tx_buf_alloc(). 1117 */ 1118 if (!dev) 1119 return; 1120 1121 priv = dev->dev_private; 1122 if (msm_host->tx_gem_obj) { 1123 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1124 drm_gem_object_put_unlocked(msm_host->tx_gem_obj); 1125 msm_host->tx_gem_obj = NULL; 1126 } 1127 1128 if (msm_host->tx_buf) 1129 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1130 msm_host->tx_buf_paddr); 1131 } 1132 1133 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1134 { 1135 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1136 } 1137 1138 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1139 { 1140 return msm_host->tx_buf; 1141 } 1142 1143 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1144 { 1145 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1146 } 1147 1148 /* 1149 * prepare cmd buffer to be txed 1150 */ 1151 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1152 const struct mipi_dsi_msg *msg) 1153 { 1154 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1155 struct mipi_dsi_packet packet; 1156 int len; 1157 int ret; 1158 u8 *data; 1159 1160 ret = mipi_dsi_create_packet(&packet, msg); 1161 if (ret) { 1162 pr_err("%s: create packet failed, %d\n", __func__, ret); 1163 return ret; 1164 } 1165 len = (packet.size + 3) & (~0x3); 1166 1167 if (len > msm_host->tx_size) { 1168 pr_err("%s: packet size is too big\n", __func__); 1169 return -EINVAL; 1170 } 1171 1172 data = cfg_hnd->ops->tx_buf_get(msm_host); 1173 if (IS_ERR(data)) { 1174 ret = PTR_ERR(data); 1175 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1176 return ret; 1177 } 1178 1179 /* MSM specific command format in memory */ 1180 data[0] = packet.header[1]; 1181 data[1] = packet.header[2]; 1182 data[2] = packet.header[0]; 1183 data[3] = BIT(7); /* Last packet */ 1184 if (mipi_dsi_packet_format_is_long(msg->type)) 1185 data[3] |= BIT(6); 1186 if (msg->rx_buf && msg->rx_len) 1187 data[3] |= BIT(5); 1188 1189 /* Long packet */ 1190 if (packet.payload && packet.payload_length) 1191 memcpy(data + 4, packet.payload, packet.payload_length); 1192 1193 /* Append 0xff to the end */ 1194 if (packet.size < len) 1195 memset(data + packet.size, 0xff, len - packet.size); 1196 1197 if (cfg_hnd->ops->tx_buf_put) 1198 cfg_hnd->ops->tx_buf_put(msm_host); 1199 1200 return len; 1201 } 1202 1203 /* 1204 * dsi_short_read1_resp: 1 parameter 1205 */ 1206 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1207 { 1208 u8 *data = msg->rx_buf; 1209 if (data && (msg->rx_len >= 1)) { 1210 *data = buf[1]; /* strip out dcs type */ 1211 return 1; 1212 } else { 1213 pr_err("%s: read data does not match with rx_buf len %zu\n", 1214 __func__, msg->rx_len); 1215 return -EINVAL; 1216 } 1217 } 1218 1219 /* 1220 * dsi_short_read2_resp: 2 parameter 1221 */ 1222 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1223 { 1224 u8 *data = msg->rx_buf; 1225 if (data && (msg->rx_len >= 2)) { 1226 data[0] = buf[1]; /* strip out dcs type */ 1227 data[1] = buf[2]; 1228 return 2; 1229 } else { 1230 pr_err("%s: read data does not match with rx_buf len %zu\n", 1231 __func__, msg->rx_len); 1232 return -EINVAL; 1233 } 1234 } 1235 1236 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1237 { 1238 /* strip out 4 byte dcs header */ 1239 if (msg->rx_buf && msg->rx_len) 1240 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1241 1242 return msg->rx_len; 1243 } 1244 1245 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1246 { 1247 struct drm_device *dev = msm_host->dev; 1248 struct msm_drm_private *priv = dev->dev_private; 1249 1250 if (!dma_base) 1251 return -EINVAL; 1252 1253 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1254 priv->kms->aspace, dma_base); 1255 } 1256 1257 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1258 { 1259 if (!dma_base) 1260 return -EINVAL; 1261 1262 *dma_base = msm_host->tx_buf_paddr; 1263 return 0; 1264 } 1265 1266 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1267 { 1268 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1269 int ret; 1270 uint64_t dma_base; 1271 bool triggered; 1272 1273 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1274 if (ret) { 1275 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1276 return ret; 1277 } 1278 1279 reinit_completion(&msm_host->dma_comp); 1280 1281 dsi_wait4video_eng_busy(msm_host); 1282 1283 triggered = msm_dsi_manager_cmd_xfer_trigger( 1284 msm_host->id, dma_base, len); 1285 if (triggered) { 1286 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1287 msecs_to_jiffies(200)); 1288 DBG("ret=%d", ret); 1289 if (ret == 0) 1290 ret = -ETIMEDOUT; 1291 else 1292 ret = len; 1293 } else 1294 ret = len; 1295 1296 return ret; 1297 } 1298 1299 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1300 u8 *buf, int rx_byte, int pkt_size) 