1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of_device.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/spinlock.h> 20 21 #include <video/mipi_display.h> 22 23 #include "dsi.h" 24 #include "dsi.xml.h" 25 #include "sfpb.xml.h" 26 #include "dsi_cfg.h" 27 #include "msm_kms.h" 28 29 #define DSI_RESET_TOGGLE_DELAY_MS 20 30 31 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 32 { 33 u32 ver; 34 35 if (!major || !minor) 36 return -EINVAL; 37 38 /* 39 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 40 * makes all other registers 4-byte shifted down. 41 * 42 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 43 * older, we read the DSI_VERSION register without any shift(offset 44 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 45 * the case of DSI6G, this has to be zero (the offset points to a 46 * scratch register which we never touch) 47 */ 48 49 ver = msm_readl(base + REG_DSI_VERSION); 50 if (ver) { 51 /* older dsi host, there is no register shift */ 52 ver = FIELD(ver, DSI_VERSION_MAJOR); 53 if (ver <= MSM_DSI_VER_MAJOR_V2) { 54 /* old versions */ 55 *major = ver; 56 *minor = 0; 57 return 0; 58 } else { 59 return -EINVAL; 60 } 61 } else { 62 /* 63 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 64 * registers are shifted down, read DSI_VERSION again with 65 * the shifted offset 66 */ 67 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 68 ver = FIELD(ver, DSI_VERSION_MAJOR); 69 if (ver == MSM_DSI_VER_MAJOR_6G) { 70 /* 6G version */ 71 *major = ver; 72 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 73 return 0; 74 } else { 75 return -EINVAL; 76 } 77 } 78 } 79 80 #define DSI_ERR_STATE_ACK 0x0000 81 #define DSI_ERR_STATE_TIMEOUT 0x0001 82 #define DSI_ERR_STATE_DLN0_PHY 0x0002 83 #define DSI_ERR_STATE_FIFO 0x0004 84 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 85 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 86 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 87 88 #define DSI_CLK_CTRL_ENABLE_CLKS \ 89 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 90 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 91 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 92 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 93 94 struct msm_dsi_host { 95 struct mipi_dsi_host base; 96 97 struct platform_device *pdev; 98 struct drm_device *dev; 99 100 int id; 101 102 void __iomem *ctrl_base; 103 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; 104 105 struct clk *bus_clks[DSI_BUS_CLK_MAX]; 106 107 struct clk *byte_clk; 108 struct clk *esc_clk; 109 struct clk *pixel_clk; 110 struct clk *byte_clk_src; 111 struct clk *pixel_clk_src; 112 struct clk *byte_intf_clk; 113 114 u32 byte_clk_rate; 115 u32 pixel_clk_rate; 116 u32 esc_clk_rate; 117 118 /* DSI v2 specific clocks */ 119 struct clk *src_clk; 120 struct clk *esc_clk_src; 121 struct clk *dsi_clk_src; 122 123 u32 src_clk_rate; 124 125 struct gpio_desc *disp_en_gpio; 126 struct gpio_desc *te_gpio; 127 128 const struct msm_dsi_cfg_handler *cfg_hnd; 129 130 struct completion dma_comp; 131 struct completion video_comp; 132 struct mutex dev_mutex; 133 struct mutex cmd_mutex; 134 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 135 136 u32 err_work_state; 137 struct work_struct err_work; 138 struct work_struct hpd_work; 139 struct workqueue_struct *workqueue; 140 141 /* DSI 6G TX buffer*/ 142 struct drm_gem_object *tx_gem_obj; 143 144 /* DSI v2 TX buffer */ 145 void *tx_buf; 146 dma_addr_t tx_buf_paddr; 147 148 int tx_size; 149 150 u8 *rx_buf; 151 152 struct regmap *sfpb; 153 154 struct drm_display_mode *mode; 155 156 /* connected device info */ 157 struct device_node *device_node; 158 unsigned int channel; 159 unsigned int lanes; 160 enum mipi_dsi_pixel_format format; 161 unsigned long mode_flags; 162 163 /* lane data parsed via DT */ 164 int dlane_swap; 165 int num_data_lanes; 166 167 u32 dma_cmd_ctrl_restore; 168 169 bool registered; 170 bool power_on; 171 bool enabled; 172 int irq; 173 }; 174 175 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 176 { 177 switch (fmt) { 178 case MIPI_DSI_FMT_RGB565: return 16; 179 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 180 case MIPI_DSI_FMT_RGB666: 181 case MIPI_DSI_FMT_RGB888: 182 default: return 24; 183 } 184 } 185 186 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 187 { 188 return msm_readl(msm_host->ctrl_base + reg); 189 } 190 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 191 { 192 msm_writel(data, msm_host->ctrl_base + reg); 193 } 194 195 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); 196 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); 197 198 static const struct msm_dsi_cfg_handler *dsi_get_config( 199 struct msm_dsi_host *msm_host) 200 { 201 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 202 struct device *dev = &msm_host->pdev->dev; 203 struct regulator *gdsc_reg; 204 struct clk *ahb_clk; 205 int ret; 206 u32 major = 0, minor = 0; 207 208 gdsc_reg = regulator_get(dev, "gdsc"); 209 if (IS_ERR(gdsc_reg)) { 210 pr_err("%s: cannot get gdsc\n", __func__); 211 goto exit; 212 } 213 214 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 215 if (IS_ERR(ahb_clk)) { 216 pr_err("%s: cannot get interface clock\n", __func__); 217 goto put_gdsc; 218 } 219 220 pm_runtime_get_sync(dev); 221 222 ret = regulator_enable(gdsc_reg); 223 if (ret) { 224 pr_err("%s: unable to enable gdsc\n", __func__); 225 goto put_gdsc; 226 } 227 228 ret = clk_prepare_enable(ahb_clk); 229 if (ret) { 230 pr_err("%s: unable to enable ahb_clk\n", __func__); 231 goto disable_gdsc; 232 } 233 234 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 235 if (ret) { 236 pr_err("%s: Invalid version\n", __func__); 237 goto disable_clks; 238 } 239 240 cfg_hnd = msm_dsi_cfg_get(major, minor); 241 242 DBG("%s: Version %x:%x\n", __func__, major, minor); 243 244 disable_clks: 245 clk_disable_unprepare(ahb_clk); 246 disable_gdsc: 247 regulator_disable(gdsc_reg); 248 pm_runtime_put_sync(dev); 249 put_gdsc: 250 regulator_put(gdsc_reg); 251 exit: 252 return cfg_hnd; 253 } 254 255 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 256 { 257 return container_of(host, struct msm_dsi_host, base); 258 } 259 260 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) 261 { 262 struct regulator_bulk_data *s = msm_host->supplies; 263 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 264 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 265 int i; 266 267 DBG(""); 268 for (i = num - 1; i >= 0; i--) 269 if (regs[i].disable_load >= 0) 270 regulator_set_load(s[i].consumer, 271 regs[i].disable_load); 272 273 regulator_bulk_disable(num, s); 274 } 275 276 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) 277 { 278 struct regulator_bulk_data *s = msm_host->supplies; 279 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 280 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 281 int ret, i; 282 283 DBG(""); 284 for (i = 0; i < num; i++) { 285 if (regs[i].enable_load >= 0) { 286 ret = regulator_set_load(s[i].consumer, 287 regs[i].enable_load); 288 if (ret < 0) { 289 pr_err("regulator %d set op mode failed, %d\n", 290 i, ret); 291 goto fail; 292 } 293 } 294 } 295 296 ret = regulator_bulk_enable(num, s); 297 if (ret < 0) { 298 pr_err("regulator enable failed, %d\n", ret); 299 goto fail; 300 } 301 302 return 0; 303 304 fail: 305 for (i--; i >= 0; i--) 306 regulator_set_load(s[i].consumer, regs[i].disable_load); 307 return ret; 308 } 309 310 static int dsi_regulator_init(struct msm_dsi_host *msm_host) 311 { 312 struct regulator_bulk_data *s = msm_host->supplies; 313 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 314 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 315 int i, ret; 316 317 for (i = 0; i < num; i++) 318 s[i].supply = regs[i].name; 319 320 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); 321 if (ret < 0) { 322 pr_err("%s: failed to init regulator, ret=%d\n", 323 __func__, ret); 324 return ret; 325 } 326 327 return 0; 328 } 329 330 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 331 { 332 struct platform_device *pdev = msm_host->pdev; 333 int ret = 0; 334 335 msm_host->src_clk = msm_clk_get(pdev, "src"); 336 337 if (IS_ERR(msm_host->src_clk)) { 338 ret = PTR_ERR(msm_host->src_clk); 339 pr_err("%s: can't find src clock. ret=%d\n", 340 __func__, ret); 341 msm_host->src_clk = NULL; 342 return ret; 343 } 344 345 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 346 if (!msm_host->esc_clk_src) { 347 ret = -ENODEV; 348 pr_err("%s: can't get esc clock parent. ret=%d\n", 349 __func__, ret); 350 return ret; 351 } 352 353 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 