1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of_device.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_opp.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spinlock.h> 21 22 #include <video/mipi_display.h> 23 24 #include <drm/drm_of.h> 25 26 #include "dsi.h" 27 #include "dsi.xml.h" 28 #include "sfpb.xml.h" 29 #include "dsi_cfg.h" 30 #include "msm_kms.h" 31 #include "msm_gem.h" 32 #include "phy/dsi_phy.h" 33 34 #define DSI_RESET_TOGGLE_DELAY_MS 20 35 36 static int dsi_populate_dsc_params(struct drm_dsc_config *dsc); 37 38 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 39 { 40 u32 ver; 41 42 if (!major || !minor) 43 return -EINVAL; 44 45 /* 46 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 47 * makes all other registers 4-byte shifted down. 48 * 49 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 50 * older, we read the DSI_VERSION register without any shift(offset 51 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 52 * the case of DSI6G, this has to be zero (the offset points to a 53 * scratch register which we never touch) 54 */ 55 56 ver = msm_readl(base + REG_DSI_VERSION); 57 if (ver) { 58 /* older dsi host, there is no register shift */ 59 ver = FIELD(ver, DSI_VERSION_MAJOR); 60 if (ver <= MSM_DSI_VER_MAJOR_V2) { 61 /* old versions */ 62 *major = ver; 63 *minor = 0; 64 return 0; 65 } else { 66 return -EINVAL; 67 } 68 } else { 69 /* 70 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 71 * registers are shifted down, read DSI_VERSION again with 72 * the shifted offset 73 */ 74 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 75 ver = FIELD(ver, DSI_VERSION_MAJOR); 76 if (ver == MSM_DSI_VER_MAJOR_6G) { 77 /* 6G version */ 78 *major = ver; 79 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 80 return 0; 81 } else { 82 return -EINVAL; 83 } 84 } 85 } 86 87 #define DSI_ERR_STATE_ACK 0x0000 88 #define DSI_ERR_STATE_TIMEOUT 0x0001 89 #define DSI_ERR_STATE_DLN0_PHY 0x0002 90 #define DSI_ERR_STATE_FIFO 0x0004 91 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 92 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 93 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 94 95 #define DSI_CLK_CTRL_ENABLE_CLKS \ 96 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 97 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 98 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 99 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 100 101 struct msm_dsi_host { 102 struct mipi_dsi_host base; 103 104 struct platform_device *pdev; 105 struct drm_device *dev; 106 107 int id; 108 109 void __iomem *ctrl_base; 110 phys_addr_t ctrl_size; 111 struct regulator_bulk_data *supplies; 112 113 int num_bus_clks; 114 struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX]; 115 116 struct clk *byte_clk; 117 struct clk *esc_clk; 118 struct clk *pixel_clk; 119 struct clk *byte_clk_src; 120 struct clk *pixel_clk_src; 121 struct clk *byte_intf_clk; 122 123 unsigned long byte_clk_rate; 124 unsigned long pixel_clk_rate; 125 unsigned long esc_clk_rate; 126 127 /* DSI v2 specific clocks */ 128 struct clk *src_clk; 129 struct clk *esc_clk_src; 130 struct clk *dsi_clk_src; 131 132 unsigned long src_clk_rate; 133 134 struct gpio_desc *disp_en_gpio; 135 struct gpio_desc *te_gpio; 136 137 const struct msm_dsi_cfg_handler *cfg_hnd; 138 139 struct completion dma_comp; 140 struct completion video_comp; 141 struct mutex dev_mutex; 142 struct mutex cmd_mutex; 143 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 144 145 u32 err_work_state; 146 struct work_struct err_work; 147 struct workqueue_struct *workqueue; 148 149 /* DSI 6G TX buffer*/ 150 struct drm_gem_object *tx_gem_obj; 151 152 /* DSI v2 TX buffer */ 153 void *tx_buf; 154 dma_addr_t tx_buf_paddr; 155 156 int tx_size; 157 158 u8 *rx_buf; 159 160 struct regmap *sfpb; 161 162 struct drm_display_mode *mode; 163 struct drm_dsc_config *dsc; 164 165 /* connected device info */ 166 unsigned int channel; 167 unsigned int lanes; 168 enum mipi_dsi_pixel_format format; 169 unsigned long mode_flags; 170 171 /* lane data parsed via DT */ 172 int dlane_swap; 173 int num_data_lanes; 174 175 /* from phy DT */ 176 