xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/gpio.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_device.h>
13 #include <linux/of_gpio.h>
14 #include <linux/of_irq.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/of_graph.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/spinlock.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/regmap.h>
21 #include <video/mipi_display.h>
22 
23 #include "dsi.h"
24 #include "dsi.xml.h"
25 #include "sfpb.xml.h"
26 #include "dsi_cfg.h"
27 #include "msm_kms.h"
28 
29 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
30 {
31 	u32 ver;
32 
33 	if (!major || !minor)
34 		return -EINVAL;
35 
36 	/*
37 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
38 	 * makes all other registers 4-byte shifted down.
39 	 *
40 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
41 	 * older, we read the DSI_VERSION register without any shift(offset
42 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
43 	 * the case of DSI6G, this has to be zero (the offset points to a
44 	 * scratch register which we never touch)
45 	 */
46 
47 	ver = msm_readl(base + REG_DSI_VERSION);
48 	if (ver) {
49 		/* older dsi host, there is no register shift */
50 		ver = FIELD(ver, DSI_VERSION_MAJOR);
51 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
52 			/* old versions */
53 			*major = ver;
54 			*minor = 0;
55 			return 0;
56 		} else {
57 			return -EINVAL;
58 		}
59 	} else {
60 		/*
61 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
62 		 * registers are shifted down, read DSI_VERSION again with
63 		 * the shifted offset
64 		 */
65 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
66 		ver = FIELD(ver, DSI_VERSION_MAJOR);
67 		if (ver == MSM_DSI_VER_MAJOR_6G) {
68 			/* 6G version */
69 			*major = ver;
70 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
71 			return 0;
72 		} else {
73 			return -EINVAL;
74 		}
75 	}
76 }
77 
78 #define DSI_ERR_STATE_ACK			0x0000
79 #define DSI_ERR_STATE_TIMEOUT			0x0001
80 #define DSI_ERR_STATE_DLN0_PHY			0x0002
81 #define DSI_ERR_STATE_FIFO			0x0004
82 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
83 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
84 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
85 
86 #define DSI_CLK_CTRL_ENABLE_CLKS	\
87 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
88 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
89 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
90 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
91 
92 struct msm_dsi_host {
93 	struct mipi_dsi_host base;
94 
95 	struct platform_device *pdev;
96 	struct drm_device *dev;
97 
98 	int id;
99 
100 	void __iomem *ctrl_base;
101 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
102 
103 	struct clk *bus_clks[DSI_BUS_CLK_MAX];
104 
105 	struct clk *byte_clk;
106 	struct clk *esc_clk;
107 	struct clk *pixel_clk;
108 	struct clk *byte_clk_src;
109 	struct clk *pixel_clk_src;
110 	struct clk *byte_intf_clk;
111 
112 	u32 byte_clk_rate;
113 	u32 pixel_clk_rate;
114 	u32 esc_clk_rate;
115 
116 	/* DSI v2 specific clocks */
117 	struct clk *src_clk;
118 	struct clk *esc_clk_src;
119 	struct clk *dsi_clk_src;
120 
121 	u32 src_clk_rate;
122 
123 	struct gpio_desc *disp_en_gpio;
124 	struct gpio_desc *te_gpio;
125 
126 	const struct msm_dsi_cfg_handler *cfg_hnd;
127 
128 	struct completion dma_comp;
129 	struct completion video_comp;
130 	struct mutex dev_mutex;
131 	struct mutex cmd_mutex;
132 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
133 
134 	u32 err_work_state;
135 	struct work_struct err_work;
136 	struct work_struct hpd_work;
137 	struct workqueue_struct *workqueue;
138 
139 	/* DSI 6G TX buffer*/
140 	struct drm_gem_object *tx_gem_obj;
141 
142 	/* DSI v2 TX buffer */
143 	void *tx_buf;
144 	dma_addr_t tx_buf_paddr;
145 
146 	int tx_size;
147 
148 	u8 *rx_buf;
149 
150 	struct regmap *sfpb;
151 
152 	struct drm_display_mode *mode;
153 
154 	/* connected device info */
155 	struct device_node *device_node;
156 	unsigned int channel;
157 	unsigned int lanes;
158 	enum mipi_dsi_pixel_format format;
159 	unsigned long mode_flags;
160 
161 	/* lane data parsed via DT */
162 	int dlane_swap;
163 	int num_data_lanes;
164 
165 	u32 dma_cmd_ctrl_restore;
166 
167 	bool registered;
168 	bool power_on;
169 	bool enabled;
170 	int irq;
171 };
172 
173 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
174 {
175 	switch (fmt) {
176 	case MIPI_DSI_FMT_RGB565:		return 16;
177 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
178 	case MIPI_DSI_FMT_RGB666:
179 	case MIPI_DSI_FMT_RGB888:
180 	default:				return 24;
181 	}
182 }
183 
184 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
185 {
186 	return msm_readl(msm_host->ctrl_base + reg);
187 }
188 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
189 {
190 	msm_writel(data, msm_host->ctrl_base + reg);
191 }
192 
193 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
194 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
195 
196 static const struct msm_dsi_cfg_handler *dsi_get_config(
197 						struct msm_dsi_host *msm_host)
198 {
199 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
200 	struct device *dev = &msm_host->pdev->dev;
201 	struct regulator *gdsc_reg;
202 	struct clk *ahb_clk;
203 	int ret;
204 	u32 major = 0, minor = 0;
205 
206 	gdsc_reg = regulator_get(dev, "gdsc");
207 	if (IS_ERR(gdsc_reg)) {
208 		pr_err("%s: cannot get gdsc\n", __func__);
209 		goto exit;
210 	}
211 
212 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
213 	if (IS_ERR(ahb_clk)) {
214 		pr_err("%s: cannot get interface clock\n", __func__);
215 		goto put_gdsc;
216 	}
217 
218 	pm_runtime_get_sync(dev);
219 
220 	ret = regulator_enable(gdsc_reg);
221 	if (ret) {
222 		pr_err("%s: unable to enable gdsc\n", __func__);
223 		goto put_gdsc;
224 	}
225 
226 	ret = clk_prepare_enable(ahb_clk);
227 	if (ret) {
228 		pr_err("%s: unable to enable ahb_clk\n", __func__);
229 		goto disable_gdsc;
230 	}
231 
232 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
233 	if (ret) {
234 		pr_err("%s: Invalid version\n", __func__);
235 		goto disable_clks;
236 	}
237 
238 	cfg_hnd = msm_dsi_cfg_get(major, minor);
239 
240 	DBG("%s: Version %x:%x\n", __func__, major, minor);
241 
242 disable_clks:
243 	clk_disable_unprepare(ahb_clk);
244 disable_gdsc:
245 	regulator_disable(gdsc_reg);
246 	pm_runtime_put_sync(dev);
247 put_gdsc:
248 	regulator_put(gdsc_reg);
249 exit:
250 	return cfg_hnd;
251 }
252 
253 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
254 {
255 	return container_of(host, struct msm_dsi_host, base);
256 }
257 
258 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
259 {
260 	struct regulator_bulk_data *s = msm_host->supplies;
261 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
262 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
263 	int i;
264 
265 	DBG("");
266 	for (i = num - 1; i >= 0; i--)
267 		if (regs[i].disable_load >= 0)
268 			regulator_set_load(s[i].consumer,
269 					   regs[i].disable_load);
270 
271 	regulator_bulk_disable(num, s);
272 }
273 
274 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
275 {
276 	struct regulator_bulk_data *s = msm_host->supplies;
277 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
278 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
279 	int ret, i;
280 
281 	DBG("");
282 	for (i = 0; i < num; i++) {
283 		if (regs[i].enable_load >= 0) {
284 			ret = regulator_set_load(s[i].consumer,
285 						 regs[i].enable_load);
286 			if (ret < 0) {
287 				pr_err("regulator %d set op mode failed, %d\n",
288 					i, ret);
289 				goto fail;
290 			}
291 		}
292 	}
293 
294 	ret = regulator_bulk_enable(num, s);
295 	if (ret < 0) {
296 		pr_err("regulator enable failed, %d\n", ret);
297 		goto fail;
298 	}
299 
300 	return 0;
301 
302 fail:
303 	for (i--; i >= 0; i--)
304 		regulator_set_load(s[i].consumer, regs[i].disable_load);
305 	return ret;
306 }
307 
308 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
309 {
310 	struct regulator_bulk_data *s = msm_host->supplies;
311 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
312 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
313 	int i, ret;
314 
315 	for (i = 0; i < num; i++)
316 		s[i].supply = regs[i].name;
317 
318 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
319 	if (ret < 0) {
320 		pr_err("%s: failed to init regulator, ret=%d\n",
321 						__func__, ret);
322 		return ret;
323 	}
324 
325 	return 0;
326 }
327 
328 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
329 {
330 	struct platform_device *pdev = msm_host->pdev;
331 	int ret = 0;
332 
333 	msm_host->src_clk = msm_clk_get(pdev, "src");
334 
335 	if (IS_ERR(msm_host->src_clk)) {
336 		ret = PTR_ERR(msm_host->src_clk);
337 		pr_err("%s: can't find src clock. ret=%d\n",
338 			__func__, ret);
339 		msm_host->src_clk = NULL;
340 		return ret;
341 	}
342 
343 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
344 	if (!msm_host->esc_clk_src) {