354 if (!msm_host->dsi_clk_src) { 355 ret = -ENODEV; 356 pr_err("%s: can't get src clock parent. ret=%d\n", 357 __func__, ret); 358 } 359 360 return ret; 361 } 362 363 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 364 { 365 struct platform_device *pdev = msm_host->pdev; 366 int ret = 0; 367 368 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 369 if (IS_ERR(msm_host->byte_intf_clk)) { 370 ret = PTR_ERR(msm_host->byte_intf_clk); 371 pr_err("%s: can't find byte_intf clock. ret=%d\n", 372 __func__, ret); 373 } 374 375 return ret; 376 } 377 378 static int dsi_clk_init(struct msm_dsi_host *msm_host) 379 { 380 struct platform_device *pdev = msm_host->pdev; 381 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 382 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 383 int i, ret = 0; 384 385 /* get bus clocks */ 386 for (i = 0; i < cfg->num_bus_clks; i++) { 387 msm_host->bus_clks[i] = msm_clk_get(pdev, 388 cfg->bus_clk_names[i]); 389 if (IS_ERR(msm_host->bus_clks[i])) { 390 ret = PTR_ERR(msm_host->bus_clks[i]); 391 pr_err("%s: Unable to get %s clock, ret = %d\n", 392 __func__, cfg->bus_clk_names[i], ret); 393 goto exit; 394 } 395 } 396 397 /* get link and source clocks */ 398 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 399 if (IS_ERR(msm_host->byte_clk)) { 400 ret = PTR_ERR(msm_host->byte_clk); 401 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 402 __func__, ret); 403 msm_host->byte_clk = NULL; 404 goto exit; 405 } 406 407 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 408 if (IS_ERR(msm_host->pixel_clk)) { 409 ret = PTR_ERR(msm_host->pixel_clk); 410 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 411 __func__, ret); 412 msm_host->pixel_clk = NULL; 413 goto exit; 414 } 415 416 msm_host->esc_clk = msm_clk_get(pdev, "core"); 417 if (IS_ERR(msm_host->esc_clk)) { 418 ret = PTR_ERR(msm_host->esc_clk); 419 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 420 __func__, ret); 421 msm_host->esc_clk = NULL; 422 goto exit; 423 } 424 425 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 426 if (IS_ERR(msm_host->byte_clk_src)) { 427 ret = PTR_ERR(msm_host->byte_clk_src); 428 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 429 goto exit; 430 } 431 432 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 433 if (IS_ERR(msm_host->pixel_clk_src)) { 434 ret = PTR_ERR(msm_host->pixel_clk_src); 435 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 436 goto exit; 437 } 438 439 if (cfg_hnd->ops->clk_init_ver) 440 ret = cfg_hnd->ops->clk_init_ver(msm_host); 441 exit: 442 return ret; 443 } 444 445 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host) 446 { 447 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 448 int i, ret; 449 450 DBG("id=%d", msm_host->id); 451 452 for (i = 0; i < cfg->num_bus_clks; i++) { 453 ret = clk_prepare_enable(msm_host->bus_clks[i]); 454 if (ret) { 455 pr_err("%s: failed to enable bus clock %d ret %d\n", 456 __func__, i, ret); 457 goto err; 458 } 459 } 460 461 return 0; 462 err: 463 for (; i > 0; i--) 464 clk_disable_unprepare(msm_host->bus_clks[i]); 465 466 return ret; 467 } 468 469 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host) 470 { 471 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 472 int i; 473 474 DBG(""); 475 476 for (i = cfg->num_bus_clks - 1; i >= 0; i--) 477 clk_disable_unprepare(msm_host->bus_clks[i]); 478 } 479 480 int msm_dsi_runtime_suspend(struct device *dev) 481 { 482 struct platform_device *pdev = to_platform_device(dev); 483 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 484 struct mipi_dsi_host *host = msm_dsi->host; 485 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 486 487 if (!msm_host->cfg_hnd) 488 return 0; 489 490 dsi_bus_clk_disable(msm_host); 491 492 return 0; 493 } 494 495 int msm_dsi_runtime_resume(struct device *dev) 496 { 497 struct platform_device *pdev = to_platform_device(dev); 498 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 499 struct mipi_dsi_host *host = msm_dsi->host; 500 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 501 502 if (!msm_host->cfg_hnd) 503 return 0; 504 505 return dsi_bus_clk_enable(msm_host); 506 } 507 508 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 509 { 510 int ret; 511 512 DBG("Set clk rates: pclk=%d, byteclk=%d", 513 msm_host->mode->clock, msm_host->byte_clk_rate); 514 515 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 516 if (ret) { 517 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 518 goto error; 519 } 520 521 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 522 if (ret) { 523 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 524 goto error; 525 } 526 527 if (msm_host->byte_intf_clk) { 528 ret = clk_set_rate(msm_host->byte_intf_clk, 529 msm_host->byte_clk_rate / 2); 530 if (ret) { 531 pr_err("%s: Failed to set rate byte intf clk, %d\n", 532 __func__, ret); 533 goto error; 534 } 535 } 536 537 ret = clk_prepare_enable(msm_host->esc_clk); 538 if (ret) { 539 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 540 goto error; 541 } 542 543 ret = clk_prepare_enable(msm_host->byte_clk); 544 if (ret) { 545 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 546 goto byte_clk_err; 547 } 548 549 ret = clk_prepare_enable(msm_host->pixel_clk); 550 if (ret) { 551 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 552 goto pixel_clk_err; 553 } 554 555 if (msm_host->byte_intf_clk) { 556 ret = clk_prepare_enable(msm_host->byte_intf_clk); 557 if (ret) { 558 pr_err("%s: Failed to enable byte intf clk\n", 559 __func__); 560 goto byte_intf_clk_err; 561 } 562 } 563 564 return 0; 565 566 byte_intf_clk_err: 567 clk_disable_unprepare(msm_host->pixel_clk); 568 pixel_clk_err: 569 clk_disable_unprepare(msm_host->byte_clk); 570 byte_clk_err: 571 clk_disable_unprepare(msm_host->esc_clk); 572 error: 573 return ret; 574 } 575 576 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 577 { 578 int ret; 579 580 DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d", 581 msm_host->mode->clock, msm_host->byte_clk_rate, 582 msm_host->esc_clk_rate, msm_host->src_clk_rate); 583 584 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 585 if (ret) { 586 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 587 goto error; 588 } 589 590 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 591 if (ret) { 592 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 593 goto error; 594 } 595 596 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 597 if (ret) { 598 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 599 goto error; 600 } 601 602 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 603 if (ret) { 604 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 605 goto error; 606 } 607 608 ret = clk_prepare_enable(msm_host->byte_clk); 609 if (ret) { 610 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 611 goto error; 612 } 613 614 ret = clk_prepare_enable(msm_host->esc_clk); 615 if (ret) { 616 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 617 goto esc_clk_err; 618 } 619 620 ret = clk_prepare_enable(msm_host->src_clk); 621 if (ret) { 622 pr_err("%s: Failed to enable dsi src clk\n", __func__); 623 goto src_clk_err; 624 } 625 626 ret = clk_prepare_enable(msm_host->pixel_clk); 627 if (ret) { 628 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 629 goto pixel_clk_err; 630 } 631 632 return 0; 633 634 pixel_clk_err: 635 clk_disable_unprepare(msm_host->src_clk); 636 src_clk_err: 637 clk_disable_unprepare(msm_host->esc_clk); 638 esc_clk_err: 639 clk_disable_unprepare(msm_host->byte_clk); 640 error: 641 return ret; 642 } 643 644 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 645 { 646 clk_disable_unprepare(msm_host->esc_clk); 647 clk_disable_unprepare(msm_host->pixel_clk); 648 if (msm_host->byte_intf_clk) 649 clk_disable_unprepare(msm_host->byte_intf_clk); 650 clk_disable_unprepare(msm_host->byte_clk); 651 } 652 653 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 654 { 655 clk_disable_unprepare(msm_host->pixel_clk); 656 clk_disable_unprepare(msm_host->src_clk); 657 clk_disable_unprepare(msm_host->esc_clk); 658 clk_disable_unprepare(msm_host->byte_clk); 659 } 660 661 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi) 662 { 663 struct drm_display_mode *mode = msm_host->mode; 664 u32 pclk_rate; 665 666 pclk_rate = mode->clock * 1000; 667 668 /* 669 * For dual DSI mode, the current DRM mode has the complete width of the 670 * panel. Since, the complete panel is driven by two DSI controllers, 671 * the clock rates have to be split between the two dsi controllers. 672 * Adjust the byte and pixel clock rates for each dsi host accordingly. 