bool cphy_mode; 177 178 u32 dma_cmd_ctrl_restore; 179 180 bool registered; 181 bool power_on; 182 bool enabled; 183 int irq; 184 }; 185 186 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 187 { 188 switch (fmt) { 189 case MIPI_DSI_FMT_RGB565: return 16; 190 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 191 case MIPI_DSI_FMT_RGB666: 192 case MIPI_DSI_FMT_RGB888: 193 default: return 24; 194 } 195 } 196 197 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 198 { 199 return msm_readl(msm_host->ctrl_base + reg); 200 } 201 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 202 { 203 msm_writel(data, msm_host->ctrl_base + reg); 204 } 205 206 static const struct msm_dsi_cfg_handler *dsi_get_config( 207 struct msm_dsi_host *msm_host) 208 { 209 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 210 struct device *dev = &msm_host->pdev->dev; 211 struct clk *ahb_clk; 212 int ret; 213 u32 major = 0, minor = 0; 214 215 cfg_hnd = device_get_match_data(dev); 216 if (cfg_hnd) 217 return cfg_hnd; 218 219 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 220 if (IS_ERR(ahb_clk)) { 221 pr_err("%s: cannot get interface clock\n", __func__); 222 goto exit; 223 } 224 225 pm_runtime_get_sync(dev); 226 227 ret = clk_prepare_enable(ahb_clk); 228 if (ret) { 229 pr_err("%s: unable to enable ahb_clk\n", __func__); 230 goto runtime_put; 231 } 232 233 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 234 if (ret) { 235 pr_err("%s: Invalid version\n", __func__); 236 goto disable_clks; 237 } 238 239 cfg_hnd = msm_dsi_cfg_get(major, minor); 240 241 DBG("%s: Version %x:%x\n", __func__, major, minor); 242 243 disable_clks: 244 clk_disable_unprepare(ahb_clk); 245 runtime_put: 246 pm_runtime_put_sync(dev); 247 exit: 248 return cfg_hnd; 249 } 250 251 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 252 { 253 return container_of(host, struct msm_dsi_host, base); 254 } 255 256 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 257 { 258 struct platform_device *pdev = msm_host->pdev; 259 int ret = 0; 260 261 msm_host->src_clk = msm_clk_get(pdev, "src"); 262 263 if (IS_ERR(msm_host->src_clk)) { 264 ret = PTR_ERR(msm_host->src_clk); 265 pr_err("%s: can't find src clock. ret=%d\n", 266 __func__, ret); 267 msm_host->src_clk = NULL; 268 return ret; 269 } 270 271 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 272 if (!msm_host->esc_clk_src) { 273 ret = -ENODEV; 274 pr_err("%s: can't get esc clock parent. ret=%d\n", 275 __func__, ret); 276 return ret; 277 } 278 279 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 280 if (!msm_host->dsi_clk_src) { 281 ret = -ENODEV; 282 pr_err("%s: can't get src clock parent. ret=%d\n", 283 __func__, ret); 284 } 285 286 return ret; 287 } 288 289 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 290 { 291 struct platform_device *pdev = msm_host->pdev; 292 int ret = 0; 293 294 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 295 if (IS_ERR(msm_host->byte_intf_clk)) { 296 ret = PTR_ERR(msm_host->byte_intf_clk); 297 pr_err("%s: can't find byte_intf clock. ret=%d\n", 298 __func__, ret); 299 } 300 301 return ret; 302 } 303 304 static int dsi_clk_init(struct msm_dsi_host *msm_host) 305 { 306 struct platform_device *pdev = msm_host->pdev; 307 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 308 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 309 int i, ret = 0; 310 311 /* get bus clocks */ 312 for (i = 0; i < cfg->num_bus_clks; i++) 313 msm_host->bus_clks[i].id = cfg->bus_clk_names[i]; 314 msm_host->num_bus_clks = cfg->num_bus_clks; 315 316 ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks); 317 if (ret < 0) { 318 dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret); 319 goto exit; 320 } 321 322 /* get link and source clocks */ 323 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 324 if (IS_ERR(msm_host->byte_clk)) { 325 ret = PTR_ERR(msm_host->byte_clk); 326 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 327 __func__, ret); 328 msm_host->byte_clk = NULL; 329 goto exit; 330 } 331 332 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 333 if (IS_ERR(msm_host->pixel_clk)) { 334 ret = PTR_ERR(msm_host->pixel_clk); 335 