1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of_device.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_opp.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spinlock.h> 21 22 #include <video/mipi_display.h> 23 24 #include "dsi.h" 25 #include "dsi.xml.h" 26 #include "sfpb.xml.h" 27 #include "dsi_cfg.h" 28 #include "msm_kms.h" 29 #include "msm_gem.h" 30 31 #define DSI_RESET_TOGGLE_DELAY_MS 20 32 33 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 34 { 35 u32 ver; 36 37 if (!major || !minor) 38 return -EINVAL; 39 40 /* 41 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 42 * makes all other registers 4-byte shifted down. 43 * 44 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 45 * older, we read the DSI_VERSION register without any shift(offset 46 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 47 * the case of DSI6G, this has to be zero (the offset points to a 48 * scratch register which we never touch) 49 */ 50 51 ver = msm_readl(base + REG_DSI_VERSION); 52 if (ver) { 53 /* older dsi host, there is no register shift */ 54 ver = FIELD(ver, DSI_VERSION_MAJOR); 55 if (ver <= MSM_DSI_VER_MAJOR_V2) { 56 /* old versions */ 57 *major = ver; 58 *minor = 0; 59 return 0; 60 } else { 61 return -EINVAL; 62 } 63 } else { 64 /* 65 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 66 * registers are shifted down, read DSI_VERSION again with 67 * the shifted offset 68 */ 69 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 70 ver = FIELD(ver, DSI_VERSION_MAJOR); 71 if (ver == MSM_DSI_VER_MAJOR_6G) { 72 /* 6G version */ 73 *major = ver; 74 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 75 return 0; 76 } else { 77 return -EINVAL; 78 } 79 } 80 } 81 82 #define DSI_ERR_STATE_ACK 0x0000 83 #define DSI_ERR_STATE_TIMEOUT 0x0001 84 #define DSI_ERR_STATE_DLN0_PHY 0x0002 85 #define DSI_ERR_STATE_FIFO 0x0004 86 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 87 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 88 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 89 90 #define DSI_CLK_CTRL_ENABLE_CLKS \ 91 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 92 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 93 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 94 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 95 96 struct msm_dsi_host { 97 struct mipi_dsi_host base; 98 99 struct platform_device *pdev; 100 struct drm_device *dev; 101 102 int id; 103 104 void __iomem *ctrl_base; 105 phys_addr_t ctrl_size; 106 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; 107 108 struct clk *bus_clks[DSI_BUS_CLK_MAX]; 109 110 struct clk *byte_clk; 111 struct clk *esc_clk; 112 struct clk *pixel_clk; 113 struct clk *byte_clk_src; 114 struct clk *pixel_clk_src; 115 struct clk *byte_intf_clk; 116 117 u32 byte_clk_rate; 118 u32 pixel_clk_rate; 119 u32 esc_clk_rate; 120 121 /* DSI v2 specific clocks */ 122 struct clk *src_clk; 123 struct clk *esc_clk_src; 124 struct clk *dsi_clk_src; 125 126 u32 src_clk_rate; 127 128 struct gpio_desc *disp_en_gpio; 129 struct gpio_desc *te_gpio; 130 131 const struct msm_dsi_cfg_handler *cfg_hnd; 132 133 struct completion dma_comp; 134 struct completion video_comp; 135 struct mutex dev_mutex; 136 struct mutex cmd_mutex; 137 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 138 139 u32 err_work_state; 140 struct work_struct err_work; 141 struct work_struct hpd_work; 142 struct workqueue_struct *workqueue; 143 144 /* DSI 6G TX buffer*/ 145 struct drm_gem_object *tx_gem_obj; 146 147 /* DSI v2 TX buffer */ 148 void *tx_buf; 149 dma_addr_t tx_buf_paddr; 150 151 int tx_size; 152 153 u8 *rx_buf; 154 155 struct regmap *sfpb; 156 157 struct drm_display_mode *mode; 158 159 /* connected device info */ 160 struct device_node *device_node; 161 unsigned int channel; 162 unsigned int lanes; 163 enum mipi_dsi_pixel_format format; 164 unsigned long mode_flags; 165 166 /* lane data parsed via DT */ 167 int dlane_swap; 168 int num_data_lanes; 169 170 u32 dma_cmd_ctrl_restore; 171 172 bool registered; 173 bool power_on; 174 bool enabled; 175 int irq; 176 }; 177 178 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 179 { 180 switch (fmt) { 181 case MIPI_DSI_FMT_RGB565: return 16; 182 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 183 case MIPI_DSI_FMT_RGB666: 184 case MIPI_DSI_FMT_RGB888: 185 default: return 24; 186 } 187 } 188 189 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 190 { 191 return msm_readl(msm_host->ctrl_base + reg); 192 } 193 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 194 { 195 msm_writel(data, msm_host->ctrl_base + reg); 196 } 197 198 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); 199 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); 200 201 static const struct msm_dsi_cfg_handler *dsi_get_config( 202 struct msm_dsi_host *msm_host) 203 { 204 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 205 struct device *dev = &msm_host->pdev->dev; 206 struct regulator *gdsc_reg; 207 struct clk *ahb_clk; 208 int ret; 209 u32 major = 0, minor = 0; 210 211 gdsc_reg = regulator_get(dev, "gdsc"); 212 if (IS_ERR(gdsc_reg)) { 213 pr_err("%s: cannot get gdsc\n", __func__); 214 goto exit; 215 } 216 217 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 218 if (IS_ERR(ahb_clk)) { 219 pr_err("%s: cannot get interface clock\n", __func__); 220 goto put_gdsc; 221 } 222 223 pm_runtime_get_sync(dev); 224 225 ret = regulator_enable(gdsc_reg); 226 if (ret) { 227 pr_err("%s: unable to enable gdsc\n", __func__); 228 goto put_gdsc; 229 } 230 231 ret = clk_prepare_enable(ahb_clk); 232 if (ret) { 233 pr_err("%s: unable to enable ahb_clk\n", __func__); 234 goto disable_gdsc; 235 } 236 237 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 238 if (ret) { 239 pr_err("%s: Invalid version\n", __func__); 240 goto disable_clks; 241 } 242 243 cfg_hnd = msm_dsi_cfg_get(major, minor); 244 245 DBG("%s: Version %x:%x\n", __func__, major, minor); 246 247 disable_clks: 248 clk_disable_unprepare(ahb_clk); 249 disable_gdsc: 250 regulator_disable(gdsc_reg); 251 pm_runtime_put_sync(dev); 252 put_gdsc: 253 regulator_put(gdsc_reg); 254 exit: 255 return cfg_hnd; 256 } 257 258 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 259 { 260 return container_of(host, struct msm_dsi_host, base); 261 } 262 263 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) 264 { 265 struct regulator_bulk_data *s = msm_host->supplies; 266 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 267 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 268 int i; 269 270 DBG(""); 271 for (i = num - 1; i >= 0; i--) 272 if (regs[i].disable_load >= 0) 273 regulator_set_load(s[i].consumer, 274 regs[i].disable_load); 275 276 regulator_bulk_disable(num, s); 277 } 278 279 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) 280 { 281 struct regulator_bulk_data *s = msm_host->supplies; 282 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 283 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 284 int ret, i; 285 286 DBG(""); 287 for (i = 0; i < num; i++) { 288 if (regs[i].enable_load >= 0) { 289 ret = regulator_set_load(s[i].consumer, 290 regs[i].enable_load); 291 if (ret < 0) { 292 pr_err("regulator %d set op mode failed, %d\n", 293 i, ret); 294 goto fail; 295 } 296 } 297 } 298 299 ret = regulator_bulk_enable(num, s); 300 if (ret < 0) { 301 pr_err("regulator enable failed, %d\n", ret); 302 goto fail; 303 } 304 305 return 0; 306 307 fail: 308 for (i--; i >= 0; i--) 309 regulator_set_load(s[i].consumer, regs[i].disable_load); 310 return ret; 311 } 312 313 static int dsi_regulator_init(struct msm_dsi_host *msm_host) 314 { 315 struct regulator_bulk_data *s = msm_host->supplies; 316 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 317 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 318 int i, ret; 319 320 for (i = 0; i < num; i++) 321 s[i].supply = regs[i].name; 322 323 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); 324 if (ret < 0) { 325 pr_err("%s: failed to init regulator, ret=%d\n", 326 __func__, ret); 327 return ret; 328 } 329 330 return 0; 331 } 332 333 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 334 { 335 struct platform_device *pdev = msm_host->pdev; 336 int ret = 0; 337 338 msm_host->src_clk = msm_clk_get(pdev, "src"); 339 340 if (IS_ERR(msm_host->src_clk)) { 341 ret = PTR_ERR(msm_host->src_clk); 342 pr_err("%s: can't find src clock. ret=%d\n", 343 __func__, ret); 344 msm_host->src_clk = NULL; 345 return ret; 346 } 347 348 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 349 if (!msm_host->esc_clk_src) { 350 ret = -ENODEV; 351 pr_err("%s: can't get esc clock parent. ret=%d\n", 352 __func__, ret); 353 return ret; 354 } 355 356 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 357 if (!msm_host->dsi_clk_src) { 