1301 { 1302 u32 *lp, *temp, data; 1303 int i, j = 0, cnt; 1304 u32 read_cnt; 1305 u8 reg[16]; 1306 int repeated_bytes = 0; 1307 int buf_offset = buf - msm_host->rx_buf; 1308 1309 lp = (u32 *)buf; 1310 temp = (u32 *)reg; 1311 cnt = (rx_byte + 3) >> 2; 1312 if (cnt > 4) 1313 cnt = 4; /* 4 x 32 bits registers only */ 1314 1315 if (rx_byte == 4) 1316 read_cnt = 4; 1317 else 1318 read_cnt = pkt_size + 6; 1319 1320 /* 1321 * In case of multiple reads from the panel, after the first read, there 1322 * is possibility that there are some bytes in the payload repeating in 1323 * the RDBK_DATA registers. Since we read all the parameters from the 1324 * panel right from the first byte for every pass. We need to skip the 1325 * repeating bytes and then append the new parameters to the rx buffer. 1326 */ 1327 if (read_cnt > 16) { 1328 int bytes_shifted; 1329 /* Any data more than 16 bytes will be shifted out. 1330 * The temp read buffer should already contain these bytes. 1331 * The remaining bytes in read buffer are the repeated bytes. 1332 */ 1333 bytes_shifted = read_cnt - 16; 1334 repeated_bytes = buf_offset - bytes_shifted; 1335 } 1336 1337 for (i = cnt - 1; i >= 0; i--) { 1338 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1339 *temp++ = ntohl(data); /* to host byte order */ 1340 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1341 } 1342 1343 for (i = repeated_bytes; i < 16; i++) 1344 buf[j++] = reg[i]; 1345 1346 return j; 1347 } 1348 1349 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1350 const struct mipi_dsi_msg *msg) 1351 { 1352 int len, ret; 1353 int bllp_len = msm_host->mode->hdisplay * 1354 dsi_get_bpp(msm_host->format) / 8; 1355 1356 len = dsi_cmd_dma_add(msm_host, msg); 1357 if (!len) { 1358 pr_err("%s: failed to add cmd type = 0x%x\n", 1359 __func__, msg->type); 1360 return -EINVAL; 1361 } 1362 1363 /* for video mode, do not send cmds more than 1364 * one pixel line, since it only transmit it 1365 * during BLLP. 1366 */ 1367 /* TODO: if the command is sent in LP mode, the bit rate is only 1368 * half of esc clk rate. In this case, if the video is already 1369 * actively streaming, we need to check more carefully if the 1370 * command can be fit into one BLLP. 1371 */ 1372 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1373 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1374 __func__, len); 1375 return -EINVAL; 1376 } 1377 1378 ret = dsi_cmd_dma_tx(msm_host, len); 1379 if (ret < len) { 1380 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", 1381 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); 1382 return -ECOMM; 1383 } 1384 1385 return len; 1386 } 1387 1388 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) 1389 { 1390 u32 data0, data1; 1391 1392 data0 = dsi_read(msm_host, REG_DSI_CTRL); 1393 data1 = data0; 1394 data1 &= ~DSI_CTRL_ENABLE; 1395 dsi_write(msm_host, REG_DSI_CTRL, data1); 1396 /* 1397 * dsi controller need to be disabled before 1398 * clocks turned on 1399 */ 1400 wmb(); 1401 1402 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1403 wmb(); /* make sure clocks enabled */ 1404 1405 /* dsi controller can only be reset while clocks are running */ 1406 dsi_write(msm_host, REG_DSI_RESET, 1); 1407 wmb(); /* make sure reset happen */ 1408 dsi_write(msm_host, REG_DSI_RESET, 0); 1409 wmb(); /* controller out of reset */ 1410 dsi_write(msm_host, REG_DSI_CTRL, data0); 1411 wmb(); /* make sure dsi controller enabled again */ 1412 } 1413 1414 static void dsi_hpd_worker(struct work_struct *work) 1415 { 1416 struct msm_dsi_host *msm_host = 1417 container_of(work, struct msm_dsi_host, hpd_work); 1418 1419 drm_helper_hpd_irq_event(msm_host->dev); 1420 } 1421 1422 static void dsi_err_worker(struct work_struct *work) 1423 { 1424 struct msm_dsi_host *msm_host = 1425 container_of(work, struct msm_dsi_host, err_work); 1426 u32 status = msm_host->err_work_state; 1427 1428 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1429 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1430 dsi_sw_reset_restore(msm_host); 1431 1432 /* It is safe to clear here because error irq is disabled. */ 1433 msm_host->err_work_state = 0; 1434 1435 /* enable dsi error interrupt */ 1436 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1437 } 1438 1439 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1440 { 1441 u32 status; 1442 1443 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1444 1445 if (status) { 1446 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1447 /* Writing of an extra 0 needed to clear error bits */ 1448 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1449 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1450 } 1451 } 1452 1453 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1454 { 