345 		ret = -ENODEV;
346 		pr_err("%s: can't get esc clock parent. ret=%d\n",
347 			__func__, ret);
348 		return ret;
349 	}
350 
351 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
352 	if (!msm_host->dsi_clk_src) {
353 		ret = -ENODEV;
354 		pr_err("%s: can't get src clock parent. ret=%d\n",
355 			__func__, ret);
356 	}
357 
358 	return ret;
359 }
360 
361 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
362 {
363 	struct platform_device *pdev = msm_host->pdev;
364 	int ret = 0;
365 
366 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
367 	if (IS_ERR(msm_host->byte_intf_clk)) {
368 		ret = PTR_ERR(msm_host->byte_intf_clk);
369 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
370 			__func__, ret);
371 	}
372 
373 	return ret;
374 }
375 
376 static int dsi_clk_init(struct msm_dsi_host *msm_host)
377 {
378 	struct platform_device *pdev = msm_host->pdev;
379 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
380 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
381 	int i, ret = 0;
382 
383 	/* get bus clocks */
384 	for (i = 0; i < cfg->num_bus_clks; i++) {
385 		msm_host->bus_clks[i] = msm_clk_get(pdev,
386 						cfg->bus_clk_names[i]);
387 		if (IS_ERR(msm_host->bus_clks[i])) {
388 			ret = PTR_ERR(msm_host->bus_clks[i]);
389 			pr_err("%s: Unable to get %s clock, ret = %d\n",
390 				__func__, cfg->bus_clk_names[i], ret);
391 			goto exit;
392 		}
393 	}
394 
395 	/* get link and source clocks */
396 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
397 	if (IS_ERR(msm_host->byte_clk)) {
398 		ret = PTR_ERR(msm_host->byte_clk);
399 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
400 			__func__, ret);
401 		msm_host->byte_clk = NULL;
402 		goto exit;
403 	}
404 
405 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
406 	if (IS_ERR(msm_host->pixel_clk)) {
407 		ret = PTR_ERR(msm_host->pixel_clk);
408 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
409 			__func__, ret);
410 		msm_host->pixel_clk = NULL;
411 		goto exit;
412 	}
413 
414 	msm_host->esc_clk = msm_clk_get(pdev, "core");
415 	if (IS_ERR(msm_host->esc_clk)) {
416 		ret = PTR_ERR(msm_host->esc_clk);
417 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
418 			__func__, ret);
419 		msm_host->esc_clk = NULL;
420 		goto exit;
421 	}
422 
423 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
424 	if (!msm_host->byte_clk_src) {
425 		ret = -ENODEV;
426 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
427 		goto exit;
428 	}
429 
430 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
431 	if (!msm_host->pixel_clk_src) {
432 		ret = -ENODEV;
433 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
434 		goto exit;
435 	}
436 
437 	if (cfg_hnd->ops->clk_init_ver)
438 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
439 exit:
440 	return ret;
441 }
442 
443 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
444 {
445 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
446 	int i, ret;
447 
448 	DBG("id=%d", msm_host->id);
449 
450 	for (i = 0; i < cfg->num_bus_clks; i++) {
451 		ret = clk_prepare_enable(msm_host->bus_clks[i]);
452 		if (ret) {
453 			pr_err("%s: failed to enable bus clock %d ret %d\n",
454 				__func__, i, ret);
455 			goto err;
456 		}
457 	}
458 
459 	return 0;
460 err:
461 	for (; i > 0; i--)
462 		clk_disable_unprepare(msm_host->bus_clks[i]);
463 
464 	return ret;
465 }
466 
467 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
468 {
469 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
470 	int i;
471 
472 	DBG("");
473 
474 	for (i = cfg->num_bus_clks - 1; i >= 0; i--)
475 		clk_disable_unprepare(msm_host->bus_clks[i]);
476 }
477 
478 int msm_dsi_runtime_suspend(struct device *dev)
479 {
480 	struct platform_device *pdev = to_platform_device(dev);
481 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
482 	struct mipi_dsi_host *host = msm_dsi->host;
483 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
484 
485 	if (!msm_host->cfg_hnd)
486 		return 0;
487 
488 	dsi_bus_clk_disable(msm_host);
489 
490 	return 0;
491 }
492 
493 int msm_dsi_runtime_resume(struct device *dev)
494 {
495 	struct platform_device *pdev = to_platform_device(dev);
496 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
497 	struct mipi_dsi_host *host = msm_dsi->host;
498 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
499 
500 	if (!msm_host->cfg_hnd)
501 		return 0;
502 
503 	return dsi_bus_clk_enable(msm_host);
504 }
505 
506 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
507 {
508 	int ret;
509 
510 	DBG("Set clk rates: pclk=%d, byteclk=%d",
511 		msm_host->mode->clock, msm_host->byte_clk_rate);
512 
513 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
514 	if (ret) {
515 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
516 		goto error;
517 	}
518 
519 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
520 	if (ret) {
521 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
522 		goto error;
523 	}
524 
525 	if (msm_host->byte_intf_clk) {
526 		ret = clk_set_rate(msm_host->byte_intf_clk,
527 				   msm_host->byte_clk_rate / 2);
528 		if (ret) {
529 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
530 			       __func__, ret);
531 			goto error;
532 		}
533 	}
534 
535 	ret = clk_prepare_enable(msm_host->esc_clk);
536 	if (ret) {
537 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
538 		goto error;
539 	}
540 
541 	ret = clk_prepare_enable(msm_host->byte_clk);
542 	if (ret) {
543 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
544 		goto byte_clk_err;
545 	}
546 
547 	ret = clk_prepare_enable(msm_host->pixel_clk);
548 	if (ret) {
549 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
550 		goto pixel_clk_err;
551 	}
552 
553 	if (msm_host->byte_intf_clk) {
554 		ret = clk_prepare_enable(msm_host->byte_intf_clk);
555 		if (ret) {
556 			pr_err("%s: Failed to enable byte intf clk\n",
557 			       __func__);
558 			goto byte_intf_clk_err;
559 		}
560 	}
561 
562 	return 0;
563 
564 byte_intf_clk_err:
565 	clk_disable_unprepare(msm_host->pixel_clk);
566 pixel_clk_err:
567 	clk_disable_unprepare(msm_host->byte_clk);
568 byte_clk_err:
569 	clk_disable_unprepare(msm_host->esc_clk);
570 error:
571 	return ret;
572 }
573 
574 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
575 {
576 	int ret;
577 
578 	DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
579 		msm_host->mode->clock, msm_host->byte_clk_rate,
580 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
581 
582 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
583 	if (ret) {
584 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
585 		goto error;
586 	}
587 
588 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
589 	if (ret) {
590 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
591 		goto error;
592 	}
593 
594 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
595 	if (ret) {
596 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
597 		goto error;
598 	}
599 
600 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
601 	if (ret) {
602 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
603 		goto error;
604 	}
605 
606 	ret = clk_prepare_enable(msm_host->byte_clk);
607 	if (ret) {
608 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
609 		goto error;
610 	}
611 
612 	ret = clk_prepare_enable(msm_host->esc_clk);
613 	if (ret) {
614 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
615 		goto esc_clk_err;
616 	}
617 
618 	ret = clk_prepare_enable(msm_host->src_clk);
619 	if (ret) {
620 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
621 		goto src_clk_err;
622 	}
623 
624 	ret = clk_prepare_enable(msm_host->pixel_clk);
625 	if (ret) {
626 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
627 		goto pixel_clk_err;
628 	}
629 
630 	return 0;
631 
632 pixel_clk_err:
633 	clk_disable_unprepare(msm_host->src_clk);
634 src_clk_err:
635 	clk_disable_unprepare(msm_host->esc_clk);
636 esc_clk_err:
637 	clk_disable_unprepare(msm_host->byte_clk);
638 error:
639 	return ret;
640 }
641 
642 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
643 {
644 	clk_disable_unprepare(msm_host->esc_clk);
645 	clk_disable_unprepare(msm_host->pixel_clk);
646 	if (msm_host->byte_intf_clk)
647 		clk_disable_unprepare(msm_host->byte_intf_clk);
648 	clk_disable_unprepare(msm_host->byte_clk);
649 }
650 
651 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
652 {
653 	clk_disable_unprepare(msm_host->pixel_clk);
654 	clk_disable_unprepare(msm_host->src_clk);
655 	clk_disable_unprepare(msm_host->esc_clk);
656 	clk_disable_unprepare(msm_host->byte_clk);
657 }
658 
659 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
660 {
661 	struct drm_display_mode *mode = msm_host->mode;
662 	u32 pclk_rate;
663 
664 	pclk_rate = mode->clock * 1000;
665 
666 	/*
667 	 * For dual DSI mode, the current DRM mode has the complete width of the
668 	 * panel. Since, the complete panel is driven by two DSI controllers,
669 	 * the clock rates have to be split between the two dsi controllers.