358 ret = -ENODEV; 359 pr_err("%s: can't get src clock parent. ret=%d\n", 360 __func__, ret); 361 } 362 363 return ret; 364 } 365 366 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 367 { 368 struct platform_device *pdev = msm_host->pdev; 369 int ret = 0; 370 371 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 372 if (IS_ERR(msm_host->byte_intf_clk)) { 373 ret = PTR_ERR(msm_host->byte_intf_clk); 374 pr_err("%s: can't find byte_intf clock. ret=%d\n", 375 __func__, ret); 376 } 377 378 return ret; 379 } 380 381 static int dsi_clk_init(struct msm_dsi_host *msm_host) 382 { 383 struct platform_device *pdev = msm_host->pdev; 384 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 385 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 386 int i, ret = 0; 387 388 /* get bus clocks */ 389 for (i = 0; i < cfg->num_bus_clks; i++) { 390 msm_host->bus_clks[i] = msm_clk_get(pdev, 391 cfg->bus_clk_names[i]); 392 if (IS_ERR(msm_host->bus_clks[i])) { 393 ret = PTR_ERR(msm_host->bus_clks[i]); 394 pr_err("%s: Unable to get %s clock, ret = %d\n", 395 __func__, cfg->bus_clk_names[i], ret); 396 goto exit; 397 } 398 } 399 400 /* get link and source clocks */ 401 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 402 if (IS_ERR(msm_host->byte_clk)) { 403 ret = PTR_ERR(msm_host->byte_clk); 404 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 405 __func__, ret); 406 msm_host->byte_clk = NULL; 407 goto exit; 408 } 409 410 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 411 if (IS_ERR(msm_host->pixel_clk)) { 412 ret = PTR_ERR(msm_host->pixel_clk); 413 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 414 __func__, ret); 415 msm_host->pixel_clk = NULL; 416 goto exit; 417 } 418 419 msm_host->esc_clk = msm_clk_get(pdev, "core"); 420 if (IS_ERR(msm_host->esc_clk)) { 421 ret = PTR_ERR(msm_host->esc_clk); 422 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 423 __func__, ret); 424 msm_host->esc_clk = NULL; 425 goto exit; 426 } 427 428 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 429 if (IS_ERR(msm_host->byte_clk_src)) { 430 ret = PTR_ERR(msm_host->byte_clk_src); 431 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 432 goto exit; 433 } 434 435 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 436 if (IS_ERR(msm_host->pixel_clk_src)) { 437 ret = PTR_ERR(msm_host->pixel_clk_src); 438 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 439 goto exit; 440 } 441 442 if (cfg_hnd->ops->clk_init_ver) 443 ret = cfg_hnd->ops->clk_init_ver(msm_host); 444 exit: 445 return ret; 446 } 447 448 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host) 449 { 450 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 451 int i, ret; 452 453 DBG("id=%d", msm_host->id); 454 455 for (i = 0; i < cfg->num_bus_clks; i++) { 456 ret = clk_prepare_enable(msm_host->bus_clks[i]); 457 if (ret) { 458 pr_err("%s: failed to enable bus clock %d ret %d\n", 459 __func__, i, ret); 460 goto err; 461 } 462 } 463 464 return 0; 465 err: 466 for (; i > 0; i--) 467 clk_disable_unprepare(msm_host->bus_clks[i]); 468 469 return ret; 470 } 471 472 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host) 473 { 474 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 475 int i; 476 477 DBG(""); 478 479 for (i = cfg->num_bus_clks - 1; i >= 0; i--) 480 clk_disable_unprepare(msm_host->bus_clks[i]); 481 } 482 483 int msm_dsi_runtime_suspend(struct device *dev) 484 { 485 struct platform_device *pdev = to_platform_device(dev); 486 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 487 struct mipi_dsi_host *host = msm_dsi->host; 488 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 489 490 if (!msm_host->cfg_hnd) 491 return 0; 492 493 dsi_bus_clk_disable(msm_host); 494 495 return 0; 496 } 497 498 int msm_dsi_runtime_resume(struct device *dev) 499 { 500 struct platform_device *pdev = to_platform_device(dev); 501 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 502 struct mipi_dsi_host *host = msm_dsi->host; 503 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 504 505 if (!msm_host->cfg_hnd) 506 return 0; 507 508 return dsi_bus_clk_enable(msm_host); 509 } 510 511 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) 512 { 513 int ret; 514 515 DBG("Set clk rates: pclk=%d, byteclk=%d", 516 msm_host->mode->clock, msm_host->byte_clk_rate); 517 518 ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, 519 msm_host->byte_clk_rate); 520 if (ret) { 521 pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); 522 return ret; 523 } 524 525 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 526 if (ret) { 527 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 528 return ret; 529 } 530 531 if (msm_host->byte_intf_clk) { 532 ret = clk_set_rate(msm_host->byte_intf_clk, 533 msm_host->byte_clk_rate / 2); 534 if (ret) { 535 pr_err("%s: Failed to set rate byte intf clk, %d\n", 536 __func__, ret); 537 return ret; 538 } 539 } 540 541 return 0; 542 } 543 544 545 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 546 { 547 int ret; 548 549 ret = clk_prepare_enable(msm_host->esc_clk); 550 if (ret) { 551 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 552 goto error; 553 } 554 555 ret = clk_prepare_enable(msm_host->byte_clk); 556 if (ret) { 557 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 558 goto byte_clk_err; 559 } 560 561 ret = clk_prepare_enable(msm_host->pixel_clk); 562 if (ret) { 563 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 564 goto pixel_clk_err; 565 } 566 567 if (msm_host->byte_intf_clk) { 568 ret = clk_prepare_enable(msm_host->byte_intf_clk); 569 if (ret) { 570 pr_err("%s: Failed to enable byte intf clk\n", 571 __func__); 572 goto byte_intf_clk_err; 573 } 574 } 575 576 return 0; 577 578 byte_intf_clk_err: 579 clk_disable_unprepare(msm_host->pixel_clk); 580 pixel_clk_err: 581 clk_disable_unprepare(msm_host->byte_clk); 582 byte_clk_err: 583 clk_disable_unprepare(msm_host->esc_clk); 584 error: 585 return ret; 586 } 587 588 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) 589 { 590 int ret; 591 592 DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d", 593 msm_host->mode->clock, msm_host->byte_clk_rate, 594 msm_host->esc_clk_rate, msm_host->src_clk_rate); 595 596 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 597 if (ret) { 598 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 599 return ret; 600 } 601 602 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 603 if (ret) { 604 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 605 return ret; 606 } 607 608 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 609 if (ret) { 610 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 611 return ret; 612 } 613 614 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 615 if (ret) { 616 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 617 return ret; 618 } 619 620 return 0; 621 } 622 623 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 624 { 625 int ret; 626 627 ret = clk_prepare_enable(msm_host->byte_clk); 628 if (ret) { 629 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 630 goto error; 631 } 632 633 ret = clk_prepare_enable(msm_host->esc_clk); 634 if (ret) { 635 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 636 goto esc_clk_err; 637 } 638 639 ret = clk_prepare_enable(msm_host->src_clk); 640 if (ret) { 641 pr_err("%s: Failed to enable dsi src clk\n", __func__); 642 goto src_clk_err; 643 } 644 645 ret = clk_prepare_enable(msm_host->pixel_clk); 646 if (ret) { 647 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 648 goto pixel_clk_err; 649 } 650 651 return 0; 652 653 pixel_clk_err: 654 clk_disable_unprepare(msm_host->src_clk); 655 src_clk_err: 656 clk_disable_unprepare(msm_host->esc_clk); 657 esc_clk_err: 658 clk_disable_unprepare(msm_host->byte_clk); 659 error: 660 return ret; 661 } 662 663 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 664 { 665 /* Drop the performance state vote */ 666 dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); 667 clk_disable_unprepare(msm_host->esc_clk); 668 clk_disable_unprepare(msm_host->pixel_clk); 669 if (msm_host->byte_intf_clk) 670 clk_disable_unprepare(msm_host->byte_intf_clk); 671 clk_disable_unprepare(msm_host->byte_clk); 672 } 673 674 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 675 { 676 clk_disable_unprepare(msm_host->pixel_clk); 677 clk_disable_unprepare(msm_host->src_clk); 678 clk_disable_unprepare(msm_host->esc_clk); 679 clk_disable_unprepare(msm_host->byte_clk); 680 } 681 682 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi) 683 { 684 struct drm_display_mode *mode = msm_host->mode; 685 u32 pclk_rate; 686 687 pclk_rate = mode->clock * 1000; 688 689 /* 690 * For dual DSI mode, the current DRM mode has the complete width of the 691 * panel. Since, the complete panel is driven by two DSI controllers, 692 * the clock rates have to be split between the two dsi controllers. 