1455 u32 status; 1456 1457 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1458 1459 if (status) { 1460 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1461 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1462 } 1463 } 1464 1465 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1466 { 1467 u32 status; 1468 1469 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1470 1471 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1472 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1473 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1474 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1475 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1476 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1477 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1478 } 1479 } 1480 1481 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1482 { 1483 u32 status; 1484 1485 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1486 1487 /* fifo underflow, overflow */ 1488 if (status) { 1489 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1490 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1491 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1492 msm_host->err_work_state |= 1493 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1494 } 1495 } 1496 1497 static void dsi_status(struct msm_dsi_host *msm_host) 1498 { 1499 u32 status; 1500 1501 status = dsi_read(msm_host, REG_DSI_STATUS0); 1502 1503 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1504 dsi_write(msm_host, REG_DSI_STATUS0, status); 1505 msm_host->err_work_state |= 1506 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1507 } 1508 } 1509 1510 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1511 { 1512 u32 status; 1513 1514 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1515 1516 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1517 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1518 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1519 } 1520 } 1521 1522 static void dsi_error(struct msm_dsi_host *msm_host) 1523 { 1524 /* disable dsi error interrupt */ 1525 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1526 1527 dsi_clk_status(msm_host); 1528 dsi_fifo_status(msm_host); 1529 dsi_ack_err_status(msm_host); 1530 dsi_timeout_status(msm_host); 1531 dsi_status(msm_host); 1532 dsi_dln0_phy_err(msm_host); 1533 1534 queue_work(msm_host->workqueue, &msm_host->err_work); 1535 } 1536 1537 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1538 { 1539 struct msm_dsi_host *msm_host = ptr; 1540 u32 isr; 1541 unsigned long flags; 1542 1543 if (!msm_host->ctrl_base) 1544 return IRQ_HANDLED; 1545 1546 spin_lock_irqsave(&msm_host->intr_lock, flags); 1547 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1548 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1549 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1550 1551 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1552 1553 if (isr & DSI_IRQ_ERROR) 1554 dsi_error(msm_host); 1555 1556 if (isr & DSI_IRQ_VIDEO_DONE) 1557 complete(&msm_host->video_comp); 1558 1559 if (isr & DSI_IRQ_CMD_DMA_DONE) 1560 complete(&msm_host->dma_comp); 1561 1562 return IRQ_HANDLED; 1563 } 1564 1565 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1566 struct device *panel_device) 1567 { 1568 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1569 "disp-enable", 1570 GPIOD_OUT_LOW); 1571 if (IS_ERR(msm_host->disp_en_gpio)) { 1572 DBG("cannot get disp-enable-gpios %ld", 1573 PTR_ERR(msm_host->disp_en_gpio)); 1574 return PTR_ERR(msm_host->disp_en_gpio); 1575 } 1576 1577 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1578 GPIOD_IN); 1579 if (IS_ERR(msm_host->te_gpio)) { 1580 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1581 return PTR_ERR(msm_host->te_gpio); 1582 } 1583 1584 return 0; 1585 } 1586 1587 static int dsi_host_attach(struct mipi_dsi_host *host, 1588 struct mipi_dsi_device *dsi) 1589 { 1590 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1591 int ret; 1592 1593 if (dsi->lanes > msm_host->num_data_lanes) 1594 return -EINVAL; 1595 1596 msm_host->channel = dsi->channel; 1597 msm_host->lanes = dsi->lanes; 1598 msm_host->format = dsi->format; 1599 msm_host->mode_flags = dsi->mode_flags; 1600 1601 msm_dsi_manager_attach_dsi_device(msm_host->id, dsi->mode_flags); 1602 1603 /* Some gpios defined in panel DT need to be controlled by host */ 1604 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1605 if (ret) 1606 return ret; 1607 1608 DBG("id=%d", msm_host->id); 1609 if (msm_host->dev) 1610 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1611 1612 return 0; 1613 } 1614 1615 static int dsi_host_detach(struct mipi_dsi_host *host, 1616 struct mipi_dsi_device *dsi) 1617 { 1618 