673 */ 674 if (is_dual_dsi) 675 pclk_rate /= 2; 676 677 return pclk_rate; 678 } 679 680 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi) 681 { 682 u8 lanes = msm_host->lanes; 683 u32 bpp = dsi_get_bpp(msm_host->format); 684 u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi); 685 u64 pclk_bpp = (u64)pclk_rate * bpp; 686 687 if (lanes == 0) { 688 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 689 lanes = 1; 690 } 691 692 do_div(pclk_bpp, (8 * lanes)); 693 694 msm_host->pixel_clk_rate = pclk_rate; 695 msm_host->byte_clk_rate = pclk_bpp; 696 697 DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate, 698 msm_host->byte_clk_rate); 699 700 } 701 702 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi) 703 { 704 if (!msm_host->mode) { 705 pr_err("%s: mode not set\n", __func__); 706 return -EINVAL; 707 } 708 709 dsi_calc_pclk(msm_host, is_dual_dsi); 710 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 711 return 0; 712 } 713 714 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi) 715 { 716 u32 bpp = dsi_get_bpp(msm_host->format); 717 u64 pclk_bpp; 718 unsigned int esc_mhz, esc_div; 719 unsigned long byte_mhz; 720 721 dsi_calc_pclk(msm_host, is_dual_dsi); 722 723 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp; 724 do_div(pclk_bpp, 8); 725 msm_host->src_clk_rate = pclk_bpp; 726 727 /* 728 * esc clock is byte clock followed by a 4 bit divider, 729 * we need to find an escape clock frequency within the 730 * mipi DSI spec range within the maximum divider limit 731 * We iterate here between an escape clock frequencey 732 * between 20 Mhz to 5 Mhz and pick up the first one 733 * that can be supported by our divider 734 */ 735 736 byte_mhz = msm_host->byte_clk_rate / 1000000; 737 738 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 739 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 740 741 /* 742 * TODO: Ideally, we shouldn't know what sort of divider 743 * is available in mmss_cc, we're just assuming that 744 * it'll always be a 4 bit divider. Need to come up with 745 * a better way here. 746 */ 747 if (esc_div >= 1 && esc_div <= 16) 748 break; 749 } 750 751 if (esc_mhz < 5) 752 return -EINVAL; 753 754 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 755 756 DBG("esc=%d, src=%d", msm_host->esc_clk_rate, 757 msm_host->src_clk_rate); 758 759 return 0; 760 } 761 762 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 763 { 764 u32 intr; 765 unsigned long flags; 766 767 spin_lock_irqsave(&msm_host->intr_lock, flags); 768 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 769 770 if (enable) 771 intr |= mask; 772 else 773 intr &= ~mask; 774 775 DBG("intr=%x enable=%d", intr, enable); 776 777 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 778 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 779 } 780 781 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 782 { 783 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 784 return BURST_MODE; 785 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 786 return NON_BURST_SYNCH_PULSE; 787 788 return NON_BURST_SYNCH_EVENT; 789 } 790 791 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 792 const enum mipi_dsi_pixel_format mipi_fmt) 793 { 794 switch (mipi_fmt) { 795 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 796 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 797 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 798 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 799 default: return VID_DST_FORMAT_RGB888; 800 } 801 } 802 803 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 804 const enum mipi_dsi_pixel_format mipi_fmt) 805 { 806 switch (mipi_fmt) { 807 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 808 case MIPI_DSI_FMT_RGB666_PACKED: 809 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 810 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 811 default: return CMD_DST_FORMAT_RGB888; 812 } 813 } 814 815 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 816 struct msm_dsi_phy_shared_timings *phy_shared_timings) 817 { 818 u32 flags = msm_host->mode_flags; 819 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 820 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 821 u32 data = 0; 822 823 if (!enable) { 824 dsi_write(msm_host, REG_DSI_CTRL, 0); 825 return; 826 } 827 828 if (flags & MIPI_DSI_MODE_VIDEO) { 829 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 830 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 831 if (flags & MIPI_DSI_MODE_VIDEO_HFP) 832 data |= DSI_VID_CFG0_HFP_POWER_STOP; 833 if (flags & MIPI_DSI_MODE_VIDEO_HBP) 834 data |= DSI_VID_CFG0_HBP_POWER_STOP; 835 if (flags & MIPI_DSI_MODE_VIDEO_HSA) 836 data |= DSI_VID_CFG0_HSA_POWER_STOP; 837 /* Always set low power stop mode for BLLP 838 * to let command engine send packets 839 */ 840 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 841 DSI_VID_CFG0_BLLP_POWER_STOP; 842 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 843 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 844 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 845 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 846 847 /* Do not swap RGB colors */ 848 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 849 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 850 } else { 851 /* Do not swap RGB colors */ 852 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 853 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 854 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 855 856 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 857 DSI_CMD_CFG1_WR_MEM_CONTINUE( 858 MIPI_DCS_WRITE_MEMORY_CONTINUE); 859 /* Always insert DCS command */ 860 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 861 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 862 } 863 864 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 865 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 866 DSI_CMD_DMA_CTRL_LOW_POWER); 867 868 data = 0; 869 /* Always assume dedicated TE pin */ 870 data |= DSI_TRIG_CTRL_TE; 871 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 872 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 873 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 874 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 875 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 876 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 877 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 878 879 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 880 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 881 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 882 883 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 884 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 885 phy_shared_timings->clk_pre_inc_by_2) 886 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 887 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 888 889 data = 0; 890 if (!(flags & MIPI_DSI_MODE_EOT_PACKET)) 891 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 892 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 893 894 /* allow only ack-err-status to generate interrupt */ 895 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 896 897 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 898 899 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 900 901 data = DSI_CTRL_CLK_EN; 902 903 DBG("lane number=%d", msm_host->lanes); 904 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 905 906 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 907 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 908 909 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) 910 dsi_write(msm_host, REG_DSI_LANE_CTRL, 911 DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 912 913 data |= DSI_CTRL_ENABLE; 914 915 dsi_write(msm_host, REG_DSI_CTRL, data); 916 } 917 918 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi) 919 { 920 struct drm_display_mode *mode = msm_host->mode; 921 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 922 u32 h_total = mode->htotal; 923 u32 v_total = mode->vtotal; 924 u32 hs_end = mode->hsync_end - mode->hsync_start; 925 u32 vs_end = mode->vsync_end - mode->vsync_start; 926 u32 ha_start = h_total - mode->hsync_start; 927 u32 ha_end = ha_start + mode->hdisplay; 928 u32 va_start = v_total - mode->vsync_start; 929 u32 va_end = va_start + mode->vdisplay; 930 u32 hdisplay = mode->hdisplay; 931 u32 wc; 932 933 DBG(""); 934 935 /* 936 * For dual DSI mode, the current DRM mode has 937 * the complete width of the panel. Since, the complete 938 * panel is driven by two DSI controllers, the horizontal 939 * timings have to be split between the two dsi controllers. 