670 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
671 	 */
672 	if (is_dual_dsi)
673 		pclk_rate /= 2;
674 
675 	return pclk_rate;
676 }
677 
678 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
679 {
680 	u8 lanes = msm_host->lanes;
681 	u32 bpp = dsi_get_bpp(msm_host->format);
682 	u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
683 	u64 pclk_bpp = (u64)pclk_rate * bpp;
684 
685 	if (lanes == 0) {
686 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
687 		lanes = 1;
688 	}
689 
690 	do_div(pclk_bpp, (8 * lanes));
691 
692 	msm_host->pixel_clk_rate = pclk_rate;
693 	msm_host->byte_clk_rate = pclk_bpp;
694 
695 	DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
696 				msm_host->byte_clk_rate);
697 
698 }
699 
700 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
701 {
702 	if (!msm_host->mode) {
703 		pr_err("%s: mode not set\n", __func__);
704 		return -EINVAL;
705 	}
706 
707 	dsi_calc_pclk(msm_host, is_dual_dsi);
708 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
709 	return 0;
710 }
711 
712 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
713 {
714 	u32 bpp = dsi_get_bpp(msm_host->format);
715 	u64 pclk_bpp;
716 	unsigned int esc_mhz, esc_div;
717 	unsigned long byte_mhz;
718 
719 	dsi_calc_pclk(msm_host, is_dual_dsi);
720 
721 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
722 	do_div(pclk_bpp, 8);
723 	msm_host->src_clk_rate = pclk_bpp;
724 
725 	/*
726 	 * esc clock is byte clock followed by a 4 bit divider,
727 	 * we need to find an escape clock frequency within the
728 	 * mipi DSI spec range within the maximum divider limit
729 	 * We iterate here between an escape clock frequencey
730 	 * between 20 Mhz to 5 Mhz and pick up the first one
731 	 * that can be supported by our divider
732 	 */
733 
734 	byte_mhz = msm_host->byte_clk_rate / 1000000;
735 
736 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
737 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
738 
739 		/*
740 		 * TODO: Ideally, we shouldn't know what sort of divider
741 		 * is available in mmss_cc, we're just assuming that
742 		 * it'll always be a 4 bit divider. Need to come up with
743 		 * a better way here.
744 		 */
745 		if (esc_div >= 1 && esc_div <= 16)
746 			break;
747 	}
748 
749 	if (esc_mhz < 5)
750 		return -EINVAL;
751 
752 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
753 
754 	DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
755 		msm_host->src_clk_rate);
756 
757 	return 0;
758 }
759 
760 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
761 {
762 	u32 intr;
763 	unsigned long flags;
764 
765 	spin_lock_irqsave(&msm_host->intr_lock, flags);
766 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
767 
768 	if (enable)
769 		intr |= mask;
770 	else
771 		intr &= ~mask;
772 
773 	DBG("intr=%x enable=%d", intr, enable);
774 
775 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
776 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
777 }
778 
779 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
780 {
781 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
782 		return BURST_MODE;
783 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
784 		return NON_BURST_SYNCH_PULSE;
785 
786 	return NON_BURST_SYNCH_EVENT;
787 }
788 
789 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
790 				const enum mipi_dsi_pixel_format mipi_fmt)
791 {
792 	switch (mipi_fmt) {
793 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
794 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
795 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
796 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
797 	default:			return VID_DST_FORMAT_RGB888;
798 	}
799 }
800 
801 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
802 				const enum mipi_dsi_pixel_format mipi_fmt)
803 {
804 	switch (mipi_fmt) {
805 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
806 	case MIPI_DSI_FMT_RGB666_PACKED:
807 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
808 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
809 	default:			return CMD_DST_FORMAT_RGB888;
810 	}
811 }
812 
813 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
814 			struct msm_dsi_phy_shared_timings *phy_shared_timings)
815 {
816 	u32 flags = msm_host->mode_flags;
817 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
818 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
819 	u32 data = 0;
820 
821 	if (!enable) {
822 		dsi_write(msm_host, REG_DSI_CTRL, 0);
823 		return;
824 	}
825 
826 	if (flags & MIPI_DSI_MODE_VIDEO) {
827 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
828 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
829 		if (flags & MIPI_DSI_MODE_VIDEO_HFP)
830 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
831 		if (flags & MIPI_DSI_MODE_VIDEO_HBP)
832 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
833 		if (flags & MIPI_DSI_MODE_VIDEO_HSA)
834 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
835 		/* Always set low power stop mode for BLLP
836 		 * to let command engine send packets
837 		 */
838 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
839 			DSI_VID_CFG0_BLLP_POWER_STOP;
840 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
841 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
842 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
843 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
844 
845 		/* Do not swap RGB colors */
846 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
847 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
848 	} else {
849 		/* Do not swap RGB colors */
850 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
851 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
852 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
853 
854 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
855 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
856 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
857 		/* Always insert DCS command */
858 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
859 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
860 	}
861 
862 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
863 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
864 			DSI_CMD_DMA_CTRL_LOW_POWER);
865 
866 	data = 0;
867 	/* Always assume dedicated TE pin */
868 	data |= DSI_TRIG_CTRL_TE;
869 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
870 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
871 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
872 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
873 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
874 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
875 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
876 
877 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
878 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
879 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
880 
881 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
882 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
883 	    phy_shared_timings->clk_pre_inc_by_2)
884 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
885 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
886 
887 	data = 0;
888 	if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
889 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
890 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
891 
892 	/* allow only ack-err-status to generate interrupt */
893 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
894 
895 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
896 
897 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
898 
899 	data = DSI_CTRL_CLK_EN;
900 
901 	DBG("lane number=%d", msm_host->lanes);
902 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
903 
904 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
905 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
906 
907 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
908 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
909 			DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
910 
911 	data |= DSI_CTRL_ENABLE;
912 
913 	dsi_write(msm_host, REG_DSI_CTRL, data);
914 }
915 
916 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
917 {
918 	struct drm_display_mode *mode = msm_host->mode;
919 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
920 	u32 h_total = mode->htotal;
921 	u32 v_total = mode->vtotal;
922 	u32 hs_end = mode->hsync_end - mode->hsync_start;
923 	u32 vs_end = mode->vsync_end - mode->vsync_start;
924 	u32 ha_start = h_total - mode->hsync_start;
925 	u32 ha_end = ha_start + mode->hdisplay;
926 	u32 va_start = v_total - mode->vsync_start;
927 	u32 va_end = va_start + mode->vdisplay;
928 	u32 hdisplay = mode->hdisplay;
929 	u32 wc;
930 
931 	DBG("");
932 
933 	/*
934 	 * For dual DSI mode, the current DRM mode has
935 	 * the complete width of the panel. Since, the complete
936 	 * panel is driven by two DSI controllers, the horizontal
937 	 * timings have to be split between the two dsi controllers.