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1619 1620 msm_host->device_node = NULL; 1621 1622 DBG("id=%d", msm_host->id); 1623 if (msm_host->dev) 1624 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1625 1626 return 0; 1627 } 1628 1629 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1630 const struct mipi_dsi_msg *msg) 1631 { 1632 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1633 int ret; 1634 1635 if (!msg || !msm_host->power_on) 1636 return -EINVAL; 1637 1638 mutex_lock(&msm_host->cmd_mutex); 1639 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1640 mutex_unlock(&msm_host->cmd_mutex); 1641 1642 return ret; 1643 } 1644 1645 static struct mipi_dsi_host_ops dsi_host_ops = { 1646 .attach = dsi_host_attach, 1647 .detach = dsi_host_detach, 1648 .transfer = dsi_host_transfer, 1649 }; 1650 1651 /* 1652 * List of supported physical to logical lane mappings. 1653 * For example, the 2nd entry represents the following mapping: 1654 * 1655 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1656 */ 1657 static const int supported_data_lane_swaps[][4] = { 1658 { 0, 1, 2, 3 }, 1659 { 3, 0, 1, 2 }, 1660 { 2, 3, 0, 1 }, 1661 { 1, 2, 3, 0 }, 1662 { 0, 3, 2, 1 }, 1663 { 1, 0, 3, 2 }, 1664 { 2, 1, 0, 3 }, 1665 { 3, 2, 1, 0 }, 1666 }; 1667 1668 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1669 struct device_node *ep) 1670 { 1671 struct device *dev = &msm_host->pdev->dev; 1672 struct property *prop; 1673 u32 lane_map[4]; 1674 int ret, i, len, num_lanes; 1675 1676 prop = of_find_property(ep, "data-lanes", &len); 1677 if (!prop) { 1678 DRM_DEV_DEBUG(dev, 1679 "failed to find data lane mapping, using default\n"); 1680 return 0; 1681 } 1682 1683 num_lanes = len / sizeof(u32); 1684 1685 if (num_lanes < 1 || num_lanes > 4) { 1686 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1687 return -EINVAL; 1688 } 1689 1690 msm_host->num_data_lanes = num_lanes; 1691 1692 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1693 num_lanes); 1694 if (ret) { 1695 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1696 return ret; 1697 } 1698 1699 /* 1700 * compare DT specified physical-logical lane mappings with the ones 1701 * supported by hardware 1702 */ 1703 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1704 const int *swap = supported_data_lane_swaps[i]; 1705 int j; 1706 1707 /* 1708 * the data-lanes array we get from DT has a logical->physical 1709 * mapping. The "data lane swap" register field represents 1710 * supported configurations in a physical->logical mapping. 1711 * Translate the DT mapping to what we understand and find a 1712 * configuration that works. 1713 */ 1714 for (j = 0; j < num_lanes; j++) { 1715 if (lane_map[j] < 0 || lane_map[j] > 3) 1716 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1717 lane_map[j]); 1718 1719 if (swap[lane_map[j]] != j) 1720 break; 1721 } 1722 1723 if (j == num_lanes) { 1724 msm_host->dlane_swap = i; 1725 return 0; 1726 } 1727 } 1728 1729 return -EINVAL; 1730 } 1731 1732 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1733 { 1734 struct device *dev = &msm_host->pdev->dev; 1735 struct device_node *np = dev->of_node; 1736 struct device_node *endpoint, *device_node; 1737 int ret = 0; 1738 1739 /* 1740 * Get the endpoint of the output port of the DSI host. In our case, 1741 * this is mapped to port number with reg = 1. Don't return an error if 1742 * the remote endpoint isn't defined. It's possible that there is 1743 * nothing connected to the dsi output. 1744 */ 1745 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1746 if (!endpoint) { 1747 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1748 return 0; 1749 } 1750 1751 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1752 if (ret) { 1753 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1754 __func__, ret); 1755 ret = -EINVAL; 1756 goto err; 1757 } 1758 1759 /* Get panel node from the output port's endpoint data */ 1760 device_node = of_graph_get_remote_node(np, 1, 0); 1761 if (!device_node) { 1762 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__); 1763 ret = -ENODEV; 1764 goto err; 1765 } 1766 1767 msm_host->device_node = device_node; 1768 1769 if (of_property_read_bool(np, "syscon-sfpb")) { 1770 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1771 "syscon-sfpb"); 1772 if (IS_ERR(msm_host->sfpb)) { 1773 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1774 __func__); 1775 ret = PTR_ERR(msm_host->sfpb); 1776 } 1777 } 1778 1779 of_node_put(device_node); 1780 1781 err: 1782 of_node_put(endpoint); 1783 1784 return ret; 1785 } 1786 1787 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1788 { 1789 struct platform_device *pdev = msm_host->pdev; 1790 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1791 