940 * Adjust the DSI host timing values accordingly. 941 */ 942 if (is_dual_dsi) { 943 h_total /= 2; 944 hs_end /= 2; 945 ha_start /= 2; 946 ha_end /= 2; 947 hdisplay /= 2; 948 } 949 950 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 951 dsi_write(msm_host, REG_DSI_ACTIVE_H, 952 DSI_ACTIVE_H_START(ha_start) | 953 DSI_ACTIVE_H_END(ha_end)); 954 dsi_write(msm_host, REG_DSI_ACTIVE_V, 955 DSI_ACTIVE_V_START(va_start) | 956 DSI_ACTIVE_V_END(va_end)); 957 dsi_write(msm_host, REG_DSI_TOTAL, 958 DSI_TOTAL_H_TOTAL(h_total - 1) | 959 DSI_TOTAL_V_TOTAL(v_total - 1)); 960 961 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 962 DSI_ACTIVE_HSYNC_START(hs_start) | 963 DSI_ACTIVE_HSYNC_END(hs_end)); 964 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 965 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 966 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 967 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 968 } else { /* command mode */ 969 /* image data and 1 byte write_memory_start cmd */ 970 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 971 972 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL, 973 DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) | 974 DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL( 975 msm_host->channel) | 976 DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE( 977 MIPI_DSI_DCS_LONG_WRITE)); 978 979 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL, 980 DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) | 981 DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay)); 982 } 983 } 984 985 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 986 { 987 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 988 wmb(); /* clocks need to be enabled before reset */ 989 990 dsi_write(msm_host, REG_DSI_RESET, 1); 991 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 992 dsi_write(msm_host, REG_DSI_RESET, 0); 993 } 994 995 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 996 bool video_mode, bool enable) 997 { 998 u32 dsi_ctrl; 999 1000 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1001 1002 if (!enable) { 1003 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1004 DSI_CTRL_CMD_MODE_EN); 1005 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1006 DSI_IRQ_MASK_VIDEO_DONE, 0); 1007 } else { 1008 if (video_mode) { 1009 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1010 } else { /* command mode */ 1011 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1012 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1013 } 1014 dsi_ctrl |= DSI_CTRL_ENABLE; 1015 } 1016 1017 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1018 } 1019 1020 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1021 { 1022 u32 data; 1023 1024 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1025 1026 if (mode == 0) 1027 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1028 else 1029 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1030 1031 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1032 } 1033 1034 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1035 { 1036 u32 ret = 0; 1037 struct device *dev = &msm_host->pdev->dev; 1038 1039 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1040 1041 reinit_completion(&msm_host->video_comp); 1042 1043 ret = wait_for_completion_timeout(&msm_host->video_comp, 1044 msecs_to_jiffies(70)); 1045 1046 if (ret == 0) 1047 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1048 1049 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1050 } 1051 1052 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1053 { 1054 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1055 return; 1056 1057 if (msm_host->power_on && msm_host->enabled) { 1058 dsi_wait4video_done(msm_host); 1059 /* delay 4 ms to skip BLLP */ 1060 usleep_range(2000, 4000); 1061 } 1062 } 1063 1064 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1065 { 1066 struct drm_device *dev = msm_host->dev; 1067 struct msm_drm_private *priv = dev->dev_private; 1068 uint64_t iova; 1069 u8 *data; 1070 1071 data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED, 1072 priv->kms->aspace, 1073 &msm_host->tx_gem_obj, &iova); 1074 1075 if (IS_ERR(data)) { 1076 msm_host->tx_gem_obj = NULL; 1077 return PTR_ERR(data); 1078 } 1079 1080 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1081 1082 msm_host->tx_size = msm_host->tx_gem_obj->size; 1083 1084 return 0; 1085 } 1086 1087 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1088 { 1089 struct drm_device *dev = msm_host->dev; 1090 1091 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1092 &msm_host->tx_buf_paddr, GFP_KERNEL); 1093 if (!msm_host->tx_buf) 1094 return -ENOMEM; 1095 1096 msm_host->tx_size = size; 1097 1098 return 0; 1099 } 1100 1101 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1102 { 1103 struct drm_device *dev = msm_host->dev; 1104 struct msm_drm_private *priv; 1105 1106 /* 1107 * This is possible if we're tearing down before we've had a chance to 1108 * fully initialize. A very real possibility if our probe is deferred, 1109 * in which case we'll hit msm_dsi_host_destroy() without having run 1110 * through the dsi_tx_buf_alloc(). 1111 */ 1112 if (!dev) 1113 return; 1114 1115 priv = dev->dev_private; 1116 if (msm_host->tx_gem_obj) { 1117 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1118 drm_gem_object_put_unlocked(msm_host->tx_gem_obj); 1119 msm_host->tx_gem_obj = NULL; 1120 } 1121 1122 if (msm_host->tx_buf) 1123 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1124 msm_host->tx_buf_paddr); 1125 } 1126 1127 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1128 { 1129 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1130 } 1131 1132 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1133 { 1134 return msm_host->tx_buf; 1135 } 1136 1137 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1138 { 1139 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1140 } 1141 1142 /* 1143 * prepare cmd buffer to be txed 1144 */ 1145 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1146 const struct mipi_dsi_msg *msg) 1147 { 1148 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1149 struct mipi_dsi_packet packet; 1150 int len; 1151 int ret; 1152 u8 *data; 1153 1154 ret = mipi_dsi_create_packet(&packet, msg); 1155 if (ret) { 1156 pr_err("%s: create packet failed, %d\n", __func__, ret); 1157 return ret; 1158 } 1159 len = (packet.size + 3) & (~0x3); 1160 1161 if (len > msm_host->tx_size) { 1162 pr_err("%s: packet size is too big\n", __func__); 1163 return -EINVAL; 1164 } 1165 1166 data = cfg_hnd->ops->tx_buf_get(msm_host); 1167 if (IS_ERR(data)) { 1168 ret = PTR_ERR(data); 1169 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1170 return ret; 1171 } 1172 1173 /* MSM specific command format in memory */ 1174 data[0] = packet.header[1]; 1175 data[1] = packet.header[2]; 1176 data[2] = packet.header[0]; 1177 data[3] = BIT(7); /* Last packet */ 1178 if (mipi_dsi_packet_format_is_long(msg->type)) 1179 data[3] |= BIT(6); 1180 if (msg->rx_buf && msg->rx_len) 1181 data[3] |= BIT(5); 1182 1183 /* Long packet */ 1184 if (packet.payload && packet.payload_length) 1185 memcpy(data + 4, packet.payload, packet.payload_length); 1186 1187 /* Append 0xff to the end */ 1188 if (packet.size < len) 1189 memset(data + packet.size, 0xff, len - packet.size); 1190 1191 if (cfg_hnd->ops->tx_buf_put) 1192 cfg_hnd->ops->tx_buf_put(msm_host); 1193 1194 return len; 1195 } 1196 1197 /* 1198 * dsi_short_read1_resp: 1 parameter 1199 */ 1200 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1201 { 1202 u8 *data = msg->rx_buf; 1203 if (data && (msg->rx_len >= 1)) { 1204 *data = buf[1]; /* strip out dcs type */ 1205 return 1; 1206 } else { 1207 pr_err("%s: read data does not match with rx_buf len %zu\n", 1208 __func__, msg->rx_len); 1209 return -EINVAL; 1210 } 1211 } 1212 1213 /* 1214 * dsi_short_read2_resp: 2 parameter 1215 */ 1216 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1217 { 1218 u8 *data = msg->rx_buf; 1219 if (data && (msg->rx_len >= 2)) { 1220 data[0] = buf[1]; /* strip out dcs type */ 1221 data[1] = buf[2]; 1222 return 2; 1223 } else { 1224 pr_err("%s: read data does not match with rx_buf len %zu\n", 1225 __func__, msg->rx_len); 1226 return -EINVAL; 1227 } 1228 } 1229 1230 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1231 { 1232 /* strip out 4 byte dcs header */ 1233 if (msg->rx_buf && msg->rx_len) 1234 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1235 1236 return msg->rx_len; 1237 } 1238 1239 