938 	 * Adjust the DSI host timing values accordingly.
939 	 */
940 	if (is_dual_dsi) {
941 		h_total /= 2;
942 		hs_end /= 2;
943 		ha_start /= 2;
944 		ha_end /= 2;
945 		hdisplay /= 2;
946 	}
947 
948 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
949 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
950 			DSI_ACTIVE_H_START(ha_start) |
951 			DSI_ACTIVE_H_END(ha_end));
952 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
953 			DSI_ACTIVE_V_START(va_start) |
954 			DSI_ACTIVE_V_END(va_end));
955 		dsi_write(msm_host, REG_DSI_TOTAL,
956 			DSI_TOTAL_H_TOTAL(h_total - 1) |
957 			DSI_TOTAL_V_TOTAL(v_total - 1));
958 
959 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
960 			DSI_ACTIVE_HSYNC_START(hs_start) |
961 			DSI_ACTIVE_HSYNC_END(hs_end));
962 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
963 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
964 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
965 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
966 	} else {		/* command mode */
967 		/* image data and 1 byte write_memory_start cmd */
968 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
969 
970 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
971 			DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
972 			DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
973 					msm_host->channel) |
974 			DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
975 					MIPI_DSI_DCS_LONG_WRITE));
976 
977 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
978 			DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
979 			DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
980 	}
981 }
982 
983 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
984 {
985 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
986 	wmb(); /* clocks need to be enabled before reset */
987 
988 	dsi_write(msm_host, REG_DSI_RESET, 1);
989 	wmb(); /* make sure reset happen */
990 	dsi_write(msm_host, REG_DSI_RESET, 0);
991 }
992 
993 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
994 					bool video_mode, bool enable)
995 {
996 	u32 dsi_ctrl;
997 
998 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
999 
1000 	if (!enable) {
1001 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1002 				DSI_CTRL_CMD_MODE_EN);
1003 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1004 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1005 	} else {
1006 		if (video_mode) {
1007 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1008 		} else {		/* command mode */
1009 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1010 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1011 		}
1012 		dsi_ctrl |= DSI_CTRL_ENABLE;
1013 	}
1014 
1015 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1016 }
1017 
1018 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1019 {
1020 	u32 data;
1021 
1022 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1023 
1024 	if (mode == 0)
1025 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1026 	else
1027 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1028 
1029 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1030 }
1031 
1032 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1033 {
1034 	u32 ret = 0;
1035 	struct device *dev = &msm_host->pdev->dev;
1036 
1037 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1038 
1039 	reinit_completion(&msm_host->video_comp);
1040 
1041 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1042 			msecs_to_jiffies(70));
1043 
1044 	if (ret == 0)
1045 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1046 
1047 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1048 }
1049 
1050 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1051 {
1052 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1053 		return;
1054 
1055 	if (msm_host->power_on && msm_host->enabled) {
1056 		dsi_wait4video_done(msm_host);
1057 		/* delay 4 ms to skip BLLP */
1058 		usleep_range(2000, 4000);
1059 	}
1060 }
1061 
1062 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1063 {
1064 	struct drm_device *dev = msm_host->dev;
1065 	struct msm_drm_private *priv = dev->dev_private;
1066 	uint64_t iova;
1067 	u8 *data;
1068 
1069 	data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
1070 					priv->kms->aspace,
1071 					&msm_host->tx_gem_obj, &iova);
1072 
1073 	if (IS_ERR(data)) {
1074 		msm_host->tx_gem_obj = NULL;
1075 		return PTR_ERR(data);
1076 	}
1077 
1078 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1079 
1080 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1081 
1082 	return 0;
1083 }
1084 
1085 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1086 {
1087 	struct drm_device *dev = msm_host->dev;
1088 
1089 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1090 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1091 	if (!msm_host->tx_buf)
1092 		return -ENOMEM;
1093 
1094 	msm_host->tx_size = size;
1095 
1096 	return 0;
1097 }
1098 
1099 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1100 {
1101 	struct drm_device *dev = msm_host->dev;
1102 	struct msm_drm_private *priv;
1103 
1104 	/*
1105 	 * This is possible if we're tearing down before we've had a chance to
1106 	 * fully initialize. A very real possibility if our probe is deferred,
1107 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1108 	 * through the dsi_tx_buf_alloc().
1109 	 */
1110 	if (!dev)
1111 		return;
1112 
1113 	priv = dev->dev_private;
1114 	if (msm_host->tx_gem_obj) {
1115 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1116 		drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
1117 		msm_host->tx_gem_obj = NULL;
1118 	}
1119 
1120 	if (msm_host->tx_buf)
1121 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1122 			msm_host->tx_buf_paddr);
1123 }
1124 
1125 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1126 {
1127 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1128 }
1129 
1130 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1131 {
1132 	return msm_host->tx_buf;
1133 }
1134 
1135 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1136 {
1137 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1138 }
1139 
1140 /*
1141  * prepare cmd buffer to be txed
1142  */
1143 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1144 			   const struct mipi_dsi_msg *msg)
1145 {
1146 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1147 	struct mipi_dsi_packet packet;
1148 	int len;
1149 	int ret;
1150 	u8 *data;
1151 
1152 	ret = mipi_dsi_create_packet(&packet, msg);
1153 	if (ret) {
1154 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1155 		return ret;
1156 	}
1157 	len = (packet.size + 3) & (~0x3);
1158 
1159 	if (len > msm_host->tx_size) {
1160 		pr_err("%s: packet size is too big\n", __func__);
1161 		return -EINVAL;
1162 	}
1163 
1164 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1165 	if (IS_ERR(data)) {
1166 		ret = PTR_ERR(data);
1167 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1168 		return ret;
1169 	}
1170 
1171 	/* MSM specific command format in memory */
1172 	data[0] = packet.header[1];
1173 	data[1] = packet.header[2];
1174 	data[2] = packet.header[0];
1175 	data[3] = BIT(7); /* Last packet */
1176 	if (mipi_dsi_packet_format_is_long(msg->type))
1177 		data[3] |= BIT(6);
1178 	if (msg->rx_buf && msg->rx_len)
1179 		data[3] |= BIT(5);
1180 
1181 	/* Long packet */
1182 	if (packet.payload && packet.payload_length)
1183 		memcpy(data + 4, packet.payload, packet.payload_length);
1184 
1185 	/* Append 0xff to the end */
1186 	if (packet.size < len)
1187 		memset(data + packet.size, 0xff, len - packet.size);
1188 
1189 	if (cfg_hnd->ops->tx_buf_put)
1190 		cfg_hnd->ops->tx_buf_put(msm_host);
1191 
1192 	return len;
1193 }
1194 
1195 /*
1196  * dsi_short_read1_resp: 1 parameter
1197  */
1198 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1199 {
1200 	u8 *data = msg->rx_buf;
1201 	if (data && (msg->rx_len >= 1)) {
1202 		*data = buf[1]; /* strip out dcs type */
1203 		return 1;
1204 	} else {
1205 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1206 			__func__, msg->rx_len);
1207 		return -EINVAL;
1208 	}
1209 }
1210 
1211 /*
1212  * dsi_short_read2_resp: 2 parameter
1213  */
1214 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1215 {
1216 	u8 *data = msg->rx_buf;
1217 	if (data && (msg->rx_len >= 2)) {
1218 		data[0] = buf[1]; /* strip out dcs type */
1219 		data[1] = buf[2];
1220 		return 2;
1221 	} else {
1222 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1223 			__func__, msg->rx_len);
1224 		return -EINVAL;
1225 	}
1226 }
1227 
1228 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1229 {
1230 	/* strip out 4 byte dcs header */
1231 	if (msg->rx_buf && msg->rx_len)
1232 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1233 
1234 	return msg->rx_len;
1235 }
1236 
1237 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1238 {
1239 	struct drm_device *dev = msm_host->dev;
1240 	struct msm_drm_private *priv = dev->dev_private;
1241 
1242 	if (!dma_base)
1243 		return -EINVAL;
1244 
1245 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1246 				priv->kms->aspace, dma_base);
1247 }
1248 
1249 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1250 {
1251 	if (!dma_base)
1252 		return -EINVAL;
1253 
1254 	*dma_base = msm_host->tx_buf_paddr;
1255 	return 0;
1256 }
1257 
1258 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1259 {
1260 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1261 	int ret;
1262 	uint64_t dma_base;
1263 	bool triggered;
1264 
1265 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1266 	if (ret) {
1267 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1268 		return ret;
1269 	}
1270 
1271 	reinit_completion(&msm_host->dma_comp);
1272 
1273 	dsi_wait4video_eng_busy(msm_host);
1274 
1275 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1276 						msm_host->id, dma_base, len);
1277 	if (triggered) {
1278 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1279 					msecs_to_jiffies(200));
1280 		DBG("ret=%d", ret);
1281 		if (ret == 0)
1282 			ret = -ETIMEDOUT;
1283 		else
1284 			ret = len;
1285 	} else
1286 		ret = len;
1287 
1288 	return ret;
1289 }
1290 
1291 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1292 			u8 *buf, int rx_byte, int pkt_size)
1293 {
1294 	u32 *lp, *temp, data;
1295 	int i, j = 0, cnt;
1296 	u32 read_cnt;
1297 	u8 reg[16];
1298 	int repeated_bytes = 0;
1299 	int buf_offset = buf - msm_host->rx_buf;
1300 
1301 	lp = (u32 *)buf;
1302 	temp = (u32 *)reg;
1303 	cnt = (rx_byte + 3) >> 2;
1304 	if (cnt > 4)
1305 		cnt = 4; /* 4 x 32 bits registers only */
1306 
1307 	if (rx_byte == 4)
1308 		read_cnt = 4;
1309 	else
1310 		read_cnt = pkt_size + 6;
1311 
1312 	/*
1313 	 * In case of multiple reads from the panel, after the first read, there
1314 	 * is possibility that there are some bytes in the payload repeating in
1315 	 * the RDBK_DATA registers. Since we read all the parameters from the
1316 	 * panel right from the first byte for every pass. We need to skip the
1317 	 * repeating bytes and then append the new parameters to the rx buffer.