struct resource *res; 1792 int i; 1793 1794 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1795 if (!res) 1796 return -EINVAL; 1797 1798 for (i = 0; i < cfg->num_dsi; i++) { 1799 if (cfg->io_start[i] == res->start) 1800 return i; 1801 } 1802 1803 return -EINVAL; 1804 } 1805 1806 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1807 { 1808 struct msm_dsi_host *msm_host = NULL; 1809 struct platform_device *pdev = msm_dsi->pdev; 1810 int ret; 1811 1812 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1813 if (!msm_host) { 1814 pr_err("%s: FAILED: cannot alloc dsi host\n", 1815 __func__); 1816 ret = -ENOMEM; 1817 goto fail; 1818 } 1819 1820 msm_host->pdev = pdev; 1821 msm_dsi->host = &msm_host->base; 1822 1823 ret = dsi_host_parse_dt(msm_host); 1824 if (ret) { 1825 pr_err("%s: failed to parse dt\n", __func__); 1826 goto fail; 1827 } 1828 1829 msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL"); 1830 if (IS_ERR(msm_host->ctrl_base)) { 1831 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1832 ret = PTR_ERR(msm_host->ctrl_base); 1833 goto fail; 1834 } 1835 1836 pm_runtime_enable(&pdev->dev); 1837 1838 msm_host->cfg_hnd = dsi_get_config(msm_host); 1839 if (!msm_host->cfg_hnd) { 1840 ret = -EINVAL; 1841 pr_err("%s: get config failed\n", __func__); 1842 goto fail; 1843 } 1844 1845 msm_host->id = dsi_host_get_id(msm_host); 1846 if (msm_host->id < 0) { 1847 ret = msm_host->id; 1848 pr_err("%s: unable to identify DSI host index\n", __func__); 1849 goto fail; 1850 } 1851 1852 /* fixup base address by io offset */ 1853 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset; 1854 1855 ret = dsi_regulator_init(msm_host); 1856 if (ret) { 1857 pr_err("%s: regulator init failed\n", __func__); 1858 goto fail; 1859 } 1860 1861 ret = dsi_clk_init(msm_host); 1862 if (ret) { 1863 pr_err("%s: unable to initialize dsi clks\n", __func__); 1864 goto fail; 1865 } 1866 1867 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1868 if (!msm_host->rx_buf) { 1869 ret = -ENOMEM; 1870 pr_err("%s: alloc rx temp buf failed\n", __func__); 1871 goto fail; 1872 } 1873 1874 init_completion(&msm_host->dma_comp); 1875 init_completion(&msm_host->video_comp); 1876 mutex_init(&msm_host->dev_mutex); 1877 mutex_init(&msm_host->cmd_mutex); 1878 spin_lock_init(&msm_host->intr_lock); 1879 1880 /* setup workqueue */ 1881 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1882 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1883 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker); 1884 1885 msm_dsi->id = msm_host->id; 1886 1887 DBG("Dsi Host %d initialized", msm_host->id); 1888 return 0; 1889 1890 fail: 1891 return ret; 1892 } 1893 1894 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1895 { 1896 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1897 1898 DBG(""); 1899 dsi_tx_buf_free(msm_host); 1900 if (msm_host->workqueue) { 1901 flush_workqueue(msm_host->workqueue); 1902 destroy_workqueue(msm_host->workqueue); 1903 msm_host->workqueue = NULL; 1904 } 1905 1906 mutex_destroy(&msm_host->cmd_mutex); 1907 mutex_destroy(&msm_host->dev_mutex); 1908 1909 pm_runtime_disable(&msm_host->pdev->dev); 1910 } 1911 1912 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1913 struct drm_device *dev) 1914 { 1915 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1916 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1917 struct platform_device *pdev = msm_host->pdev; 1918 int ret; 1919 1920 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1921 if (msm_host->irq < 0) { 1922 ret = msm_host->irq; 1923 DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret); 1924 return ret; 1925 } 1926 1927 ret = devm_request_irq(&pdev->dev, msm_host->irq, 1928 dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 1929 "dsi_isr", msm_host); 1930 if (ret < 0) { 1931 DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n", 1932 msm_host->irq, ret); 1933 return ret; 1934 } 1935 1936 msm_host->dev = dev; 1937 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1938 if (ret) { 1939 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1940 return ret; 1941 } 1942 1943 return 0; 1944 } 1945 1946 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer) 1947 { 1948 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1949 int ret; 1950 1951 /* Register mipi dsi host */ 1952 if (!msm_host->registered) { 1953 host->dev = &msm_host->pdev->dev; 1954 host->ops = &dsi_host_ops; 1955 ret = mipi_dsi_host_register(host); 1956 if (ret) 1957 return ret; 1958 1959 msm_host->registered = true; 1960 1961 /* If the panel driver has not been probed after host register, 1962 * we should defer the host's probe. 1963 * It makes sure panel is connected when fbcon detects 1964 * connector status and gets the proper display mode to 1965 * create framebuffer. 