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1240 { 1241 struct drm_device *dev = msm_host->dev; 1242 struct msm_drm_private *priv = dev->dev_private; 1243 1244 if (!dma_base) 1245 return -EINVAL; 1246 1247 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1248 priv->kms->aspace, dma_base); 1249 } 1250 1251 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1252 { 1253 if (!dma_base) 1254 return -EINVAL; 1255 1256 *dma_base = msm_host->tx_buf_paddr; 1257 return 0; 1258 } 1259 1260 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1261 { 1262 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1263 int ret; 1264 uint64_t dma_base; 1265 bool triggered; 1266 1267 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1268 if (ret) { 1269 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1270 return ret; 1271 } 1272 1273 reinit_completion(&msm_host->dma_comp); 1274 1275 dsi_wait4video_eng_busy(msm_host); 1276 1277 triggered = msm_dsi_manager_cmd_xfer_trigger( 1278 msm_host->id, dma_base, len); 1279 if (triggered) { 1280 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1281 msecs_to_jiffies(200)); 1282 DBG("ret=%d", ret); 1283 if (ret == 0) 1284 ret = -ETIMEDOUT; 1285 else 1286 ret = len; 1287 } else 1288 ret = len; 1289 1290 return ret; 1291 } 1292 1293 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1294 u8 *buf, int rx_byte, int pkt_size) 1295 { 1296 u32 *lp, *temp, data; 1297 int i, j = 0, cnt; 1298 u32 read_cnt; 1299 u8 reg[16]; 1300 int repeated_bytes = 0; 1301 int buf_offset = buf - msm_host->rx_buf; 1302 1303 lp = (u32 *)buf; 1304 temp = (u32 *)reg; 1305 cnt = (rx_byte + 3) >> 2; 1306 if (cnt > 4) 1307 cnt = 4; /* 4 x 32 bits registers only */ 1308 1309 if (rx_byte == 4) 1310 read_cnt = 4; 1311 else 1312 read_cnt = pkt_size + 6; 1313 1314 /* 1315 * In case of multiple reads from the panel, after the first read, there 1316 * is possibility that there are some bytes in the payload repeating in 1317 * the RDBK_DATA registers. Since we read all the parameters from the 1318 * panel right from the first byte for every pass. We need to skip the 1319 * repeating bytes and then append the new parameters to the rx buffer. 1320 */ 1321 if (read_cnt > 16) { 1322 int bytes_shifted; 1323 /* Any data more than 16 bytes will be shifted out. 1324 * The temp read buffer should already contain these bytes. 1325 * The remaining bytes in read buffer are the repeated bytes. 1326 */ 1327 bytes_shifted = read_cnt - 16; 1328 repeated_bytes = buf_offset - bytes_shifted; 1329 } 1330 1331 for (i = cnt - 1; i >= 0; i--) { 1332 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1333 *temp++ = ntohl(data); /* to host byte order */ 1334 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1335 } 1336 1337 for (i = repeated_bytes; i < 16; i++) 1338 buf[j++] = reg[i]; 1339 1340 return j; 1341 } 1342 1343 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1344 const struct mipi_dsi_msg *msg) 1345 { 1346 int len, ret; 1347 int bllp_len = msm_host->mode->hdisplay * 1348 dsi_get_bpp(msm_host->format) / 8; 1349 1350 len = dsi_cmd_dma_add(msm_host, msg); 1351 if (!len) { 1352 pr_err("%s: failed to add cmd type = 0x%x\n", 1353 __func__, msg->type); 1354 return -EINVAL; 1355 } 1356 1357 /* for video mode, do not send cmds more than 1358 * one pixel line, since it only transmit it 1359 * during BLLP. 1360 */ 1361 /* TODO: if the command is sent in LP mode, the bit rate is only 1362 * half of esc clk rate. In this case, if the video is already 1363 * actively streaming, we need to check more carefully if the 1364 * command can be fit into one BLLP. 1365 */ 1366 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1367 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1368 __func__, len); 1369 return -EINVAL; 1370 } 1371 1372 ret = dsi_cmd_dma_tx(msm_host, len); 1373 if (ret < len) { 1374 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", 1375 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); 1376 return -ECOMM; 1377 } 1378 1379 return len; 1380 } 1381 1382 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) 1383 { 1384 u32 data0, data1; 1385 1386 data0 = dsi_read(msm_host, REG_DSI_CTRL); 1387 data1 = data0; 1388 data1 &= ~DSI_CTRL_ENABLE; 1389 dsi_write(msm_host, REG_DSI_CTRL, data1); 1390 /* 1391 * dsi controller need to be disabled before 1392 * clocks turned on 1393 */ 1394 wmb(); 1395 1396 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1397 wmb(); /* make sure clocks enabled */ 1398 1399 /* dsi controller can only be reset while clocks are running */ 1400 dsi_write(msm_host, REG_DSI_RESET, 1); 1401 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1402 dsi_write(msm_host, REG_DSI_RESET, 0); 1403 wmb(); /* controller out of reset */ 1404 dsi_write(msm_host, REG_DSI_CTRL, data0); 1405 wmb(); /* make sure dsi controller enabled again */ 1406 } 1407 1408 static void dsi_hpd_worker(struct work_struct *work) 1409 { 1410 struct msm_dsi_host *msm_host = 1411 container_of(work, struct msm_dsi_host, hpd_work); 1412 1413 drm_helper_hpd_irq_event(msm_host->dev); 1414 } 1415 1416 static void dsi_err_worker(struct work_struct *work) 1417 { 1418 struct msm_dsi_host *msm_host = 1419 container_of(work, struct msm_dsi_host, err_work); 1420 u32 status = msm_host->err_work_state; 1421 1422 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1423 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1424 dsi_sw_reset_restore(msm_host); 1425 1426 /* It is safe to clear here because error irq is disabled. */ 1427 msm_host->err_work_state = 0; 1428 1429 /* enable dsi error interrupt */ 1430 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1431 } 1432 1433 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1434 { 1435 u32 status; 1436 1437 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1438 1439 if (status) { 1440 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1441 /* Writing of an extra 0 needed to clear error bits */ 1442 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1443 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1444 } 1445 } 1446 1447 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1448 { 1449 u32 status; 1450 1451 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1452 1453 if (status) { 1454 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1455 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1456 } 1457 } 1458 1459 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1460 { 1461 u32 status; 1462 1463 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1464 1465 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1466 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1467 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1468 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1469 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1470 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1471 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1472 } 1473 } 1474 1475 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1476 { 1477 u32 status; 1478 1479 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1480 1481 /* fifo underflow, overflow */ 1482 if (status) { 1483 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1484 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1485 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1486 msm_host->err_work_state |= 1487 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1488 } 1489 } 1490 1491 static void dsi_status(struct msm_dsi_host *msm_host) 1492 { 1493 u32 status; 1494 1495 status = dsi_read(msm_host, REG_DSI_STATUS0); 1496 1497 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1498 dsi_write(msm_host, REG_DSI_STATUS0, status); 1499 msm_host->err_work_state |= 1500 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1501 } 1502 } 1503 1504 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1505 { 1506 u32 status; 1507 1508 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1509 1510 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1511 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1512 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1513 } 1514 } 1515 1516 static void dsi_error(struct msm_dsi_host *msm_host) 1517 { 1518 /* disable dsi error interrupt */ 1519 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1520 1521 dsi_clk_status(msm_host); 1522 dsi_fifo_status(msm_host); 1523 dsi_ack_err_status(msm_host); 1524 dsi_timeout_status(msm_host); 1525 dsi_status(msm_host); 1526 dsi_dln0_phy_err(msm_host); 1527 1528 queue_work(msm_host->workqueue, &msm_host->err_work); 1529 } 1530 1531 