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 336 __func__, ret); 337 msm_host->pixel_clk = NULL; 338 goto exit; 339 } 340 341 msm_host->esc_clk = msm_clk_get(pdev, "core"); 342 if (IS_ERR(msm_host->esc_clk)) { 343 ret = PTR_ERR(msm_host->esc_clk); 344 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 345 __func__, ret); 346 msm_host->esc_clk = NULL; 347 goto exit; 348 } 349 350 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 351 if (IS_ERR(msm_host->byte_clk_src)) { 352 ret = PTR_ERR(msm_host->byte_clk_src); 353 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 354 goto exit; 355 } 356 357 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 358 if (IS_ERR(msm_host->pixel_clk_src)) { 359 ret = PTR_ERR(msm_host->pixel_clk_src); 360 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 361 goto exit; 362 } 363 364 if (cfg_hnd->ops->clk_init_ver) 365 ret = cfg_hnd->ops->clk_init_ver(msm_host); 366 exit: 367 return ret; 368 } 369 370 int msm_dsi_runtime_suspend(struct device *dev) 371 { 372 struct platform_device *pdev = to_platform_device(dev); 373 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 374 struct mipi_dsi_host *host = msm_dsi->host; 375 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 376 377 if (!msm_host->cfg_hnd) 378 return 0; 379 380 clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks); 381 382 return 0; 383 } 384 385 int msm_dsi_runtime_resume(struct device *dev) 386 { 387 struct platform_device *pdev = to_platform_device(dev); 388 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 389 struct mipi_dsi_host *host = msm_dsi->host; 390 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 391 392 if (!msm_host->cfg_hnd) 393 return 0; 394 395 return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks); 396 } 397 398 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) 399 { 400 unsigned long byte_intf_rate; 401 int ret; 402 403 DBG("Set clk rates: pclk=%d, byteclk=%lu", 404 msm_host->mode->clock, msm_host->byte_clk_rate); 405 406 ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, 407 msm_host->byte_clk_rate); 408 if (ret) { 409 pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); 410 return ret; 411 } 412 413 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 414 if (ret) { 415 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 416 return ret; 417 } 418 419 if (msm_host->byte_intf_clk) { 420 /* For CPHY, byte_intf_clk is same as byte_clk */ 421 if (msm_host->cphy_mode) 422 byte_intf_rate = msm_host->byte_clk_rate; 423 else 424 byte_intf_rate = msm_host->byte_clk_rate / 2; 425 426 ret = clk_set_rate(msm_host->byte_intf_clk, byte_intf_rate); 427 if (ret) { 428 pr_err("%s: Failed to set rate byte intf clk, %d\n", 429 __func__, ret); 430 return ret; 431 } 432 } 433 434 return 0; 435 } 436 437 438 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 439 { 440 int ret; 441 442 ret = clk_prepare_enable(msm_host->esc_clk); 443 if (ret) { 444 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 445 goto error; 446 } 447 448 ret = clk_prepare_enable(msm_host->byte_clk); 449 if (ret) { 450 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 451 goto byte_clk_err; 452 } 453 454 ret = clk_prepare_enable(msm_host->pixel_clk); 455 if (ret) { 456 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 457 goto pixel_clk_err; 458 } 459 460 ret = clk_prepare_enable(msm_host->byte_intf_clk); 461 if (ret) { 462 pr_err("%s: Failed to enable byte intf clk\n", 463 __func__); 464 goto byte_intf_clk_err; 465 } 466 467 return 0; 468 469 byte_intf_clk_err: 470 clk_disable_unprepare(msm_host->pixel_clk); 471 pixel_clk_err: 472 clk_disable_unprepare(msm_host->byte_clk); 473 byte_clk_err: 474 clk_disable_unprepare(msm_host->esc_clk); 475 error: 476 return ret; 477 } 478 479 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) 480 { 481 int ret; 482 483 DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu", 484 msm_host->mode->clock, msm_host->byte_clk_rate, 485 msm_host->esc_clk_rate, msm_host->src_clk_rate); 486 487 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 488 if (ret) { 489 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 