693 * Adjust the byte and pixel clock rates for each dsi host accordingly. 694 */ 695 if (is_dual_dsi) 696 pclk_rate /= 2; 697 698 return pclk_rate; 699 } 700 701 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi) 702 { 703 u8 lanes = msm_host->lanes; 704 u32 bpp = dsi_get_bpp(msm_host->format); 705 u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi); 706 u64 pclk_bpp = (u64)pclk_rate * bpp; 707 708 if (lanes == 0) { 709 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 710 lanes = 1; 711 } 712 713 do_div(pclk_bpp, (8 * lanes)); 714 715 msm_host->pixel_clk_rate = pclk_rate; 716 msm_host->byte_clk_rate = pclk_bpp; 717 718 DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate, 719 msm_host->byte_clk_rate); 720 721 } 722 723 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi) 724 { 725 if (!msm_host->mode) { 726 pr_err("%s: mode not set\n", __func__); 727 return -EINVAL; 728 } 729 730 dsi_calc_pclk(msm_host, is_dual_dsi); 731 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 732 return 0; 733 } 734 735 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi) 736 { 737 u32 bpp = dsi_get_bpp(msm_host->format); 738 u64 pclk_bpp; 739 unsigned int esc_mhz, esc_div; 740 unsigned long byte_mhz; 741 742 dsi_calc_pclk(msm_host, is_dual_dsi); 743 744 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp; 745 do_div(pclk_bpp, 8); 746 msm_host->src_clk_rate = pclk_bpp; 747 748 /* 749 * esc clock is byte clock followed by a 4 bit divider, 750 * we need to find an escape clock frequency within the 751 * mipi DSI spec range within the maximum divider limit 752 * We iterate here between an escape clock frequencey 753 * between 20 Mhz to 5 Mhz and pick up the first one 754 * that can be supported by our divider 755 */ 756 757 byte_mhz = msm_host->byte_clk_rate / 1000000; 758 759 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 760 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 761 762 /* 763 * TODO: Ideally, we shouldn't know what sort of divider 764 * is available in mmss_cc, we're just assuming that 765 * it'll always be a 4 bit divider. Need to come up with 766 * a better way here. 767 */ 768 if (esc_div >= 1 && esc_div <= 16) 769 break; 770 } 771 772 if (esc_mhz < 5) 773 return -EINVAL; 774 775 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 776 777 DBG("esc=%d, src=%d", msm_host->esc_clk_rate, 778 msm_host->src_clk_rate); 779 780 return 0; 781 } 782 783 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 784 { 785 u32 intr; 786 unsigned long flags; 787 788 spin_lock_irqsave(&msm_host->intr_lock, flags); 789 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 790 791 if (enable) 792 intr |= mask; 793 else 794 intr &= ~mask; 795 796 DBG("intr=%x enable=%d", intr, enable); 797 798 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 799 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 800 } 801 802 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 803 { 804 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 805 return BURST_MODE; 806 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 807 return NON_BURST_SYNCH_PULSE; 808 809 return NON_BURST_SYNCH_EVENT; 810 } 811 812 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 813 const enum mipi_dsi_pixel_format mipi_fmt) 814 { 815 switch (mipi_fmt) { 816 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 817 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 818 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 819 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 820 default: return VID_DST_FORMAT_RGB888; 821 } 822 } 823 824 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 825 const enum mipi_dsi_pixel_format mipi_fmt) 826 { 827 switch (mipi_fmt) { 828 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 829 case MIPI_DSI_FMT_RGB666_PACKED: 830 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 831 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 832 default: return CMD_DST_FORMAT_RGB888; 833 } 834 } 835 836 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 837 struct msm_dsi_phy_shared_timings *phy_shared_timings) 838 { 839 u32 flags = msm_host->mode_flags; 840 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 841 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 842 u32 data = 0, lane_ctrl = 0; 843 844 if (!enable) { 845 dsi_write(msm_host, REG_DSI_CTRL, 0); 846 return; 847 } 848 849 if (flags & MIPI_DSI_MODE_VIDEO) { 850 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 851 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 852 if (flags & MIPI_DSI_MODE_VIDEO_HFP) 853 data |= DSI_VID_CFG0_HFP_POWER_STOP; 854 if (flags & MIPI_DSI_MODE_VIDEO_HBP) 855 data |= DSI_VID_CFG0_HBP_POWER_STOP; 856 if (flags & MIPI_DSI_MODE_VIDEO_HSA) 857 data |= DSI_VID_CFG0_HSA_POWER_STOP; 858 /* Always set low power stop mode for BLLP 859 * to let command engine send packets 860 */ 861 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 862 DSI_VID_CFG0_BLLP_POWER_STOP; 863 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 864 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 865 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 866 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 867 868 /* Do not swap RGB colors */ 869 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 870 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 871 } else { 872 /* Do not swap RGB colors */ 873 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 874 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 875 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 876 877 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 878 DSI_CMD_CFG1_WR_MEM_CONTINUE( 879 MIPI_DCS_WRITE_MEMORY_CONTINUE); 880 /* Always insert DCS command */ 881 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 882 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 883 } 884 885 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 886 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 887 DSI_CMD_DMA_CTRL_LOW_POWER); 888 889 data = 0; 890 /* Always assume dedicated TE pin */ 891 data |= DSI_TRIG_CTRL_TE; 892 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 893 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 894 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 895 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 896 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 897 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 898 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 899 900 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 901 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 902 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 903 904 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 905 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 906 phy_shared_timings->clk_pre_inc_by_2) 907 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 908 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 909 910 data = 0; 911 if (!(flags & MIPI_DSI_MODE_EOT_PACKET)) 912 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 913 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 914 915 /* allow only ack-err-status to generate interrupt */ 916 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 917 918 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 919 920 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 921 922 data = DSI_CTRL_CLK_EN; 923 924 DBG("lane number=%d", msm_host->lanes); 925 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 926 927 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 928 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 929 930 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { 931 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); 932 dsi_write(msm_host, REG_DSI_LANE_CTRL, 933 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 934 } 935 936 data |= DSI_CTRL_ENABLE; 937 938 dsi_write(msm_host, REG_DSI_CTRL, data); 939 } 940 941 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi) 942 { 943 struct drm_display_mode *mode = msm_host->mode; 944 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 945 u32 h_total = mode->htotal; 946 u32 v_total = mode->vtotal; 947 u32 hs_end = mode->hsync_end - mode->hsync_start; 948 u32 vs_end = mode->vsync_end - mode->vsync_start; 949 u32 ha_start = h_total - mode->hsync_start; 950 u32 ha_end = ha_start + mode->hdisplay; 951 u32 va_start = v_total - mode->vsync_start; 952 u32 va_end = va_start + mode->vdisplay; 953 u32 hdisplay = mode->hdisplay; 954 u32 wc; 955 956 DBG(""); 957 958 /* 959 * For dual DSI mode, the current DRM mode has 960 * the complete width of the panel. Since, the complete 961 * panel is driven by two DSI controllers, the horizontal 962 * timings have to be split between the two dsi controllers. 