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1532 { 1533 struct msm_dsi_host *msm_host = ptr; 1534 u32 isr; 1535 unsigned long flags; 1536 1537 if (!msm_host->ctrl_base) 1538 return IRQ_HANDLED; 1539 1540 spin_lock_irqsave(&msm_host->intr_lock, flags); 1541 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1542 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1543 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1544 1545 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1546 1547 if (isr & DSI_IRQ_ERROR) 1548 dsi_error(msm_host); 1549 1550 if (isr & DSI_IRQ_VIDEO_DONE) 1551 complete(&msm_host->video_comp); 1552 1553 if (isr & DSI_IRQ_CMD_DMA_DONE) 1554 complete(&msm_host->dma_comp); 1555 1556 return IRQ_HANDLED; 1557 } 1558 1559 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1560 struct device *panel_device) 1561 { 1562 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1563 "disp-enable", 1564 GPIOD_OUT_LOW); 1565 if (IS_ERR(msm_host->disp_en_gpio)) { 1566 DBG("cannot get disp-enable-gpios %ld", 1567 PTR_ERR(msm_host->disp_en_gpio)); 1568 return PTR_ERR(msm_host->disp_en_gpio); 1569 } 1570 1571 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1572 GPIOD_IN); 1573 if (IS_ERR(msm_host->te_gpio)) { 1574 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1575 return PTR_ERR(msm_host->te_gpio); 1576 } 1577 1578 return 0; 1579 } 1580 1581 static int dsi_host_attach(struct mipi_dsi_host *host, 1582 struct mipi_dsi_device *dsi) 1583 { 1584 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1585 int ret; 1586 1587 if (dsi->lanes > msm_host->num_data_lanes) 1588 return -EINVAL; 1589 1590 msm_host->channel = dsi->channel; 1591 msm_host->lanes = dsi->lanes; 1592 msm_host->format = dsi->format; 1593 msm_host->mode_flags = dsi->mode_flags; 1594 1595 /* Some gpios defined in panel DT need to be controlled by host */ 1596 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1597 if (ret) 1598 return ret; 1599 1600 DBG("id=%d", msm_host->id); 1601 if (msm_host->dev) 1602 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1603 1604 return 0; 1605 } 1606 1607 static int dsi_host_detach(struct mipi_dsi_host *host, 1608 struct mipi_dsi_device *dsi) 1609 { 1610 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1611 1612 msm_host->device_node = NULL; 1613 1614 DBG("id=%d", msm_host->id); 1615 if (msm_host->dev) 1616 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1617 1618 return 0; 1619 } 1620 1621 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1622 const struct mipi_dsi_msg *msg) 1623 { 1624 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1625 int ret; 1626 1627 if (!msg || !msm_host->power_on) 1628 return -EINVAL; 1629 1630 mutex_lock(&msm_host->cmd_mutex); 1631 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1632 mutex_unlock(&msm_host->cmd_mutex); 1633 1634 return ret; 1635 } 1636 1637 static struct mipi_dsi_host_ops dsi_host_ops = { 1638 .attach = dsi_host_attach, 1639 .detach = dsi_host_detach, 1640 .transfer = dsi_host_transfer, 1641 }; 1642 1643 /* 1644 * List of supported physical to logical lane mappings. 1645 * For example, the 2nd entry represents the following mapping: 1646 * 1647 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1648 */ 1649 static const int supported_data_lane_swaps[][4] = { 1650 { 0, 1, 2, 3 }, 1651 { 3, 0, 1, 2 }, 1652 { 2, 3, 0, 1 }, 1653 { 1, 2, 3, 0 }, 1654 { 0, 3, 2, 1 }, 1655 { 1, 0, 3, 2 }, 1656 { 2, 1, 0, 3 }, 1657 { 3, 2, 1, 0 }, 1658 }; 1659 1660 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1661 struct device_node *ep) 1662 { 1663 struct device *dev = &msm_host->pdev->dev; 1664 struct property *prop; 1665 u32 lane_map[4]; 1666 int ret, i, len, num_lanes; 1667 1668 prop = of_find_property(ep, "data-lanes", &len); 1669 if (!prop) { 1670 DRM_DEV_DEBUG(dev, 1671 "failed to find data lane mapping, using default\n"); 1672 return 0; 1673 } 1674 1675 num_lanes = len / sizeof(u32); 1676 1677 if (num_lanes < 1 || num_lanes > 4) { 1678 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1679 return -EINVAL; 1680 } 1681 1682 msm_host->num_data_lanes = num_lanes; 1683 1684 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1685 num_lanes); 1686 if (ret) { 1687 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1688 return ret; 1689 } 1690 1691 /* 1692 * compare DT specified physical-logical lane mappings with the ones 1693 * supported by hardware 1694 */ 1695 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1696 const int *swap = supported_data_lane_swaps[i]; 1697 int j; 1698 1699 /* 1700 * the data-lanes array we get from DT has a logical->physical 1701 * mapping. The "data lane swap" register field represents 1702 * supported configurations in a physical->logical mapping. 1703 * Translate the DT mapping to what we understand and find a 1704 * configuration that works. 1705 */ 1706 for (j = 0; j < num_lanes; j++) { 1707 if (lane_map[j] < 0 || lane_map[j] > 3) 1708 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1709 lane_map[j]); 1710 1711 if (swap[lane_map[j]] != j) 1712 break; 1713 } 1714 1715 if (j == num_lanes) { 1716 msm_host->dlane_swap = i; 1717 return 0; 1718 } 1719 } 1720 1721 return -EINVAL; 1722 } 1723 1724 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1725 { 1726 struct device *dev = &msm_host->pdev->dev; 1727 struct device_node *np = dev->of_node; 1728 struct device_node *endpoint, *device_node; 1729 int ret = 0; 1730 1731 /* 1732 * Get the endpoint of the output port of the DSI host. In our case, 1733 * this is mapped to port number with reg = 1. Don't return an error if 1734 * the remote endpoint isn't defined. It's possible that there is 1735 * nothing connected to the dsi output. 1736 */ 1737 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1738 if (!endpoint) { 1739 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1740 return 0; 1741 } 1742 1743 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1744 if (ret) { 1745 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1746 __func__, ret); 1747 ret = -EINVAL; 1748 goto err; 1749 } 1750 1751 /* Get panel node from the output port's endpoint data */ 1752 device_node = of_graph_get_remote_node(np, 1, 0); 1753 if (!device_node) { 1754 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__); 1755 ret = -ENODEV; 1756 goto err; 1757 } 1758 1759 msm_host->device_node = device_node; 1760 1761 if (of_property_read_bool(np, "syscon-sfpb")) { 1762 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1763 "syscon-sfpb"); 1764 if (IS_ERR(msm_host->sfpb)) { 1765 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1766 __func__); 1767 ret = PTR_ERR(msm_host->sfpb); 1768 } 1769 } 1770 1771 of_node_put(device_node); 1772 1773 err: 1774 of_node_put(endpoint); 1775 1776 return ret; 1777 } 1778 1779 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1780 { 1781 struct platform_device *pdev = msm_host->pdev; 1782 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1783 struct resource *res; 1784 int i; 1785 1786 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1787 if (!res) 1788 return -EINVAL; 1789 1790 for (i = 0; i < cfg->num_dsi; i++) { 1791 if (cfg->io_start[i] == res->start) 1792 return i; 1793 } 1794 1795 return -EINVAL; 1796 } 1797 1798 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1799 { 1800 struct msm_dsi_host *msm_host = NULL; 1801 struct platform_device *pdev = msm_dsi->pdev; 1802 int ret; 1803 1804 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1805 if (!msm_host) { 1806 pr_err("%s: FAILED: cannot alloc dsi host\n", 1807 __func__); 1808 ret = -ENOMEM; 1809 goto fail; 1810 } 1811 1812 msm_host->pdev = pdev; 1813 msm_dsi->host = &msm_host->base; 1814 1815 ret = dsi_host_parse_dt(msm_host); 1816 if (ret) { 1817 pr_err("%s: failed to parse dt\n", __func__); 1818 goto fail; 1819 } 1820 1821 msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL"); 1822 if (IS_ERR(msm_host->ctrl_base)) { 1823 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1824 ret = PTR_ERR(msm_host->ctrl_base); 1825 goto fail; 1826 } 1827 1828 pm_runtime_enable(&pdev->dev); 1829 1830 msm_host->cfg_hnd = dsi_get_config(msm_host); 1831 if (!msm_host->cfg_hnd) { 1832 ret = -EINVAL; 1833 pr_err("%s: get config failed\n", __func__); 1834 goto fail; 1835 } 1836 1837 msm_host->id = dsi_host_get_id(msm_host); 1838 if (msm_host->id < 0) { 1839 ret = msm_host->id; 1840 pr_err("%s: unable to identify DSI host index\n", __func__); 1841 goto fail; 1842 } 1843 1844 /* fixup base address by io offset */ 1845 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset; 1846 1847 ret = dsi_regulator_init(msm_host); 1848 if (ret) { 1849 pr_err("%s: regulator init failed\n", __func__); 1850 goto fail; 1851 } 1852 1853 ret = dsi_clk_init(msm_host); 1854 if (ret) { 1855 pr_err("%s: unable to initialize dsi clks\n", __func__); 1856 goto fail; 1857 } 1858 1859 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1860 if (!msm_host->rx_buf) { 1861 ret = -ENOMEM; 1862 pr_err("%s: alloc rx temp buf failed\n", __func__); 1863 goto fail; 1864 } 1865 1866 init_completion(&msm_host->dma_comp); 1867 init_completion(&msm_host->video_comp); 1868 mutex_init(&msm_host->dev_mutex); 1869 mutex_init(&msm_host->cmd_mutex); 1870 spin_lock_init(&msm_host->intr_lock); 1871 1872 /* setup workqueue */ 1873 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1874 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1875 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker); 1876 1877 msm_dsi->id = msm_host->id; 1878 1879 DBG("Dsi Host %d initialized", msm_host->id); 1880 return 0; 1881 1882 fail: 1883 return ret; 1884 } 1885 1886 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1887 { 1888 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1889 1890 DBG(""); 1891 dsi_tx_buf_free(msm_host); 1892 if (msm_host->workqueue) { 1893 flush_workqueue(msm_host->workqueue); 1894 destroy_workqueue(msm_host->workqueue); 1895 msm_host->workqueue = NULL; 1896 } 1897 1898 mutex_destroy(&msm_host->cmd_mutex); 1899 mutex_destroy(&msm_host->dev_mutex); 1900 1901 pm_runtime_disable(&msm_host->pdev->dev); 1902 } 1903 1904 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1905 struct drm_device *dev) 1906 { 1907 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1908 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1909 struct platform_device *pdev = msm_host->pdev; 1910 int ret; 1911 1912 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1913 if (msm_host->irq < 0) { 1914 ret = msm_host->irq; 1915 DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret); 1916 return ret; 1917 } 1918 1919 ret = devm_request_irq(&pdev->dev, msm_host->irq, 1920 dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 1921 "dsi_isr", msm_host); 1922 if (ret < 0) { 1923 DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n", 1924 msm_host->irq, ret); 1925 return ret; 1926 } 1927 1928 msm_host->dev = dev; 1929 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1930 if (ret) { 1931 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1932 return ret; 1933 } 1934 1935 return 0; 1936 } 1937 1938 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer) 1939 { 1940 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1941 int ret; 1942 1943 /* Register mipi dsi host */ 1944 if (!msm_host->registered) { 1945 host->dev = &msm_host->pdev->dev; 1946 host->ops = &dsi_host_ops; 1947 ret = mipi_dsi_host_register(host); 1948 if (ret) 1949 return ret; 1950 1951 msm_host->registered = true; 1952 1953 /* If the panel driver has not been probed after host register, 1954 * we should defer the host's probe. 1955 * It makes sure panel is connected when fbcon detects 1956 * connector status and gets the proper display mode to 1957 * create framebuffer. 1958 * Don't try to defer if there is nothing connected to the dsi 1959 * output 1960 */ 1961 if (check_defer && msm_host->device_node) { 1962 if (IS_ERR(of_drm_find_panel(msm_host->device_node))) 1963 if (!of_drm_find_bridge(msm_host->device_node)) 1964 return -EPROBE_DEFER; 1965 } 1966 } 1967 1968 return 0; 1969 } 1970 1971 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 1972 { 1973 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1974 1975 if (msm_host->registered) { 1976 mipi_dsi_host_unregister(host); 1977 host->dev = NULL; 1978 host->ops = NULL; 1979 msm_host->registered = false; 1980 } 1981 } 1982 1983 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 1984 const struct mipi_dsi_msg *msg) 1985 { 1986 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1987 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1988 1989 /* TODO: make sure dsi_cmd_mdp is idle. 1990 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 1991 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 1992 * How to handle the old versions? Wait for mdp cmd done? 1993 */ 1994 1995 /* 1996 * mdss interrupt is generated in mdp core clock domain 1997 * mdp clock need to be enabled to receive dsi interrupt 1998 */ 1999 pm_runtime_get_sync(&msm_host->pdev->dev); 2000 cfg_hnd->ops->link_clk_enable(msm_host); 2001 2002 /* TODO: vote for bus bandwidth */ 2003 2004 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2005 dsi_set_tx_power_mode(0, msm_host); 2006 2007 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2008 dsi_write(msm_host, REG_DSI_CTRL, 2009 msm_host->dma_cmd_ctrl_restore | 2010 DSI_CTRL_CMD_MODE_EN | 2011 DSI_CTRL_ENABLE); 2012 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2013 2014 return 0; 2015 } 2016 2017 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2018 const struct mipi_dsi_msg *msg) 2019 { 2020 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2021 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2022 2023 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2024 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2025 2026 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2027 dsi_set_tx_power_mode(1, msm_host); 2028 2029 /* TODO: unvote for bus bandwidth */ 2030 2031 cfg_hnd->ops->link_clk_disable(msm_host); 2032 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2033 } 2034 2035 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2036 const struct mipi_dsi_msg *msg) 2037 { 2038 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2039 2040 return dsi_cmds2buf_tx(msm_host, msg); 2041 } 2042 2043 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2044 const struct mipi_dsi_msg *msg) 2045 { 2046 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2047 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2048 int data_byte, rx_byte, dlen, end; 2049 int short_response, diff, pkt_size, ret = 0; 2050 char cmd; 2051 int rlen = msg->rx_len; 2052 u8 *buf; 2053 2054 if (rlen <= 2) { 2055 short_response = 1; 2056 pkt_size = rlen; 2057 rx_byte = 4; 2058 } else { 2059 short_response = 0; 2060 data_byte = 10; /* first read */ 2061 if (rlen < data_byte) 2062 pkt_size = rlen; 2063 else 2064 pkt_size = data_byte; 2065 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2066 } 2067 2068 buf = msm_host->rx_buf; 2069 end = 0; 2070 while (!end) { 2071 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2072 struct mipi_dsi_msg max_pkt_size_msg = { 2073 .channel = msg->channel, 2074 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2075 .tx_len = 2, 2076 .tx_buf = tx, 2077 }; 2078 2079 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2080 rlen, pkt_size, rx_byte); 2081 2082 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2083 if (ret < 2) { 2084 pr_err("%s: Set max pkt size failed, %d\n", 2085 __func__, ret); 2086 return -EINVAL; 2087 } 2088 2089 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2090 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2091 /* Clear the RDBK_DATA registers */ 2092 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2093 DSI_RDBK_DATA_CTRL_CLR); 2094 wmb(); /* make sure the RDBK registers are cleared */ 2095 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2096 wmb(); /* release cleared status before transfer */ 2097 } 2098 2099 ret = dsi_cmds2buf_tx(msm_host, msg); 2100 if (ret < msg->tx_len) { 2101 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2102 return ret; 2103 } 2104 2105 /* 2106 * once cmd_dma_done interrupt received, 2107 * return data from client is ready and stored 2108 * at RDBK_DATA register already 2109 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2110 * after that dcs header lost during shift into registers 2111 */ 2112 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2113 2114 if (dlen <= 0) 2115 return 0; 2116 2117 if (short_response) 2118 break; 2119 2120 if (rlen <= data_byte) { 2121 diff = data_byte - rlen; 2122 end = 1; 2123 } else { 2124 diff = 0; 2125 rlen -= data_byte; 2126 } 2127 2128 if (!end) { 2129 dlen -= 2; /* 2 crc */ 2130 dlen -= diff; 2131 buf += dlen; /* next start position */ 2132 data_byte = 14; /* NOT first read */ 2133 if (rlen < data_byte) 2134 pkt_size += rlen; 2135 else 2136 pkt_size += data_byte; 2137 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2138 } 2139 } 2140 2141 /* 2142 * For single Long read, if the requested rlen < 10, 2143 * we need to shift the start position of rx 2144 * data buffer to skip the bytes which are not 2145 * updated. 