1318 	 */
1319 	if (read_cnt > 16) {
1320 		int bytes_shifted;
1321 		/* Any data more than 16 bytes will be shifted out.
1322 		 * The temp read buffer should already contain these bytes.
1323 		 * The remaining bytes in read buffer are the repeated bytes.
1324 		 */
1325 		bytes_shifted = read_cnt - 16;
1326 		repeated_bytes = buf_offset - bytes_shifted;
1327 	}
1328 
1329 	for (i = cnt - 1; i >= 0; i--) {
1330 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1331 		*temp++ = ntohl(data); /* to host byte order */
1332 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1333 	}
1334 
1335 	for (i = repeated_bytes; i < 16; i++)
1336 		buf[j++] = reg[i];
1337 
1338 	return j;
1339 }
1340 
1341 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1342 				const struct mipi_dsi_msg *msg)
1343 {
1344 	int len, ret;
1345 	int bllp_len = msm_host->mode->hdisplay *
1346 			dsi_get_bpp(msm_host->format) / 8;
1347 
1348 	len = dsi_cmd_dma_add(msm_host, msg);
1349 	if (!len) {
1350 		pr_err("%s: failed to add cmd type = 0x%x\n",
1351 			__func__,  msg->type);
1352 		return -EINVAL;
1353 	}
1354 
1355 	/* for video mode, do not send cmds more than
1356 	* one pixel line, since it only transmit it
1357 	* during BLLP.
1358 	*/
1359 	/* TODO: if the command is sent in LP mode, the bit rate is only
1360 	 * half of esc clk rate. In this case, if the video is already
1361 	 * actively streaming, we need to check more carefully if the
1362 	 * command can be fit into one BLLP.
1363 	 */
1364 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1365 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1366 			__func__, len);
1367 		return -EINVAL;
1368 	}
1369 
1370 	ret = dsi_cmd_dma_tx(msm_host, len);
1371 	if (ret < len) {
1372 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1373 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1374 		return -ECOMM;
1375 	}
1376 
1377 	return len;
1378 }
1379 
1380 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1381 {
1382 	u32 data0, data1;
1383 
1384 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1385 	data1 = data0;
1386 	data1 &= ~DSI_CTRL_ENABLE;
1387 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1388 	/*
1389 	 * dsi controller need to be disabled before
1390 	 * clocks turned on
1391 	 */
1392 	wmb();
1393 
1394 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1395 	wmb();	/* make sure clocks enabled */
1396 
1397 	/* dsi controller can only be reset while clocks are running */
1398 	dsi_write(msm_host, REG_DSI_RESET, 1);
1399 	wmb();	/* make sure reset happen */
1400 	dsi_write(msm_host, REG_DSI_RESET, 0);
1401 	wmb();	/* controller out of reset */
1402 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1403 	wmb();	/* make sure dsi controller enabled again */
1404 }
1405 
1406 static void dsi_hpd_worker(struct work_struct *work)
1407 {
1408 	struct msm_dsi_host *msm_host =
1409 		container_of(work, struct msm_dsi_host, hpd_work);
1410 
1411 	drm_helper_hpd_irq_event(msm_host->dev);
1412 }
1413 
1414 static void dsi_err_worker(struct work_struct *work)
1415 {
1416 	struct msm_dsi_host *msm_host =
1417 		container_of(work, struct msm_dsi_host, err_work);
1418 	u32 status = msm_host->err_work_state;
1419 
1420 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1421 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1422 		dsi_sw_reset_restore(msm_host);
1423 
1424 	/* It is safe to clear here because error irq is disabled. */
1425 	msm_host->err_work_state = 0;
1426 
1427 	/* enable dsi error interrupt */
1428 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1429 }
1430 
1431 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1432 {
1433 	u32 status;
1434 
1435 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1436 
1437 	if (status) {
1438 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1439 		/* Writing of an extra 0 needed to clear error bits */
1440 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1441 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1442 	}
1443 }
1444 
1445 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1446 {
1447 	u32 status;
1448 
1449 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1450 
1451 	if (status) {
1452 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1453 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1454 	}
1455 }
1456 
1457 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1458 {
1459 	u32 status;
1460 
1461 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1462 
1463 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1464 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1465 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1466 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1467 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1468 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1469 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1470 	}
1471 }
1472 
1473 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1474 {
1475 	u32 status;
1476 
1477 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1478 
1479 	/* fifo underflow, overflow */
1480 	if (status) {
1481 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1482 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1483 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1484 			msm_host->err_work_state |=
1485 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1486 	}
1487 }
1488 
1489 static void dsi_status(struct msm_dsi_host *msm_host)
1490 {
1491 	u32 status;
1492 
1493 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1494 
1495 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1496 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1497 		msm_host->err_work_state |=
1498 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1499 	}
1500 }
1501 
1502 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1503 {
1504 	u32 status;
1505 
1506 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1507 
1508 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1509 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1510 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1511 	}
1512 }
1513 
1514 static void dsi_error(struct msm_dsi_host *msm_host)
1515 {
1516 	/* disable dsi error interrupt */
1517 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1518 