963 * Adjust the DSI host timing values accordingly. 964 */ 965 if (is_dual_dsi) { 966 h_total /= 2; 967 hs_end /= 2; 968 ha_start /= 2; 969 ha_end /= 2; 970 hdisplay /= 2; 971 } 972 973 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 974 dsi_write(msm_host, REG_DSI_ACTIVE_H, 975 DSI_ACTIVE_H_START(ha_start) | 976 DSI_ACTIVE_H_END(ha_end)); 977 dsi_write(msm_host, REG_DSI_ACTIVE_V, 978 DSI_ACTIVE_V_START(va_start) | 979 DSI_ACTIVE_V_END(va_end)); 980 dsi_write(msm_host, REG_DSI_TOTAL, 981 DSI_TOTAL_H_TOTAL(h_total - 1) | 982 DSI_TOTAL_V_TOTAL(v_total - 1)); 983 984 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 985 DSI_ACTIVE_HSYNC_START(hs_start) | 986 DSI_ACTIVE_HSYNC_END(hs_end)); 987 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 988 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 989 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 990 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 991 } else { /* command mode */ 992 /* image data and 1 byte write_memory_start cmd */ 993 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 994 995 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, 996 DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | 997 DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( 998 msm_host->channel) | 999 DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( 1000 MIPI_DSI_DCS_LONG_WRITE)); 1001 1002 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, 1003 DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | 1004 DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); 1005 } 1006 } 1007 1008 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 1009 { 1010 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1011 wmb(); /* clocks need to be enabled before reset */ 1012 1013 dsi_write(msm_host, REG_DSI_RESET, 1); 1014 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1015 dsi_write(msm_host, REG_DSI_RESET, 0); 1016 } 1017 1018 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 1019 bool video_mode, bool enable) 1020 { 1021 u32 dsi_ctrl; 1022 1023 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1024 1025 if (!enable) { 1026 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1027 DSI_CTRL_CMD_MODE_EN); 1028 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1029 DSI_IRQ_MASK_VIDEO_DONE, 0); 1030 } else { 1031 if (video_mode) { 1032 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1033 } else { /* command mode */ 1034 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1035 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1036 } 1037 dsi_ctrl |= DSI_CTRL_ENABLE; 1038 } 1039 1040 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1041 } 1042 1043 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1044 { 1045 u32 data; 1046 1047 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1048 1049 if (mode == 0) 1050 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1051 else 1052 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1053 1054 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1055 } 1056 1057 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1058 { 1059 u32 ret = 0; 1060 struct device *dev = &msm_host->pdev->dev; 1061 1062 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1063 1064 reinit_completion(&msm_host->video_comp); 1065 1066 ret = wait_for_completion_timeout(&msm_host->video_comp, 1067 msecs_to_jiffies(70)); 1068 1069 if (ret == 0) 1070 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1071 1072 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1073 } 1074 1075 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1076 { 1077 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1078 return; 1079 1080 if (msm_host->power_on && msm_host->enabled) { 1081 dsi_wait4video_done(msm_host); 1082 /* delay 4 ms to skip BLLP */ 1083 usleep_range(2000, 4000); 1084 } 1085 } 1086 1087 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1088 { 1089 struct drm_device *dev = msm_host->dev; 1090 struct msm_drm_private *priv = dev->dev_private; 1091 uint64_t iova; 1092 u8 *data; 1093 1094 data = msm_gem_kernel_new(dev, size, MSM_BO_WC, 1095 priv->kms->aspace, 1096 &msm_host->tx_gem_obj, &iova); 1097 1098 if (IS_ERR(data)) { 1099 msm_host->tx_gem_obj = NULL; 1100 return PTR_ERR(data); 1101 } 1102 1103 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1104 1105 msm_host->tx_size = msm_host->tx_gem_obj->size; 1106 1107 return 0; 1108 } 1109 1110 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1111 { 1112 struct drm_device *dev = msm_host->dev; 1113 1114 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1115 &msm_host->tx_buf_paddr, GFP_KERNEL); 1116 if (!msm_host->tx_buf) 1117 return -ENOMEM; 1118 1119 msm_host->tx_size = size; 1120 1121 return 0; 1122 } 1123 1124 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1125 { 1126 struct drm_device *dev = msm_host->dev; 1127 struct msm_drm_private *priv; 1128 1129 /* 1130 * This is possible if we're tearing down before we've had a chance to 1131 * fully initialize. A very real possibility if our probe is deferred, 1132 * in which case we'll hit msm_dsi_host_destroy() without having run 1133 * through the dsi_tx_buf_alloc(). 1134 */ 1135 if (!dev) 1136 return; 1137 1138 priv = dev->dev_private; 1139 if (msm_host->tx_gem_obj) { 1140 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1141 drm_gem_object_put(msm_host->tx_gem_obj); 1142 msm_host->tx_gem_obj = NULL; 1143 } 1144 1145 if (msm_host->tx_buf) 1146 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1147 msm_host->tx_buf_paddr); 1148 } 1149 1150 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1151 { 1152 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1153 } 1154 1155 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1156 { 1157 return msm_host->tx_buf; 1158 } 1159 1160 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1161 { 1162 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1163 } 1164 1165 /* 1166 * prepare cmd buffer to be txed 1167 */ 1168 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1169 const struct mipi_dsi_msg *msg) 1170 { 1171 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1172 struct mipi_dsi_packet packet; 1173 int len; 1174 int ret; 1175 u8 *data; 1176 1177 ret = mipi_dsi_create_packet(&packet, msg); 1178 if (ret) { 1179 pr_err("%s: create packet failed, %d\n", __func__, ret); 1180 return ret; 1181 } 1182 len = (packet.size + 3) & (~0x3); 1183 1184 if (len > msm_host->tx_size) { 1185 pr_err("%s: packet size is too big\n", __func__); 1186 return -EINVAL; 1187 } 1188 1189 data = cfg_hnd->ops->tx_buf_get(msm_host); 1190 if (IS_ERR(data)) { 1191 ret = PTR_ERR(data); 1192 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1193 return ret; 1194 } 1195 1196 /* MSM specific command format in memory */ 1197 data[0] = packet.header[1]; 1198 data[1] = packet.header[2]; 1199 data[2] = packet.header[0]; 1200 data[3] = BIT(7); /* Last packet */ 1201 if (mipi_dsi_packet_format_is_long(msg->type)) 1202 data[3] |= BIT(6); 1203 if (msg->rx_buf && msg->rx_len) 1204 data[3] |= BIT(5); 1205 1206 /* Long packet */ 1207 if (packet.payload && packet.payload_length) 1208 memcpy(data + 4, packet.payload, packet.payload_length); 1209 1210 /* Append 0xff to the end */ 1211 if (packet.size < len) 1212 memset(data + packet.size, 0xff, len - packet.size); 1213 1214 if (cfg_hnd->ops->tx_buf_put) 1215 cfg_hnd->ops->tx_buf_put(msm_host); 1216 1217 return len; 1218 } 1219 1220 /* 1221 * dsi_short_read1_resp: 1 parameter 1222 */ 1223 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1224 { 1225 u8 *data = msg->rx_buf; 1226 if (data && (msg->rx_len >= 1)) { 1227 *data = buf[1]; /* strip out dcs type */ 1228 return 1; 1229 } else { 1230 pr_err("%s: read data does not match with rx_buf len %zu\n", 1231 __func__, msg->rx_len); 1232 return -EINVAL; 1233 } 1234 } 1235 1236 /* 1237 * dsi_short_read2_resp: 2 parameter 1238 */ 1239 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1240 { 1241 u8 *data = msg->rx_buf; 1242 if (data && (msg->rx_len >= 2)) { 1243 data[0] = buf[1]; /* strip out dcs type */ 1244 data[1] = buf[2]; 1245 return 2; 1246 } else { 1247 pr_err("%s: read data does not match with rx_buf len %zu\n", 1248 __func__, msg->rx_len); 1249 return -EINVAL; 1250 } 1251 } 1252 1253 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1254 { 1255 /* strip out 4 byte dcs header */ 1256 if (msg->rx_buf && msg->rx_len) 1257 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1258 1259 return msg->rx_len; 1260 } 1261 1262 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1263 { 1264 struct drm_device *dev = msm_host->dev; 