2146 */ 2147 if (pkt_size < 10 && !short_response) 2148 buf = msm_host->rx_buf + (10 - rlen); 2149 else 2150 buf = msm_host->rx_buf; 2151 2152 cmd = buf[0]; 2153 switch (cmd) { 2154 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2155 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2156 ret = 0; 2157 break; 2158 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2159 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2160 ret = dsi_short_read1_resp(buf, msg); 2161 break; 2162 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2163 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2164 ret = dsi_short_read2_resp(buf, msg); 2165 break; 2166 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2167 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2168 ret = dsi_long_read_resp(buf, msg); 2169 break; 2170 default: 2171 pr_warn("%s:Invalid response cmd\n", __func__); 2172 ret = 0; 2173 } 2174 2175 return ret; 2176 } 2177 2178 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2179 u32 len) 2180 { 2181 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2182 2183 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2184 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2185 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2186 2187 /* Make sure trigger happens */ 2188 wmb(); 2189 } 2190 2191 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host, 2192 struct msm_dsi_pll *src_pll) 2193 { 2194 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2195 struct clk *byte_clk_provider, *pixel_clk_provider; 2196 int ret; 2197 2198 ret = msm_dsi_pll_get_clk_provider(src_pll, 2199 &byte_clk_provider, &pixel_clk_provider); 2200 if (ret) { 2201 pr_info("%s: can't get provider from pll, don't set parent\n", 2202 __func__); 2203 return 0; 2204 } 2205 2206 ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider); 2207 if (ret) { 2208 pr_err("%s: can't set parent to byte_clk_src. ret=%d\n", 2209 __func__, ret); 2210 goto exit; 2211 } 2212 2213 ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider); 2214 if (ret) { 2215 pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n", 2216 __func__, ret); 2217 goto exit; 2218 } 2219 2220 if (msm_host->dsi_clk_src) { 2221 ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider); 2222 if (ret) { 2223 pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n", 2224 __func__, ret); 2225 goto exit; 2226 } 2227 } 2228 2229 if (msm_host->esc_clk_src) { 2230 ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider); 2231 if (ret) { 2232 pr_err("%s: can't set parent to esc_clk_src. ret=%d\n", 2233 __func__, ret); 2234 goto exit; 2235 } 2236 } 2237 2238 exit: 2239 return ret; 2240 } 2241 2242 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2243 { 2244 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2245 2246 DBG(""); 2247 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2248 /* Make sure fully reset */ 2249 wmb(); 2250 udelay(1000); 2251 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2252 udelay(100); 2253 } 2254 2255 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2256 struct msm_dsi_phy_clk_request *clk_req, 2257 bool is_dual_dsi) 2258 { 2259 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2260 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2261 int ret; 2262 2263 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi); 2264 if (ret) { 2265 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2266 return; 2267 } 2268 2269 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2270 clk_req->escclk_rate = msm_host->esc_clk_rate; 2271 } 2272 2273 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2274 { 2275 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2276 2277 dsi_op_mode_config(msm_host, 2278 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2279 2280 /* TODO: clock should be turned off for command mode, 2281 * and only turned on before MDP START. 2282 * This part of code should be enabled once mdp driver support it. 2283 */ 2284 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2285 * dsi_link_clk_disable(msm_host); 2286 * pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2287 * } 2288 */ 2289 msm_host->enabled = true; 2290 return 0; 2291 } 2292 2293 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2294 { 2295 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2296 2297 msm_host->enabled = false; 2298 dsi_op_mode_config(msm_host, 2299 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2300 2301 /* Since we have disabled INTF, the video engine won't stop so that 2302 * the cmd engine will be blocked. 2303 * Reset to disable video engine so that we can send off cmd. 2304 */ 2305 dsi_sw_reset(msm_host); 2306 2307 return 0; 2308 } 2309 2310 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2311 { 2312 enum sfpb_ahb_arb_master_port_en en; 2313 2314 if (!msm_host->sfpb) 2315 return; 2316 2317 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2318 2319 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2320 SFPB_GPREG_MASTER_PORT_EN__MASK, 2321 SFPB_GPREG_MASTER_PORT_EN(en)); 2322 } 2323 2324 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2325 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2326 bool is_dual_dsi) 2327 { 2328 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2329 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2330 int ret = 0; 2331 2332 mutex_lock(&msm_host->dev_mutex); 2333 if (msm_host->power_on) { 2334 DBG("dsi host already on"); 2335 goto unlock_ret; 2336 } 2337 2338 msm_dsi_sfpb_config(msm_host, true); 2339 2340 ret = dsi_host_regulator_enable(msm_host); 2341 if (ret) { 2342 pr_err("%s:Failed to enable vregs.ret=%d\n", 2343 __func__, ret); 2344 goto unlock_ret; 2345 } 2346 2347 pm_runtime_get_sync(&msm_host->pdev->dev); 2348 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2349 if (ret) { 2350 pr_err("%s: failed to enable link clocks. ret=%d\n", 2351 __func__, ret); 2352 goto fail_disable_reg; 2353 } 2354 2355 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2356 if (ret) { 2357 pr_err("%s: failed to set pinctrl default state, %d\n", 2358 __func__, ret); 2359 goto fail_disable_clk; 2360 } 2361 2362 dsi_timing_setup(msm_host, is_dual_dsi); 2363 dsi_sw_reset(msm_host); 2364 dsi_ctrl_config(msm_host, true, phy_shared_timings); 2365 2366 if (msm_host->disp_en_gpio) 2367 gpiod_set_value(msm_host->disp_en_gpio, 1); 2368 2369 msm_host->power_on = true; 2370 mutex_unlock(&msm_host->dev_mutex); 2371 2372 return 0; 2373 2374 fail_disable_clk: 2375 cfg_hnd->ops->link_clk_disable(msm_host); 2376 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2377 fail_disable_reg: 2378 dsi_host_regulator_disable(msm_host); 2379 unlock_ret: 2380 mutex_unlock(&msm_host->dev_mutex); 2381 return ret; 2382 } 2383 2384 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2385 { 2386 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2387 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2388 2389 mutex_lock(&msm_host->dev_mutex); 2390 if (!msm_host->power_on) { 2391 DBG("dsi host already off"); 2392 goto unlock_ret; 2393 } 2394 2395 dsi_ctrl_config(msm_host, false, NULL); 2396 2397 if (msm_host->disp_en_gpio) 2398 gpiod_set_value(msm_host->disp_en_gpio, 0); 2399 2400 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2401 2402 cfg_hnd->ops->link_clk_disable(msm_host); 2403 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2404 2405 dsi_host_regulator_disable(msm_host); 2406 2407 msm_dsi_sfpb_config(msm_host, false); 2408 2409 DBG("-"); 2410 2411 msm_host->power_on = false; 2412 2413 unlock_ret: 2414 mutex_unlock(&msm_host->dev_mutex); 2415 return 0; 2416 } 2417 2418 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2419 const struct drm_display_mode *mode) 2420 { 2421 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2422 2423 if (msm_host->mode) { 2424 drm_mode_destroy(msm_host->dev, msm_host->mode); 2425 msm_host->mode = NULL; 2426 } 2427 2428 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2429 if (!msm_host->mode) { 2430 pr_err("%s: cannot duplicate mode\n", __func__); 2431 return -ENOMEM; 2432 } 2433 2434 return 0; 2435 } 2436 2437 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host) 2438 { 2439 return of_drm_find_panel(to_msm_dsi_host(host)->device_node); 2440 } 2441 2442 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2443 { 2444 return to_msm_dsi_host(host)->mode_flags; 2445 } 2446 2447 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host) 2448 { 2449 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2450 2451 return of_drm_find_bridge(msm_host->device_node); 2452 } 2453