1519 	dsi_clk_status(msm_host);
1520 	dsi_fifo_status(msm_host);
1521 	dsi_ack_err_status(msm_host);
1522 	dsi_timeout_status(msm_host);
1523 	dsi_status(msm_host);
1524 	dsi_dln0_phy_err(msm_host);
1525 
1526 	queue_work(msm_host->workqueue, &msm_host->err_work);
1527 }
1528 
1529 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1530 {
1531 	struct msm_dsi_host *msm_host = ptr;
1532 	u32 isr;
1533 	unsigned long flags;
1534 
1535 	if (!msm_host->ctrl_base)
1536 		return IRQ_HANDLED;
1537 
1538 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1539 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1540 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1541 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1542 
1543 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1544 
1545 	if (isr & DSI_IRQ_ERROR)
1546 		dsi_error(msm_host);
1547 
1548 	if (isr & DSI_IRQ_VIDEO_DONE)
1549 		complete(&msm_host->video_comp);
1550 
1551 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1552 		complete(&msm_host->dma_comp);
1553 
1554 	return IRQ_HANDLED;
1555 }
1556 
1557 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1558 			struct device *panel_device)
1559 {
1560 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1561 							 "disp-enable",
1562 							 GPIOD_OUT_LOW);
1563 	if (IS_ERR(msm_host->disp_en_gpio)) {
1564 		DBG("cannot get disp-enable-gpios %ld",
1565 				PTR_ERR(msm_host->disp_en_gpio));
1566 		return PTR_ERR(msm_host->disp_en_gpio);
1567 	}
1568 
1569 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1570 								GPIOD_IN);
1571 	if (IS_ERR(msm_host->te_gpio)) {
1572 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1573 		return PTR_ERR(msm_host->te_gpio);
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int dsi_host_attach(struct mipi_dsi_host *host,
1580 					struct mipi_dsi_device *dsi)
1581 {
1582 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1583 	int ret;
1584 
1585 	if (dsi->lanes > msm_host->num_data_lanes)
1586 		return -EINVAL;
1587 
1588 	msm_host->channel = dsi->channel;
1589 	msm_host->lanes = dsi->lanes;
1590 	msm_host->format = dsi->format;
1591 	msm_host->mode_flags = dsi->mode_flags;
1592 
1593 	/* Some gpios defined in panel DT need to be controlled by host */
1594 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1595 	if (ret)
1596 		return ret;
1597 
1598 	DBG("id=%d", msm_host->id);
1599 	if (msm_host->dev)
1600 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1601 
1602 	return 0;
1603 }
1604 
1605 static int dsi_host_detach(struct mipi_dsi_host *host,
1606 					struct mipi_dsi_device *dsi)
1607 {
1608 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1609 
1610 	msm_host->device_node = NULL;
1611 
1612 	DBG("id=%d", msm_host->id);
1613 	if (msm_host->dev)
1614 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1615 
1616 	return 0;
1617 }
1618 
1619 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1620 					const struct mipi_dsi_msg *msg)
1621 {
1622 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1623 	int ret;
1624 
1625 	if (!msg || !msm_host->power_on)
1626 		return -EINVAL;
1627 
1628 	mutex_lock(&msm_host->cmd_mutex);
1629 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1630 	mutex_unlock(&msm_host->cmd_mutex);
1631 
1632 	return ret;
1633 }
1634 
1635 static struct mipi_dsi_host_ops dsi_host_ops = {
1636 	.attach = dsi_host_attach,
1637 	.detach = dsi_host_detach,
1638 	.transfer = dsi_host_transfer,
1639 };
1640 
1641 /*
1642  * List of supported physical to logical lane mappings.
1643  * For example, the 2nd entry represents the following mapping:
1644  *
1645  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1646  */
1647 static const int supported_data_lane_swaps[][4] = {
1648 	{ 0, 1, 2, 3 },
1649 	{ 3, 0, 1, 2 },
1650 	{ 2, 3, 0, 1 },
1651 	{ 1, 2, 3, 0 },
1652 	{ 0, 3, 2, 1 },
1653 	{ 1, 0, 3, 2 },
1654 	{ 2, 1, 0, 3 },
1655 	{ 3, 2, 1, 0 },
1656 };
1657 
1658 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1659 				    struct device_node *ep)
1660 {
1661 	struct device *dev = &msm_host->pdev->dev;
1662 	struct property *prop;
1663 	u32 lane_map[4];
1664 	int ret, i, len, num_lanes;
1665 
1666 	prop = of_find_property(ep, "data-lanes", &len);
1667 	if (!prop) {
1668 		DRM_DEV_DEBUG(dev,
1669 			"failed to find data lane mapping, using default\n");
1670 		return 0;
1671 	}
1672 
1673 	num_lanes = len / sizeof(u32);
1674 
1675 	if (num_lanes < 1 || num_lanes > 4) {
1676 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1677 		return -EINVAL;
1678 	}
1679 
1680 	msm_host->num_data_lanes = num_lanes;
1681 
1682 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1683 					 num_lanes);
1684 	if (ret) {
1685 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1686 		return ret;
1687 	}
1688 
1689 	/*
1690 	 * compare DT specified physical-logical lane mappings with the ones
1691 	 * supported by hardware
1692 	 */
1693 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1694 		const int *swap = supported_data_lane_swaps[i];
1695 		int j;
1696 
1697 		/*
1698 		 * the data-lanes array we get from DT has a logical->physical
1699 		 * mapping. The "data lane swap" register field represents
1700 		 * supported configurations in a physical->logical mapping.
1701 		 * Translate the DT mapping to what we understand and find a
1702 		 * configuration that works.
1703 		 */
1704 		for (j = 0; j < num_lanes; j++) {
1705 			if (lane_map[j] < 0 || lane_map[j] > 3)
1706 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1707 					lane_map[j]);
1708 
1709 			if (swap[lane_map[j]] != j)
1710 				break;
1711 		}
1712 
1713 		if (j == num_lanes) {
1714 			msm_host->dlane_swap = i;
1715 			return 0;
1716 		}
1717 	}
1718 
1719 	return -EINVAL;
1720 }
1721 
1722 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1723 {
1724 	struct device *dev = &msm_host->pdev->dev;
1725 	struct device_node *np = dev->of_node;
1726 	struct device_node *endpoint, *device_node;
1727 	int ret = 0;
1728 
1729 	/*
1730 	 * Get the endpoint of the output port of the DSI host. In our case,
1731 	 * this is mapped to port number with reg = 1. Don't return an error if
1732 	 * the remote endpoint isn't defined. It's possible that there is
1733 	 * nothing connected to the dsi output.