1265 struct msm_drm_private *priv = dev->dev_private; 1266 1267 if (!dma_base) 1268 return -EINVAL; 1269 1270 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1271 priv->kms->aspace, dma_base); 1272 } 1273 1274 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1275 { 1276 if (!dma_base) 1277 return -EINVAL; 1278 1279 *dma_base = msm_host->tx_buf_paddr; 1280 return 0; 1281 } 1282 1283 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1284 { 1285 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1286 int ret; 1287 uint64_t dma_base; 1288 bool triggered; 1289 1290 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1291 if (ret) { 1292 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1293 return ret; 1294 } 1295 1296 reinit_completion(&msm_host->dma_comp); 1297 1298 dsi_wait4video_eng_busy(msm_host); 1299 1300 triggered = msm_dsi_manager_cmd_xfer_trigger( 1301 msm_host->id, dma_base, len); 1302 if (triggered) { 1303 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1304 msecs_to_jiffies(200)); 1305 DBG("ret=%d", ret); 1306 if (ret == 0) 1307 ret = -ETIMEDOUT; 1308 else 1309 ret = len; 1310 } else 1311 ret = len; 1312 1313 return ret; 1314 } 1315 1316 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1317 u8 *buf, int rx_byte, int pkt_size) 1318 { 1319 u32 *temp, data; 1320 int i, j = 0, cnt; 1321 u32 read_cnt; 1322 u8 reg[16]; 1323 int repeated_bytes = 0; 1324 int buf_offset = buf - msm_host->rx_buf; 1325 1326 temp = (u32 *)reg; 1327 cnt = (rx_byte + 3) >> 2; 1328 if (cnt > 4) 1329 cnt = 4; /* 4 x 32 bits registers only */ 1330 1331 if (rx_byte == 4) 1332 read_cnt = 4; 1333 else 1334 read_cnt = pkt_size + 6; 1335 1336 /* 1337 * In case of multiple reads from the panel, after the first read, there 1338 * is possibility that there are some bytes in the payload repeating in 1339 * the RDBK_DATA registers. Since we read all the parameters from the 1340 * panel right from the first byte for every pass. We need to skip the 1341 * repeating bytes and then append the new parameters to the rx buffer. 1342 */ 1343 if (read_cnt > 16) { 1344 int bytes_shifted; 1345 /* Any data more than 16 bytes will be shifted out. 1346 * The temp read buffer should already contain these bytes. 1347 * The remaining bytes in read buffer are the repeated bytes. 1348 */ 1349 bytes_shifted = read_cnt - 16; 1350 repeated_bytes = buf_offset - bytes_shifted; 1351 } 1352 1353 for (i = cnt - 1; i >= 0; i--) { 1354 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1355 *temp++ = ntohl(data); /* to host byte order */ 1356 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1357 } 1358 1359 for (i = repeated_bytes; i < 16; i++) 1360 buf[j++] = reg[i]; 1361 1362 return j; 1363 } 1364 1365 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1366 const struct mipi_dsi_msg *msg) 1367 { 1368 int len, ret; 1369 int bllp_len = msm_host->mode->hdisplay * 1370 dsi_get_bpp(msm_host->format) / 8; 1371 1372 len = dsi_cmd_dma_add(msm_host, msg); 1373 if (!len) { 1374 pr_err("%s: failed to add cmd type = 0x%x\n", 1375 __func__, msg->type); 1376 return -EINVAL; 1377 } 1378 1379 /* for video mode, do not send cmds more than 1380 * one pixel line, since it only transmit it 1381 * during BLLP. 1382 */ 1383 /* TODO: if the command is sent in LP mode, the bit rate is only 1384 * half of esc clk rate. In this case, if the video is already 1385 * actively streaming, we need to check more carefully if the 1386 * command can be fit into one BLLP. 1387 */ 1388 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1389 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1390 __func__, len); 1391 return -EINVAL; 1392 } 1393 1394 ret = dsi_cmd_dma_tx(msm_host, len); 1395 if (ret < len) { 1396 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", 1397 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); 1398 return -ECOMM; 1399 } 1400 1401 return len; 1402 } 1403 1404 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) 1405 { 1406 u32 data0, data1; 1407 1408 data0 = dsi_read(msm_host, REG_DSI_CTRL); 1409 data1 = data0; 1410 data1 &= ~DSI_CTRL_ENABLE; 1411 dsi_write(msm_host, REG_DSI_CTRL, data1); 1412 /* 1413 * dsi controller need to be disabled before 1414 * clocks turned on 1415 */ 1416 wmb(); 1417 1418 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1419 wmb(); /* make sure clocks enabled */ 1420 1421 /* dsi controller can only be reset while clocks are running */ 1422 dsi_write(msm_host, REG_DSI_RESET, 1); 1423 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1424 dsi_write(msm_host, REG_DSI_RESET, 0); 1425 wmb(); /* controller out of reset */ 1426 dsi_write(msm_host, REG_DSI_CTRL, data0); 1427 wmb(); /* make sure dsi controller enabled again */ 1428 } 1429 1430 static void dsi_hpd_worker(struct work_struct *work) 1431 { 1432 struct msm_dsi_host *msm_host = 1433 container_of(work, struct msm_dsi_host, hpd_work); 1434 1435 drm_helper_hpd_irq_event(msm_host->dev); 1436 } 1437 1438 static void dsi_err_worker(struct work_struct *work) 1439 { 1440 struct msm_dsi_host *msm_host = 1441 container_of(work, struct msm_dsi_host, err_work); 1442 u32 status = msm_host->err_work_state; 1443 1444 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1445 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1446 dsi_sw_reset_restore(msm_host); 1447 1448 /* It is safe to clear here because error irq is disabled. */ 1449 msm_host->err_work_state = 0; 1450 1451 /* enable dsi error interrupt */ 1452 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1453 } 1454 1455 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1456 { 1457 u32 status; 1458 1459 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1460 1461 if (status) { 1462 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1463 /* Writing of an extra 0 needed to clear error bits */ 1464 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1465 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1466 } 1467 } 1468 1469 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1470 { 1471 u32 status; 1472 1473 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1474 1475 if (status) { 1476 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1477 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1478 } 1479 } 1480 1481 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1482 { 1483 u32 status; 1484 1485 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1486 1487 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1488 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1489 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1490 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1491 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1492 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1493 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1494 } 1495 } 1496 1497 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1498 { 1499 u32 status; 1500 1501 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1502 1503 /* fifo underflow, overflow */ 1504 if (status) { 1505 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1506 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1507 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1508 msm_host->err_work_state |= 1509 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1510 } 1511 } 1512 1513 static void dsi_status(struct msm_dsi_host *msm_host) 1514 { 1515 u32 status; 1516 1517 status = dsi_read(msm_host, REG_DSI_STATUS0); 1518 1519 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1520 dsi_write(msm_host, REG_DSI_STATUS0, status); 1521 msm_host->err_work_state |= 1522 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1523 } 1524 } 1525 1526 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1527 { 1528 u32 status; 1529 1530 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1531 1532 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1533 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1534 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1535 } 1536 } 1537 1538 static void dsi_error(struct msm_dsi_host *msm_host) 1539 { 1540 /* disable dsi error interrupt */ 1541 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1542 1543 dsi_clk_status(msm_host); 1544 dsi_fifo_status(msm_host); 1545 dsi_ack_err_status(msm_host); 1546 dsi_timeout_status(msm_host); 1547 dsi_status(msm_host); 1548 dsi_dln0_phy_err(msm_host); 1549 1550 queue_work(msm_host->workqueue, &msm_host->err_work); 1551 } 1552 1553 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1554 { 1555 struct msm_dsi_host *msm_host = ptr; 1556 u32 isr; 1557 unsigned long flags; 1558 1559 if (!msm_host->ctrl_base) 1560 return IRQ_HANDLED; 1561 1562 spin_lock_irqsave(&msm_host->intr_lock, flags); 1563 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1564 