1966 * Don't try to defer if there is nothing connected to the dsi 1967 * output 1968 */ 1969 if (check_defer && msm_host->device_node) { 1970 if (IS_ERR(of_drm_find_panel(msm_host->device_node))) 1971 if (!of_drm_find_bridge(msm_host->device_node)) 1972 return -EPROBE_DEFER; 1973 } 1974 } 1975 1976 return 0; 1977 } 1978 1979 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 1980 { 1981 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1982 1983 if (msm_host->registered) { 1984 mipi_dsi_host_unregister(host); 1985 host->dev = NULL; 1986 host->ops = NULL; 1987 msm_host->registered = false; 1988 } 1989 } 1990 1991 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 1992 const struct mipi_dsi_msg *msg) 1993 { 1994 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1995 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1996 1997 /* TODO: make sure dsi_cmd_mdp is idle. 1998 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 1999 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 2000 * How to handle the old versions? Wait for mdp cmd done? 2001 */ 2002 2003 /* 2004 * mdss interrupt is generated in mdp core clock domain 2005 * mdp clock need to be enabled to receive dsi interrupt 2006 */ 2007 pm_runtime_get_sync(&msm_host->pdev->dev); 2008 cfg_hnd->ops->link_clk_enable(msm_host); 2009 2010 /* TODO: vote for bus bandwidth */ 2011 2012 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2013 dsi_set_tx_power_mode(0, msm_host); 2014 2015 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2016 dsi_write(msm_host, REG_DSI_CTRL, 2017 msm_host->dma_cmd_ctrl_restore | 2018 DSI_CTRL_CMD_MODE_EN | 2019 DSI_CTRL_ENABLE); 2020 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2021 2022 return 0; 2023 } 2024 2025 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2026 const struct mipi_dsi_msg *msg) 2027 { 2028 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2029 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2030 2031 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2032 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2033 2034 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2035 dsi_set_tx_power_mode(1, msm_host); 2036 2037 /* TODO: unvote for bus bandwidth */ 2038 2039 cfg_hnd->ops->link_clk_disable(msm_host); 2040 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2041 } 2042 2043 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2044 const struct mipi_dsi_msg *msg) 2045 { 2046 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2047 2048 return dsi_cmds2buf_tx(msm_host, msg); 2049 } 2050 2051 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2052 const struct mipi_dsi_msg *msg) 2053 { 2054 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2055 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2056 int data_byte, rx_byte, dlen, end; 2057 int short_response, diff, pkt_size, ret = 0; 2058 char cmd; 2059 int rlen = msg->rx_len; 2060 u8 *buf; 2061 2062 if (rlen <= 2) { 2063 short_response = 1; 2064 pkt_size = rlen; 2065 rx_byte = 4; 2066 } else { 2067 short_response = 0; 2068 data_byte = 10; /* first read */ 2069 if (rlen < data_byte) 2070 pkt_size = rlen; 2071 else 2072 pkt_size = data_byte; 2073 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2074 } 2075 2076 buf = msm_host->rx_buf; 2077 end = 0; 2078 while (!end) { 2079 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2080 struct mipi_dsi_msg max_pkt_size_msg = { 2081 .channel = msg->channel, 2082 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2083 .tx_len = 2, 2084 .tx_buf = tx, 2085 }; 2086 2087 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2088 rlen, pkt_size, rx_byte); 2089 2090 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2091 if (ret < 2) { 2092 pr_err("%s: Set max pkt size failed, %d\n", 2093 __func__, ret); 2094 return -EINVAL; 2095 } 2096 2097 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2098 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2099 /* Clear the RDBK_DATA registers */ 2100 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2101 DSI_RDBK_DATA_CTRL_CLR); 2102 wmb(); /* make sure the RDBK registers are cleared */ 2103 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2104 wmb(); /* release cleared status before transfer */ 2105 } 2106 2107 ret = dsi_cmds2buf_tx(msm_host, msg); 2108 if (ret < msg->tx_len) { 2109 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2110 return ret; 2111 } 2112 2113 /* 2114 * once cmd_dma_done interrupt received, 2115 * return data from client is ready and stored 2116 * at RDBK_DATA register already 2117 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2118 * after that dcs header lost during shift into