1734 	 */
1735 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1736 	if (!endpoint) {
1737 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1738 		return 0;
1739 	}
1740 
1741 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1742 	if (ret) {
1743 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1744 			__func__, ret);
1745 		ret = -EINVAL;
1746 		goto err;
1747 	}
1748 
1749 	/* Get panel node from the output port's endpoint data */
1750 	device_node = of_graph_get_remote_node(np, 1, 0);
1751 	if (!device_node) {
1752 		DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1753 		ret = -ENODEV;
1754 		goto err;
1755 	}
1756 
1757 	msm_host->device_node = device_node;
1758 
1759 	if (of_property_read_bool(np, "syscon-sfpb")) {
1760 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1761 					"syscon-sfpb");
1762 		if (IS_ERR(msm_host->sfpb)) {
1763 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1764 				__func__);
1765 			ret = PTR_ERR(msm_host->sfpb);
1766 		}
1767 	}
1768 
1769 	of_node_put(device_node);
1770 
1771 err:
1772 	of_node_put(endpoint);
1773 
1774 	return ret;
1775 }
1776 
1777 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1778 {
1779 	struct platform_device *pdev = msm_host->pdev;
1780 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1781 	struct resource *res;
1782 	int i;
1783 
1784 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1785 	if (!res)
1786 		return -EINVAL;
1787 
1788 	for (i = 0; i < cfg->num_dsi; i++) {
1789 		if (cfg->io_start[i] == res->start)
1790 			return i;
1791 	}
1792 
1793 	return -EINVAL;
1794 }
1795 
1796 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1797 {
1798 	struct msm_dsi_host *msm_host = NULL;
1799 	struct platform_device *pdev = msm_dsi->pdev;
1800 	int ret;
1801 
1802 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1803 	if (!msm_host) {
1804 		pr_err("%s: FAILED: cannot alloc dsi host\n",
1805 		       __func__);
1806 		ret = -ENOMEM;
1807 		goto fail;
1808 	}
1809 
1810 	msm_host->pdev = pdev;
1811 	msm_dsi->host = &msm_host->base;
1812 
1813 	ret = dsi_host_parse_dt(msm_host);
1814 	if (ret) {
1815 		pr_err("%s: failed to parse dt\n", __func__);
1816 		goto fail;
1817 	}
1818 
1819 	msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
1820 	if (IS_ERR(msm_host->ctrl_base)) {
1821 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1822 		ret = PTR_ERR(msm_host->ctrl_base);
1823 		goto fail;
1824 	}
1825 
1826 	pm_runtime_enable(&pdev->dev);
1827 
1828 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1829 	if (!msm_host->cfg_hnd) {
1830 		ret = -EINVAL;
1831 		pr_err("%s: get config failed\n", __func__);
1832 		goto fail;
1833 	}
1834 
1835 	msm_host->id = dsi_host_get_id(msm_host);
1836 	if (msm_host->id < 0) {
1837 		ret = msm_host->id;
1838 		pr_err("%s: unable to identify DSI host index\n", __func__);
1839 		goto fail;
1840 	}
1841 
1842 	/* fixup base address by io offset */
1843 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1844 
1845 	ret = dsi_regulator_init(msm_host);
1846 	if (ret) {
1847 		pr_err("%s: regulator init failed\n", __func__);
1848 		goto fail;
1849 	}
1850 
1851 	ret = dsi_clk_init(msm_host);
1852 	if (ret) {
1853 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1854 		goto fail;
1855 	}
1856 
1857 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1858 	if (!msm_host->rx_buf) {
1859 		ret = -ENOMEM;
1860 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1861 		goto fail;
1862 	}
1863 
1864 	init_completion(&msm_host->dma_comp);
1865 	init_completion(&msm_host->video_comp);
1866 	mutex_init(&msm_host->dev_mutex);
1867 	mutex_init(&msm_host->cmd_mutex);
1868 	spin_lock_init(&msm_host->intr_lock);
1869 
1870 	/* setup workqueue */
1871 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1872 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1873 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1874 
1875 	msm_dsi->id = msm_host->id;
1876 
1877 	DBG("Dsi Host %d initialized", msm_host->id);
1878 	return 0;
1879 
1880 fail:
1881 	return ret;
1882 }
1883 
1884 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1885 {
1886 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1887 
1888 	DBG("");
1889 	dsi_tx_buf_free(msm_host);
1890 	if (msm_host->workqueue) {
1891 		flush_workqueue(msm_host->workqueue);
1892 		destroy_workqueue(msm_host->workqueue);
1893 		msm_host->workqueue = NULL;
1894 	}
1895 
1896 	mutex_destroy(&msm_host->cmd_mutex);
1897 	mutex_destroy(&msm_host->dev_mutex);
1898 
1899 	pm_runtime_disable(&msm_host->pdev->dev);
1900 }
1901 
1902 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1903 					struct drm_device *dev)
1904 {
1905 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1906 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1907 	struct platform_device *pdev = msm_host->pdev;
1908 	int ret;
1909 
1910 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1911 	if (msm_host->irq < 0) {
1912 		ret = msm_host->irq;
1913 		DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret);
1914 		return ret;
1915 	}
1916 
1917 	ret = devm_request_irq(&pdev->dev, msm_host->irq,
1918 			dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1919 			"dsi_isr", msm_host);
1920 	if (ret < 0) {
1921 		DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n",
1922 				msm_host->irq, ret);
1923 		return ret;
1924 	}
1925 
1926 	msm_host->dev = dev;
1927 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1928 	if (ret) {
1929 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1930 		return ret;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
1937 {
1938 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1939 	int ret;
1940 
1941 	/* Register mipi dsi host */
1942 	if (!msm_host->registered) {
1943 		host->dev = &msm_host->pdev->dev;
1944 		host->ops = &dsi_host_ops;
1945 		ret = mipi_dsi_host_register(host);
1946 		if (ret)
1947 			return ret;
1948 
1949 		msm_host->registered = true;
1950 
1951 		/* If the panel driver has not been probed after host register,
1952 		 * we should defer the host's probe.
1953 		 * It makes sure panel is connected when fbcon detects
1954 		 * connector status and gets the proper display mode to
1955 		 * create framebuffer.
1956 		 * Don't try to defer if there is nothing connected to the dsi
1957 		 * output
1958 		 */
1959 		if (check_defer && msm_host->device_node) {
1960 			if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
1961 				if (!of_drm_find_bridge(msm_host->device_node))
1962 					return -EPROBE_DEFER;
1963 		}
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1970 {
1971 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1972 
1973 	if (msm_host->registered) {
1974 		mipi_dsi_host_unregister(host);
1975 		host->dev = NULL;
1976 		host->ops = NULL;
1977 		msm_host->registered = false;
1978 	}
1979 }
1980 
1981 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
1982 				const struct mipi_dsi_msg *msg)
1983 {
1984 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1985 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1986 
1987 	/* TODO: make sure dsi_cmd_mdp is idle.
1988 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
1989 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
1990 	 * How to handle the old versions? Wait for mdp cmd done?
1991 	 */
1992 
1993 	/*
1994 	 * mdss interrupt is generated in mdp core clock domain
1995 	 * mdp clock need to be enabled to receive dsi interrupt
1996 	 */
1997 	pm_runtime_get_sync(&msm_host->pdev->dev);
1998 	cfg_hnd->ops->link_clk_enable(msm_host);
1999 
2000 	/* TODO: vote for bus bandwidth */
2001 
2002 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2003 		dsi_set_tx_power_mode(0, msm_host);
2004 
2005 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2006 	dsi_write(msm_host, REG_DSI_CTRL,
2007 		msm_host->dma_cmd_ctrl_restore |
2008 		DSI_CTRL_CMD_MODE_EN |
2009 		DSI_CTRL_ENABLE);
2010 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2011 
2012 	return 0;
2013 }
2014 
2015 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2016 				const struct mipi_dsi_msg *msg)
2017 {
2018 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2019 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2020 
2021 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2022 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2023 
2024 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2025 		dsi_set_tx_power_mode(1, msm_host);
2026 
2027 	/* TODO: unvote for bus bandwidth */
2028 
2029 	cfg_hnd->ops->link_clk_disable(msm_host);
2030 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2031 }
2032 
2033 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2034 				const struct mipi_dsi_msg *msg)
2035 {
2036 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2037 
2038 	return dsi_cmds2buf_tx(msm_host, msg);
2039 }
2040 
2041 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2042 				const struct mipi_dsi_msg *msg)
2043 {
2044 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2045 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2046 	int data_byte, rx_byte, dlen, end;
2047 	int short_response, diff, pkt_size, ret = 0;
2048 	char cmd;
2049 	int rlen = msg->rx_len;
2050 	u8 *buf;
2051 
2052 	if (rlen <= 2) {
2053 		short_response = 1;
2054 		pkt_size = rlen;
2055 		rx_byte = 4;
2056 	} else {
2057 		short_response = 0;
2058 		data_byte = 10;	/* first read */
2059 		if (rlen < data_byte)
2060 			pkt_size = rlen;
2061 		else
2062 			pkt_size = data_byte;
2063 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2064 	}
2065 
2066 	buf = msm_host->rx_buf;
2067 	end = 0;
2068 	while (!end) {
2069 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2070 		struct mipi_dsi_msg max_pkt_size_msg = {
2071 			.channel = msg->channel,
2072 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2073 			.tx_len = 2,
2074 			.tx_buf = tx,
2075 		};
2076 
2077 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2078 			rlen, pkt_size, rx_byte);
2079 
2080 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2081 		if (ret < 2) {
2082 			pr_err("%s: Set max pkt size failed, %d\n",
2083 				__func__, ret);
2084 			return -EINVAL;
2085 		}
2086 
2087 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2088 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2089 			/* Clear the RDBK_DATA registers */
2090 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2091 					DSI_RDBK_DATA_CTRL_CLR);
2092 			wmb(); /* make sure the RDBK registers are cleared */
2093 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2094 			wmb(); /* release cleared status before transfer */
2095 		}
2096 
2097 		ret = dsi_cmds2buf_tx(msm_host, msg);
2098 		if (ret < msg->tx_len) {
2099 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2100 			return ret;
2101 		}
2102 
2103 		/*
2104 		 * once cmd_dma_done interrupt received,
2105 		 * return data from client is ready and stored
2106 		 * at RDBK_DATA register already
2107 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2108 		 * after that dcs header lost during shift into registers
2109 		 */
2110 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2111 
2112 		if (dlen <= 0)
2113 			return 0;
2114 
2115 		if (short_response)
2116 			break;
2117 
2118 		if (rlen <= data_byte) {
2119 			diff = data_byte - rlen;
2120 			end = 1;
2121 		} else {
2122 			diff = 0;
2123 			rlen -= data_byte;
2124 		}
2125 
2126 		if (!end) {
2127 			dlen -= 2; /* 2 crc */
2128 			dlen -= diff;
2129 			buf += dlen;	/* next start position */
2130 			data_byte = 14;	/* NOT first read */
2131 			if (rlen < data_byte)
2132 				pkt_size += rlen;
2133 			else
2134 				pkt_size += data_byte;
2135 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * For single Long read, if the requested rlen < 10,
2141 	 * we need to shift the start position of rx
2142 	 * data buffer to skip the bytes which are not
2143 	 * updated.