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1565 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1566 1567 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1568 1569 if (isr & DSI_IRQ_ERROR) 1570 dsi_error(msm_host); 1571 1572 if (isr & DSI_IRQ_VIDEO_DONE) 1573 complete(&msm_host->video_comp); 1574 1575 if (isr & DSI_IRQ_CMD_DMA_DONE) 1576 complete(&msm_host->dma_comp); 1577 1578 return IRQ_HANDLED; 1579 } 1580 1581 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1582 struct device *panel_device) 1583 { 1584 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1585 "disp-enable", 1586 GPIOD_OUT_LOW); 1587 if (IS_ERR(msm_host->disp_en_gpio)) { 1588 DBG("cannot get disp-enable-gpios %ld", 1589 PTR_ERR(msm_host->disp_en_gpio)); 1590 return PTR_ERR(msm_host->disp_en_gpio); 1591 } 1592 1593 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1594 GPIOD_IN); 1595 if (IS_ERR(msm_host->te_gpio)) { 1596 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1597 return PTR_ERR(msm_host->te_gpio); 1598 } 1599 1600 return 0; 1601 } 1602 1603 static int dsi_host_attach(struct mipi_dsi_host *host, 1604 struct mipi_dsi_device *dsi) 1605 { 1606 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1607 int ret; 1608 1609 if (dsi->lanes > msm_host->num_data_lanes) 1610 return -EINVAL; 1611 1612 msm_host->channel = dsi->channel; 1613 msm_host->lanes = dsi->lanes; 1614 msm_host->format = dsi->format; 1615 msm_host->mode_flags = dsi->mode_flags; 1616 1617 /* Some gpios defined in panel DT need to be controlled by host */ 1618 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1619 if (ret) 1620 return ret; 1621 1622 DBG("id=%d", msm_host->id); 1623 if (msm_host->dev) 1624 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1625 1626 return 0; 1627 } 1628 1629 static int dsi_host_detach(struct mipi_dsi_host *host, 1630 struct mipi_dsi_device *dsi) 1631 { 1632 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1633 1634 msm_host->device_node = NULL; 1635 1636 DBG("id=%d", msm_host->id); 1637 if (msm_host->dev) 1638 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1639 1640 return 0; 1641 } 1642 1643 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1644 const struct mipi_dsi_msg *msg) 1645 { 1646 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1647 int ret; 1648 1649 if (!msg || !msm_host->power_on) 1650 return -EINVAL; 1651 1652 mutex_lock(&msm_host->cmd_mutex); 1653 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1654 mutex_unlock(&msm_host->cmd_mutex); 1655 1656 return ret; 1657 } 1658 1659 static const struct mipi_dsi_host_ops dsi_host_ops = { 1660 .attach = dsi_host_attach, 1661 .detach = dsi_host_detach, 1662 .transfer = dsi_host_transfer, 1663 }; 1664 1665 /* 1666 * List of supported physical to logical lane mappings. 1667 * For example, the 2nd entry represents the following mapping: 1668 * 1669 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1670 */ 1671 static const int supported_data_lane_swaps[][4] = { 1672 { 0, 1, 2, 3 }, 1673 { 3, 0, 1, 2 }, 1674 { 2, 3, 0, 1 }, 1675 { 1, 2, 3, 0 }, 1676 { 0, 3, 2, 1 }, 1677 { 1, 0, 3, 2 }, 1678 { 2, 1, 0, 3 }, 1679 { 3, 2, 1, 0 }, 1680 }; 1681 1682 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1683 struct device_node *ep) 1684 { 1685 struct device *dev = &msm_host->pdev->dev; 1686 struct property *prop; 1687 u32 lane_map[4]; 1688 int ret, i, len, num_lanes; 1689 1690 prop = of_find_property(ep, "data-lanes", &len); 1691 if (!prop) { 1692 DRM_DEV_DEBUG(dev, 1693 "failed to find data lane mapping, using default\n"); 1694 return 0; 1695 } 1696 1697 num_lanes = len / sizeof(u32); 1698 1699 if (num_lanes < 1 || num_lanes > 4) { 1700 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1701 return -EINVAL; 1702 } 1703 1704 msm_host->num_data_lanes = num_lanes; 1705 1706 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1707 num_lanes); 1708 if (ret) { 1709 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1710 return ret; 1711 } 1712 1713 /* 1714 * compare DT specified physical-logical lane mappings with the ones 1715 * supported by hardware 1716 */ 1717 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1718 const int *swap = supported_data_lane_swaps[i]; 1719 int j; 1720 1721 /* 1722 * the data-lanes array we get from DT has a logical->physical 1723 * mapping. The "data lane swap" register field represents 1724 * supported configurations in a physical->logical mapping. 1725 * Translate the DT mapping to what we understand and find a 1726 * configuration that works. 1727 */ 1728 for (j = 0; j < num_lanes; j++) { 1729 if (lane_map[j] < 0 || lane_map[j] > 3) 1730 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1731 lane_map[j]); 1732 1733 if (swap[lane_map[j]] != j) 1734 break; 1735 } 1736 1737 if (j == num_lanes) { 1738 msm_host->dlane_swap = i; 1739 return 0; 1740 } 1741 } 1742 1743 return -EINVAL; 1744 } 1745 1746 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1747 { 1748 struct device *dev = &msm_host->pdev->dev; 1749 struct device_node *np = dev->of_node; 1750 struct device_node *endpoint, *device_node; 1751 int ret = 0; 1752 1753 /* 1754 * Get the endpoint of the output port of the DSI host. In our case, 1755 * this is mapped to port number with reg = 1. Don't return an error if 1756 * the remote endpoint isn't defined. It's possible that there is 1757 * nothing connected to the dsi output. 1758 */ 1759 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1760 if (!endpoint) { 1761 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1762 return 0; 1763 } 1764 1765 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1766 if (ret) { 1767 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1768 __func__, ret); 1769 ret = -EINVAL; 1770 goto err; 1771 } 1772 1773 /* Get panel node from the output port's endpoint data */ 1774 device_node = of_graph_get_remote_node(np, 1, 0); 1775 if (!device_node) { 1776 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__); 1777 ret = -ENODEV; 1778 goto err; 1779 } 1780 1781 msm_host->device_node = device_node; 1782 1783 if (of_property_read_bool(np, "syscon-sfpb")) { 1784 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1785 "syscon-sfpb"); 1786 if (IS_ERR(msm_host->sfpb)) { 1787 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1788 __func__); 1789 ret = PTR_ERR(msm_host->sfpb); 1790 } 1791 } 1792 1793 of_node_put(device_node); 1794 1795 err: 1796 of_node_put(endpoint); 1797 1798 return ret; 1799 } 1800 1801 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1802 { 1803 struct platform_device *pdev = msm_host->pdev; 1804 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1805 struct resource *res; 1806 int i; 1807 1808 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1809 if (!res) 1810 return -EINVAL; 1811 1812 for (i = 0; i < cfg->num_dsi; i++) { 1813 if (cfg->io_start[i] == res->start) 1814 return i; 1815 } 1816 1817 return -EINVAL; 1818 } 1819 1820 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1821 { 1822 struct msm_dsi_host *msm_host = NULL; 1823 struct platform_device *pdev = msm_dsi->pdev; 1824 int ret; 1825 1826 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1827 if (!msm_host) { 1828 ret = -ENOMEM; 1829 goto fail; 1830 } 1831 1832 msm_host->pdev = pdev; 1833 msm_dsi->host = &msm_host->base; 1834 1835 ret = dsi_host_parse_dt(msm_host); 1836 if (ret) { 1837 pr_err("%s: failed to parse dt\n", __func__); 1838 goto fail; 1839 } 1840 1841 msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", "DSI CTRL", &msm_host->ctrl_size); 1842 if (IS_ERR(msm_host->ctrl_base)) { 1843 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1844 ret = PTR_ERR(msm_host->ctrl_base); 1845 goto fail; 1846 } 1847 1848 pm_runtime_enable(&pdev->dev); 1849 1850 msm_host->cfg_hnd = dsi_get_config(msm_host); 1851 if (!msm_host->cfg_hnd) { 1852 ret = -EINVAL; 1853 pr_err("%s: get config failed\n", __func__); 1854 goto fail; 1855 } 1856 1857 msm_host->id = dsi_host_get_id(msm_host); 1858 if (msm_host->id < 0) { 1859 ret = msm_host->id; 1860 pr_err("%s: unable to identify DSI host index\n", __func__); 1861 goto fail; 1862 } 1863 1864 /* fixup base address by io offset */ 1865 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset; 1866 1867 ret = dsi_regulator_init(msm_host); 1868 if (ret) { 1869 pr_err("%s: regulator init failed\n", __func__); 1870 goto fail; 1871 } 1872 1873 ret = dsi_clk_init(msm_host); 1874 if (ret) { 1875 pr_err("%s: unable to initialize dsi clks\n", __func__); 1876 goto fail; 1877 } 1878 1879 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1880 if (!msm_host->rx_buf) { 1881 ret = -ENOMEM; 1882 pr_err("%s: alloc rx temp buf failed\n", __func__); 1883 goto fail; 1884 } 1885 1886 ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); 