registers 2119 */ 2120 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2121 2122 if (dlen <= 0) 2123 return 0; 2124 2125 if (short_response) 2126 break; 2127 2128 if (rlen <= data_byte) { 2129 diff = data_byte - rlen; 2130 end = 1; 2131 } else { 2132 diff = 0; 2133 rlen -= data_byte; 2134 } 2135 2136 if (!end) { 2137 dlen -= 2; /* 2 crc */ 2138 dlen -= diff; 2139 buf += dlen; /* next start position */ 2140 data_byte = 14; /* NOT first read */ 2141 if (rlen < data_byte) 2142 pkt_size += rlen; 2143 else 2144 pkt_size += data_byte; 2145 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2146 } 2147 } 2148 2149 /* 2150 * For single Long read, if the requested rlen < 10, 2151 * we need to shift the start position of rx 2152 * data buffer to skip the bytes which are not 2153 * updated. 2154 */ 2155 if (pkt_size < 10 && !short_response) 2156 buf = msm_host->rx_buf + (10 - rlen); 2157 else 2158 buf = msm_host->rx_buf; 2159 2160 cmd = buf[0]; 2161 switch (cmd) { 2162 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2163 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2164 ret = 0; 2165 break; 2166 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2167 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2168 ret = dsi_short_read1_resp(buf, msg); 2169 break; 2170 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2171 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2172 ret = dsi_short_read2_resp(buf, msg); 2173 break; 2174 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2175 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2176 ret = dsi_long_read_resp(buf, msg); 2177 break; 2178 default: 2179 pr_warn("%s:Invalid response cmd\n", __func__); 2180 ret = 0; 2181 } 2182 2183 return ret; 2184 } 2185 2186 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2187 u32 len) 2188 { 2189 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2190 2191 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2192 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2193 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2194 2195 /* Make sure trigger happens */ 2196 wmb(); 2197 } 2198 2199 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host, 2200 struct msm_dsi_pll *src_pll) 2201 { 2202 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2203 struct clk *byte_clk_provider, *pixel_clk_provider; 2204 int ret; 2205 2206 ret = msm_dsi_pll_get_clk_provider(src_pll, 2207 &byte_clk_provider, &pixel_clk_provider); 2208 if (ret) { 2209 pr_info("%s: can't get provider from pll, don't set parent\n", 2210 __func__); 2211 return 0; 2212 } 2213 2214 ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider); 2215 if (ret) { 2216 pr_err("%s: can't set parent to byte_clk_src. ret=%d\n", 2217 __func__, ret); 2218 goto exit; 2219 } 2220 2221 ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider); 2222 if (ret) { 2223 pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n", 2224 __func__, ret); 2225 goto exit; 2226 } 2227 2228 if (msm_host->dsi_clk_src) { 2229 ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider); 2230 if (ret) { 2231 pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n", 2232 __func__, ret); 2233 goto exit; 2234 } 2235 } 2236 2237 if (msm_host->esc_clk_src) { 2238 ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider); 2239 if (ret) { 2240 pr_err("%s: can't set parent to esc_clk_src. ret=%d\n", 2241 __func__, ret); 2242 goto exit; 2243 } 2244 } 2245 2246 exit: 2247 return ret; 2248 } 2249 2250 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2251 { 2252 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2253 2254 DBG(""); 2255 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2256 /* Make sure fully reset */ 2257 wmb(); 2258 udelay(1000); 2259 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2260 udelay(100); 2261 } 2262 2263 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2264 struct msm_dsi_phy_clk_request *clk_req, 2265 bool is_dual_dsi) 2266 { 2267 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2268 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2269 int ret; 2270 2271 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi); 2272 if (ret) { 2273 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2274 return; 2275 } 2276 2277 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2278 clk_req->escclk_rate = msm_host->esc_clk_rate; 2279 } 2280 2281 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2282 { 2283 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2284 2285 dsi_op_mode_config(msm_host, 2286 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2287 2288 /* TODO: clock should be turned off for command mode, 2289 * and only turned on before MDP START. 