2144 	 */
2145 	if (pkt_size < 10 && !short_response)
2146 		buf = msm_host->rx_buf + (10 - rlen);
2147 	else
2148 		buf = msm_host->rx_buf;
2149 
2150 	cmd = buf[0];
2151 	switch (cmd) {
2152 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2153 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2154 		ret = 0;
2155 		break;
2156 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2157 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2158 		ret = dsi_short_read1_resp(buf, msg);
2159 		break;
2160 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2161 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2162 		ret = dsi_short_read2_resp(buf, msg);
2163 		break;
2164 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2165 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2166 		ret = dsi_long_read_resp(buf, msg);
2167 		break;
2168 	default:
2169 		pr_warn("%s:Invalid response cmd\n", __func__);
2170 		ret = 0;
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2177 				  u32 len)
2178 {
2179 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2180 
2181 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2182 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2183 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2184 
2185 	/* Make sure trigger happens */
2186 	wmb();
2187 }
2188 
2189 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
2190 	struct msm_dsi_pll *src_pll)
2191 {
2192 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2193 	struct clk *byte_clk_provider, *pixel_clk_provider;
2194 	int ret;
2195 
2196 	ret = msm_dsi_pll_get_clk_provider(src_pll,
2197 				&byte_clk_provider, &pixel_clk_provider);
2198 	if (ret) {
2199 		pr_info("%s: can't get provider from pll, don't set parent\n",
2200 			__func__);
2201 		return 0;
2202 	}
2203 
2204 	ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
2205 	if (ret) {
2206 		pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
2207 			__func__, ret);
2208 		goto exit;
2209 	}
2210 
2211 	ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
2212 	if (ret) {
2213 		pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
2214 			__func__, ret);
2215 		goto exit;
2216 	}
2217 
2218 	if (msm_host->dsi_clk_src) {
2219 		ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
2220 		if (ret) {
2221 			pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
2222 				__func__, ret);
2223 			goto exit;
2224 		}
2225 	}
2226 
2227 	if (msm_host->esc_clk_src) {
2228 		ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
2229 		if (ret) {
2230 			pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
2231 				__func__, ret);
2232 			goto exit;
2233 		}
2234 	}
2235 
2236 exit:
2237 	return ret;
2238 }
2239 
2240 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2241 {
2242 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2243 
2244 	DBG("");
2245 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2246 	/* Make sure fully reset */
2247 	wmb();
2248 	udelay(1000);
2249 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2250 	udelay(100);
2251 }
2252 
2253 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2254 			struct msm_dsi_phy_clk_request *clk_req,
2255 			bool is_dual_dsi)
2256 {
2257 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2258 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2259 	int ret;
2260 
2261 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
2262 	if (ret) {
2263 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2264 		return;
2265 	}
2266 
2267 	clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2268 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2269 }
2270 
2271 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2272 {
2273 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2274 
2275 	dsi_op_mode_config(msm_host,
2276 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2277 
2278 	/* TODO: clock should be turned off for command mode,
2279 	 * and only turned on before MDP START.
2280 	 * This part of code should be enabled once mdp driver support it.
2281 	 */
2282 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2283 	 *	dsi_link_clk_disable(msm_host);
2284 	 *	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2285 	 * }
2286 	 */
2287 	msm_host->enabled = true;
2288 	return 0;
2289 }
2290 
2291 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2292 {
2293 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2294 
2295 	msm_host->enabled = false;
2296 	dsi_op_mode_config(msm_host,
2297 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2298 
2299 	/* Since we have disabled INTF, the video engine won't stop so that
2300 	 * the cmd engine will be blocked.
2301 	 * Reset to disable video engine so that we can send off cmd.
2302 	 */
2303 	dsi_sw_reset(msm_host);
2304 
2305 	return 0;
2306 }
2307 
2308 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2309 {
2310 	enum sfpb_ahb_arb_master_port_en en;
2311 
2312 	if (!msm_host->sfpb)
2313 		return;
2314 
2315 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2316 
2317 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2318 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2319 			SFPB_GPREG_MASTER_PORT_EN(en));
2320 }
2321 
2322 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2323 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2324 			bool is_dual_dsi)
2325 {
2326 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2327 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2328 	int ret = 0;
2329 
2330 	mutex_lock(&msm_host->dev_mutex);
2331 	if (msm_host->power_on) {
2332 		DBG("dsi host already on");
2333 		goto unlock_ret;
2334 	}
2335 
2336 	msm_dsi_sfpb_config(msm_host, true);
2337 
2338 	ret = dsi_host_regulator_enable(msm_host);
2339 	if (ret) {
2340 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2341 			__func__, ret);
2342 		goto unlock_ret;
2343 	}
2344 
2345 	pm_runtime_get_sync(&msm_host->pdev->dev);
2346 	ret = cfg_hnd->ops->link_clk_enable(msm_host);
2347 	if (ret) {
2348 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2349 		       __func__, ret);
2350 		goto fail_disable_reg;
2351 	}
2352 
2353 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2354 	if (ret) {
2355 		pr_err("%s: failed to set pinctrl default state, %d\n",
2356 			__func__, ret);
2357 		goto fail_disable_clk;
2358 	}
2359 
2360 	dsi_timing_setup(msm_host, is_dual_dsi);
2361 	dsi_sw_reset(msm_host);
2362 	dsi_ctrl_config(msm_host, true, phy_shared_timings);
2363 
2364 	if (msm_host->disp_en_gpio)
2365 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2366 
2367 	msm_host->power_on = true;
2368 	mutex_unlock(&msm_host->dev_mutex);
2369 
2370 	return 0;
2371 
2372 fail_disable_clk:
2373 	cfg_hnd->ops->link_clk_disable(msm_host);
2374 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2375 fail_disable_reg:
2376 	dsi_host_regulator_disable(msm_host);
2377 unlock_ret:
2378 	mutex_unlock(&msm_host->dev_mutex);
2379 	return ret;
2380 }
2381 
2382 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2383 {
2384 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2385 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2386 
2387 	mutex_lock(&msm_host->dev_mutex);
2388 	if (!msm_host->power_on) {
2389 		DBG("dsi host already off");
2390 		goto unlock_ret;
2391 	}
2392 
2393 	dsi_ctrl_config(msm_host, false, NULL);
2394 
2395 	if (msm_host->disp_en_gpio)
2396 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2397 
2398 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2399 
2400 	cfg_hnd->ops->link_clk_disable(msm_host);
2401 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2402 
2403 	dsi_host_regulator_disable(msm_host);
2404 
2405 	msm_dsi_sfpb_config(msm_host, false);
2406 
2407 	DBG("-");
2408 
2409 	msm_host->power_on = false;
2410 
2411 unlock_ret:
2412 	mutex_unlock(&msm_host->dev_mutex);
2413 	return 0;
2414 }
2415 
2416 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2417 				  const struct drm_display_mode *mode)
2418 {
2419 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2420 
2421 	if (msm_host->mode) {
2422 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2423 		msm_host->mode = NULL;
2424 	}
2425 
2426 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2427 	if (!msm_host->mode) {
2428 		pr_err("%s: cannot duplicate mode\n", __func__);
2429 		return -ENOMEM;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2436 {
2437 	return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2438 }
2439 
2440 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2441 {
2442 	return to_msm_dsi_host(host)->mode_flags;
2443 }
2444 
2445 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2446 {
2447 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2448 
2449 	return of_drm_find_bridge(msm_host->device_node);
2450 }
2451