1887 if (ret) 1888 return ret; 1889 /* OPP table is optional */ 1890 ret = devm_pm_opp_of_add_table(&pdev->dev); 1891 if (ret && ret != -ENODEV) { 1892 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1893 return ret; 1894 } 1895 1896 init_completion(&msm_host->dma_comp); 1897 init_completion(&msm_host->video_comp); 1898 mutex_init(&msm_host->dev_mutex); 1899 mutex_init(&msm_host->cmd_mutex); 1900 spin_lock_init(&msm_host->intr_lock); 1901 1902 /* setup workqueue */ 1903 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1904 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1905 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker); 1906 1907 msm_dsi->id = msm_host->id; 1908 1909 DBG("Dsi Host %d initialized", msm_host->id); 1910 return 0; 1911 1912 fail: 1913 return ret; 1914 } 1915 1916 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1917 { 1918 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1919 1920 DBG(""); 1921 dsi_tx_buf_free(msm_host); 1922 if (msm_host->workqueue) { 1923 flush_workqueue(msm_host->workqueue); 1924 destroy_workqueue(msm_host->workqueue); 1925 msm_host->workqueue = NULL; 1926 } 1927 1928 mutex_destroy(&msm_host->cmd_mutex); 1929 mutex_destroy(&msm_host->dev_mutex); 1930 1931 pm_runtime_disable(&msm_host->pdev->dev); 1932 } 1933 1934 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1935 struct drm_device *dev) 1936 { 1937 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1938 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1939 struct platform_device *pdev = msm_host->pdev; 1940 int ret; 1941 1942 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1943 if (msm_host->irq < 0) { 1944 ret = msm_host->irq; 1945 DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret); 1946 return ret; 1947 } 1948 1949 ret = devm_request_irq(&pdev->dev, msm_host->irq, 1950 dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 1951 "dsi_isr", msm_host); 1952 if (ret < 0) { 1953 DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n", 1954 msm_host->irq, ret); 1955 return ret; 1956 } 1957 1958 msm_host->dev = dev; 1959 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1960 if (ret) { 1961 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1962 return ret; 1963 } 1964 1965 return 0; 1966 } 1967 1968 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer) 1969 { 1970 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1971 int ret; 1972 1973 /* Register mipi dsi host */ 1974 if (!msm_host->registered) { 1975 host->dev = &msm_host->pdev->dev; 1976 host->ops = &dsi_host_ops; 1977 ret = mipi_dsi_host_register(host); 1978 if (ret) 1979 return ret; 1980 1981 msm_host->registered = true; 1982 1983 /* If the panel driver has not been probed after host register, 1984 * we should defer the host's probe. 1985 * It makes sure panel is connected when fbcon detects 1986 * connector status and gets the proper display mode to 1987 * create framebuffer. 1988 * Don't try to defer if there is nothing connected to the dsi 1989 * output 1990 */ 1991 if (check_defer && msm_host->device_node) { 1992 if (IS_ERR(of_drm_find_panel(msm_host->device_node))) 1993 if (!of_drm_find_bridge(msm_host->device_node)) 1994 return -EPROBE_DEFER; 1995 } 1996 } 1997 1998 return 0; 1999 } 2000 2001 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 2002 { 2003 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2004 2005 if (msm_host->registered) { 2006 mipi_dsi_host_unregister(host); 2007 host->dev = NULL; 2008 host->ops = NULL; 2009 msm_host->registered = false; 2010 } 2011 } 2012 2013 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 2014 const struct mipi_dsi_msg *msg) 2015 { 2016 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2017 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2018 2019 /* TODO: make sure dsi_cmd_mdp is idle. 2020 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 2021 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 2022 * How to handle the old versions? Wait for mdp cmd done? 2023 */ 2024 2025 /* 2026 * mdss interrupt is generated in mdp core clock domain 2027 * mdp clock need to be enabled to receive dsi interrupt 2028 */ 2029 pm_runtime_get_sync(&msm_host->pdev->dev); 2030 cfg_hnd->ops->link_clk_set_rate(msm_host); 2031 cfg_hnd->ops->link_clk_enable(msm_host); 2032 2033 /* TODO: vote for bus bandwidth */ 2034 2035 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2036 dsi_set_tx_power_mode(0, msm_host); 2037 2038 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2039 dsi_write(msm_host, REG_DSI_CTRL, 2040 msm_host->dma_cmd_ctrl_restore | 2041 DSI_CTRL_CMD_MODE_EN | 2042 DSI_CTRL_ENABLE); 2043 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2044 2045 return 0; 2046 } 2047 2048 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2049 const struct mipi_dsi_msg *msg) 2050 { 2051 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2052 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2053 2054 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2055 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2056 2057 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2058 dsi_set_tx_power_mode(1, msm_host); 2059 2060 /* TODO: unvote for bus bandwidth */ 2061 2062 cfg_hnd->ops->link_clk_disable(msm_host); 2063 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2064 } 2065 2066 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2067 const struct mipi_dsi_msg *msg) 2068 { 2069 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2070 2071 return dsi_cmds2buf_tx(msm_host, msg); 2072 } 2073 2074 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2075 const struct mipi_dsi_msg *msg) 2076 { 2077 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2078 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2079 int data_byte, rx_byte, dlen, end; 2080 int short_response, diff, pkt_size, ret = 0; 2081 char cmd; 2082 int rlen = msg->rx_len; 2083 u8 *buf; 2084 2085 if (rlen <= 2) { 2086 short_response = 1; 2087 pkt_size = rlen; 2088 rx_byte = 4; 2089 } else { 2090 short_response = 0; 2091 data_byte = 10; /* first read */ 2092 if (rlen < data_byte) 2093 pkt_size = rlen; 2094 else 2095 pkt_size = data_byte; 2096 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2097 } 2098 2099 buf = msm_host->rx_buf; 2100 end = 0; 2101 while (!end) { 2102 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2103 struct mipi_dsi_msg max_pkt_size_msg = { 2104 .channel = msg->channel, 2105 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2106 .tx_len = 2, 2107 .tx_buf = tx, 2108 }; 2109 2110 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2111 rlen, pkt_size, rx_byte); 2112 2113 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2114 if (ret < 2) { 2115 pr_err("%s: Set max pkt size failed, %d\n", 2116 __func__, ret); 2117 return -EINVAL; 2118 } 2119 2120 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2121 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2122 /* Clear the RDBK_DATA registers */ 2123 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2124 DSI_RDBK_DATA_CTRL_CLR); 2125 wmb(); /* make sure the RDBK registers are cleared */ 2126 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2127 wmb(); /* release cleared status before transfer */ 2128 } 2129 2130 ret = dsi_cmds2buf_tx(msm_host, msg); 2131 if (ret < msg->tx_len) { 2132 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2133 return ret; 2134 } 2135 2136 /* 2137 * once cmd_dma_done interrupt received, 2138 * return data from client is ready and stored 2139 * at RDBK_DATA register already 2140 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2141 * after that dcs header lost during shift into registers 2142 */ 2143 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2144 2145 if (dlen <= 0) 2146 return 0; 2147 2148 if (short_response) 2149 break; 2150 2151 if (rlen <= data_byte) { 2152 diff = data_byte - rlen; 2153 end = 1; 2154 } else { 2155 diff = 0; 2156 rlen -= data_byte; 2157 } 2158 2159 if (!end) { 2160 dlen -= 2; /* 2 crc */ 2161 dlen -= diff; 2162 buf += dlen; /* next start position */ 2163 data_byte = 14; /* NOT first read */ 2164 if (rlen < data_byte) 2165 pkt_size += rlen; 2166 else 2167 pkt_size += data_byte; 2168 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2169 } 2170 } 2171 2172 /* 2173 * For single Long read, if the requested rlen < 10, 2174 * we need to shift the start position of rx 2175 * data buffer to skip the bytes which are not 2176 * updated. 