2290 * This part of code should be enabled once mdp driver support it. 2291 */ 2292 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2293 * dsi_link_clk_disable(msm_host); 2294 * pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2295 * } 2296 */ 2297 msm_host->enabled = true; 2298 return 0; 2299 } 2300 2301 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2302 { 2303 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2304 2305 msm_host->enabled = false; 2306 dsi_op_mode_config(msm_host, 2307 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2308 2309 /* Since we have disabled INTF, the video engine won't stop so that 2310 * the cmd engine will be blocked. 2311 * Reset to disable video engine so that we can send off cmd. 2312 */ 2313 dsi_sw_reset(msm_host); 2314 2315 return 0; 2316 } 2317 2318 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2319 { 2320 enum sfpb_ahb_arb_master_port_en en; 2321 2322 if (!msm_host->sfpb) 2323 return; 2324 2325 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2326 2327 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2328 SFPB_GPREG_MASTER_PORT_EN__MASK, 2329 SFPB_GPREG_MASTER_PORT_EN(en)); 2330 } 2331 2332 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2333 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2334 bool is_dual_dsi) 2335 { 2336 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2337 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2338 int ret = 0; 2339 2340 mutex_lock(&msm_host->dev_mutex); 2341 if (msm_host->power_on) { 2342 DBG("dsi host already on"); 2343 goto unlock_ret; 2344 } 2345 2346 msm_dsi_sfpb_config(msm_host, true); 2347 2348 ret = dsi_host_regulator_enable(msm_host); 2349 if (ret) { 2350 pr_err("%s:Failed to enable vregs.ret=%d\n", 2351 __func__, ret); 2352 goto unlock_ret; 2353 } 2354 2355 pm_runtime_get_sync(&msm_host->pdev->dev); 2356 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2357 if (ret) { 2358 pr_err("%s: failed to enable link clocks. ret=%d\n", 2359 __func__, ret); 2360 goto fail_disable_reg; 2361 } 2362 2363 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2364 if (ret) { 2365 pr_err("%s: failed to set pinctrl default state, %d\n", 2366 __func__, ret); 2367 goto fail_disable_clk; 2368 } 2369 2370 dsi_timing_setup(msm_host, is_dual_dsi); 2371 dsi_sw_reset(msm_host); 2372 dsi_ctrl_config(msm_host, true, phy_shared_timings); 2373 2374 if (msm_host->disp_en_gpio) 2375 gpiod_set_value(msm_host->disp_en_gpio, 1); 2376 2377 msm_host->power_on = true; 2378 mutex_unlock(&msm_host->dev_mutex); 2379 2380 return 0; 2381 2382 fail_disable_clk: 2383 cfg_hnd->ops->link_clk_disable(msm_host); 2384 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2385 fail_disable_reg: 2386 dsi_host_regulator_disable(msm_host); 2387 unlock_ret: 2388 mutex_unlock(&msm_host->dev_mutex); 2389 return ret; 2390 } 2391 2392 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2393 { 2394 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2395 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2396 2397 mutex_lock(&msm_host->dev_mutex); 2398 if (!msm_host->power_on) { 2399 DBG("dsi host already off"); 2400 goto unlock_ret; 2401 } 2402 2403 dsi_ctrl_config(msm_host, false, NULL); 2404 2405 if (msm_host->disp_en_gpio) 2406 gpiod_set_value(msm_host->disp_en_gpio, 0); 2407 2408 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2409 2410 cfg_hnd->ops->link_clk_disable(msm_host); 2411 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2412 2413 dsi_host_regulator_disable(msm_host); 2414 2415 msm_dsi_sfpb_config(msm_host, false); 2416 2417 DBG("-"); 2418 2419 msm_host->power_on = false; 2420 2421 unlock_ret: 2422 mutex_unlock(&msm_host->dev_mutex); 2423 return 0; 2424 } 2425 2426 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2427 const struct drm_display_mode *mode) 2428 { 2429 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2430 2431 if (msm_host->mode) { 2432 drm_mode_destroy(msm_host->dev, msm_host->mode); 2433 msm_host->mode = NULL; 2434 } 2435 2436 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2437 if (!msm_host->mode) { 2438 pr_err("%s: cannot duplicate mode\n", __func__); 2439 return -ENOMEM; 2440 } 2441 2442 return 0; 2443 } 2444 2445 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host, 2446 unsigned long *panel_flags) 2447 { 2448 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2449 struct drm_panel *panel; 2450 2451 panel = of_drm_find_panel(msm_host->device_node); 2452 if (panel_flags) 2453 *panel_flags = msm_host->mode_flags; 2454 2455 return panel; 2456 } 2457 2458 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host) 2459 { 2460 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2461 2462 return of_drm_find_bridge(msm_host->device_node); 2463 } 2464