2177 */ 2178 if (pkt_size < 10 && !short_response) 2179 buf = msm_host->rx_buf + (10 - rlen); 2180 else 2181 buf = msm_host->rx_buf; 2182 2183 cmd = buf[0]; 2184 switch (cmd) { 2185 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2186 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2187 ret = 0; 2188 break; 2189 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2190 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2191 ret = dsi_short_read1_resp(buf, msg); 2192 break; 2193 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2194 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2195 ret = dsi_short_read2_resp(buf, msg); 2196 break; 2197 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2198 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2199 ret = dsi_long_read_resp(buf, msg); 2200 break; 2201 default: 2202 pr_warn("%s:Invalid response cmd\n", __func__); 2203 ret = 0; 2204 } 2205 2206 return ret; 2207 } 2208 2209 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2210 u32 len) 2211 { 2212 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2213 2214 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2215 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2216 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2217 2218 /* Make sure trigger happens */ 2219 wmb(); 2220 } 2221 2222 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host, 2223 struct msm_dsi_phy *src_phy) 2224 { 2225 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2226 struct clk *byte_clk_provider, *pixel_clk_provider; 2227 int ret; 2228 2229 ret = msm_dsi_phy_get_clk_provider(src_phy, 2230 &byte_clk_provider, &pixel_clk_provider); 2231 if (ret) { 2232 pr_info("%s: can't get provider from pll, don't set parent\n", 2233 __func__); 2234 return 0; 2235 } 2236 2237 ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider); 2238 if (ret) { 2239 pr_err("%s: can't set parent to byte_clk_src. ret=%d\n", 2240 __func__, ret); 2241 goto exit; 2242 } 2243 2244 ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider); 2245 if (ret) { 2246 pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n", 2247 __func__, ret); 2248 goto exit; 2249 } 2250 2251 if (msm_host->dsi_clk_src) { 2252 ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider); 2253 if (ret) { 2254 pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n", 2255 __func__, ret); 2256 goto exit; 2257 } 2258 } 2259 2260 if (msm_host->esc_clk_src) { 2261 ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider); 2262 if (ret) { 2263 pr_err("%s: can't set parent to esc_clk_src. ret=%d\n", 2264 __func__, ret); 2265 goto exit; 2266 } 2267 } 2268 2269 exit: 2270 return ret; 2271 } 2272 2273 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2274 { 2275 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2276 2277 DBG(""); 2278 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2279 /* Make sure fully reset */ 2280 wmb(); 2281 udelay(1000); 2282 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2283 udelay(100); 2284 } 2285 2286 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2287 struct msm_dsi_phy_clk_request *clk_req, 2288 bool is_dual_dsi) 2289 { 2290 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2291 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2292 int ret; 2293 2294 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi); 2295 if (ret) { 2296 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2297 return; 2298 } 2299 2300 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2301 clk_req->escclk_rate = msm_host->esc_clk_rate; 2302 } 2303 2304 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2305 { 2306 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2307 2308 dsi_op_mode_config(msm_host, 2309 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2310 2311 /* TODO: clock should be turned off for command mode, 2312 * and only turned on before MDP START. 2313 * This part of code should be enabled once mdp driver support it. 2314 */ 2315 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2316 * dsi_link_clk_disable(msm_host); 2317 * pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2318 * } 2319 */ 2320 msm_host->enabled = true; 2321 return 0; 2322 } 2323 2324 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2325 { 2326 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2327 2328 msm_host->enabled = false; 2329 dsi_op_mode_config(msm_host, 2330 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2331 2332 /* Since we have disabled INTF, the video engine won't stop so that 2333 * the cmd engine will be blocked. 2334 * Reset to disable video engine so that we can send off cmd. 2335 */ 2336 dsi_sw_reset(msm_host); 2337 2338 return 0; 2339 } 2340 2341 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2342 { 2343 enum sfpb_ahb_arb_master_port_en en; 2344 2345 if (!msm_host->sfpb) 2346 return; 2347 2348 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2349 2350 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2351 SFPB_GPREG_MASTER_PORT_EN__MASK, 2352 SFPB_GPREG_MASTER_PORT_EN(en)); 2353 } 2354 2355 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2356 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2357 bool is_dual_dsi) 2358 { 2359 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2360 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2361 int ret = 0; 2362 2363 mutex_lock(&msm_host->dev_mutex); 2364 if (msm_host->power_on) { 2365 DBG("dsi host already on"); 2366 goto unlock_ret; 2367 } 2368 2369 msm_dsi_sfpb_config(msm_host, true); 2370 2371 ret = dsi_host_regulator_enable(msm_host); 2372 if (ret) { 2373 pr_err("%s:Failed to enable vregs.ret=%d\n", 2374 __func__, ret); 2375 goto unlock_ret; 2376 } 2377 2378 pm_runtime_get_sync(&msm_host->pdev->dev); 2379 ret = cfg_hnd->ops->link_clk_set_rate(msm_host); 2380 if (!ret) 2381 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2382 if (ret) { 2383 pr_err("%s: failed to enable link clocks. ret=%d\n", 2384 __func__, ret); 2385 goto fail_disable_reg; 2386 } 2387 2388 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2389 if (ret) { 2390 pr_err("%s: failed to set pinctrl default state, %d\n", 2391 __func__, ret); 2392 goto fail_disable_clk; 2393 } 2394 2395 dsi_timing_setup(msm_host, is_dual_dsi); 2396 dsi_sw_reset(msm_host); 2397 dsi_ctrl_config(msm_host, true, phy_shared_timings); 2398 2399 if (msm_host->disp_en_gpio) 2400 gpiod_set_value(msm_host->disp_en_gpio, 1); 2401 2402 msm_host->power_on = true; 2403 mutex_unlock(&msm_host->dev_mutex); 2404 2405 return 0; 2406 2407 fail_disable_clk: 2408 cfg_hnd->ops->link_clk_disable(msm_host); 2409 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2410 fail_disable_reg: 2411 dsi_host_regulator_disable(msm_host); 2412 unlock_ret: 2413 mutex_unlock(&msm_host->dev_mutex); 2414 return ret; 2415 } 2416 2417 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2418 { 2419 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2420 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2421 2422 mutex_lock(&msm_host->dev_mutex); 2423 if (!msm_host->power_on) { 2424 DBG("dsi host already off"); 2425 goto unlock_ret; 2426 } 2427 2428 dsi_ctrl_config(msm_host, false, NULL); 2429 2430 if (msm_host->disp_en_gpio) 2431 gpiod_set_value(msm_host->disp_en_gpio, 0); 2432 2433 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2434 2435 cfg_hnd->ops->link_clk_disable(msm_host); 2436 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2437 2438 dsi_host_regulator_disable(msm_host); 2439 2440 msm_dsi_sfpb_config(msm_host, false); 2441 2442 DBG("-"); 2443 2444 msm_host->power_on = false; 2445 2446 unlock_ret: 2447 mutex_unlock(&msm_host->dev_mutex); 2448 return 0; 2449 } 2450 2451 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2452 const struct drm_display_mode *mode) 2453 { 2454 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2455 2456 if (msm_host->mode) { 2457 drm_mode_destroy(msm_host->dev, msm_host->mode); 2458 msm_host->mode = NULL; 2459 } 2460 2461 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2462 if (!msm_host->mode) { 2463 pr_err("%s: cannot duplicate mode\n", __func__); 2464 return -ENOMEM; 2465 } 2466 2467 return 0; 2468 } 2469 2470 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host) 2471 { 2472 return of_drm_find_panel(to_msm_dsi_host(host)->device_node); 2473 } 2474 2475 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2476 { 2477 return to_msm_dsi_host(host)->mode_flags; 2478 } 2479 2480 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host) 2481 { 2482 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2483 2484 return of_drm_find_bridge(msm_host->device_node); 2485 } 2486 2487 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) 2488 { 2489 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2490 2491 pm_runtime_get_sync(&msm_host->pdev->dev); 2492 2493 msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, 2494 msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); 2495 2496 pm_runtime_put_sync(&msm_host->pdev->dev); 2497 } 2498