490 return ret; 491 } 492 493 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 494 if (ret) { 495 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 496 return ret; 497 } 498 499 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 500 if (ret) { 501 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 502 return ret; 503 } 504 505 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 506 if (ret) { 507 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 508 return ret; 509 } 510 511 return 0; 512 } 513 514 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 515 { 516 int ret; 517 518 ret = clk_prepare_enable(msm_host->byte_clk); 519 if (ret) { 520 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 521 goto error; 522 } 523 524 ret = clk_prepare_enable(msm_host->esc_clk); 525 if (ret) { 526 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 527 goto esc_clk_err; 528 } 529 530 ret = clk_prepare_enable(msm_host->src_clk); 531 if (ret) { 532 pr_err("%s: Failed to enable dsi src clk\n", __func__); 533 goto src_clk_err; 534 } 535 536 ret = clk_prepare_enable(msm_host->pixel_clk); 537 if (ret) { 538 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 539 goto pixel_clk_err; 540 } 541 542 return 0; 543 544 pixel_clk_err: 545 clk_disable_unprepare(msm_host->src_clk); 546 src_clk_err: 547 clk_disable_unprepare(msm_host->esc_clk); 548 esc_clk_err: 549 clk_disable_unprepare(msm_host->byte_clk); 550 error: 551 return ret; 552 } 553 554 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 555 { 556 /* Drop the performance state vote */ 557 dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); 558 clk_disable_unprepare(msm_host->esc_clk); 559 clk_disable_unprepare(msm_host->pixel_clk); 560 clk_disable_unprepare(msm_host->byte_intf_clk); 561 clk_disable_unprepare(msm_host->byte_clk); 562 } 563 564 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 565 { 566 clk_disable_unprepare(msm_host->pixel_clk); 567 clk_disable_unprepare(msm_host->src_clk); 568 clk_disable_unprepare(msm_host->esc_clk); 569 clk_disable_unprepare(msm_host->byte_clk); 570 } 571 572 static unsigned long dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 573 { 574 struct drm_display_mode *mode = msm_host->mode; 575 unsigned long pclk_rate; 576 577 pclk_rate = mode->clock * 1000; 578 579 /* 580 * For bonded DSI mode, the current DRM mode has the complete width of the 581 * panel. Since, the complete panel is driven by two DSI controllers, 582 * the clock rates have to be split between the two dsi controllers. 583 * Adjust the byte and pixel clock rates for each dsi host accordingly. 584 */ 585 if (is_bonded_dsi) 586 pclk_rate /= 2; 587 588 return pclk_rate; 589 } 590 591 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 592 { 593 u8 lanes = msm_host->lanes; 594 u32 bpp = dsi_get_bpp(msm_host->format); 595 unsigned long pclk_rate = dsi_get_pclk_rate(msm_host, is_bonded_dsi); 596 u64 pclk_bpp = (u64)pclk_rate * bpp; 597 598 if (lanes == 0) { 599 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 600 lanes = 1; 601 } 602 603 /* CPHY "byte_clk" is in units of 16 bits */ 604 if (msm_host->cphy_mode) 605 do_div(pclk_bpp, (16 * lanes)); 606 else 607 do_div(pclk_bpp, (8 * lanes)); 608 609 msm_host->pixel_clk_rate = pclk_rate; 610 msm_host->byte_clk_rate = pclk_bpp; 611 612 DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate, 613 msm_host->byte_clk_rate); 614 615 } 616 617 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 618 { 619 if (!msm_host->mode) { 620 pr_err("%s: mode not set\n", __func__); 621 return -EINVAL; 622 } 623 624 dsi_calc_pclk(msm_host, is_bonded_dsi); 625 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 626 return 0; 627 } 628 629 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 630 { 631 u32 bpp = dsi_get_bpp(msm_host->format); 632 u64 pclk_bpp; 633 unsigned int esc_mhz, esc_div; 634 unsigned long byte_mhz; 635 636 dsi_calc_pclk(msm_host, is_bonded_dsi); 637 638 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_bonded_dsi) * bpp; 639 do_div(pclk_bpp, 8); 640 msm_host->src_clk_rate = pclk_bpp; 641 642 /* 643 * esc clock is byte clock followed by a 4 bit divider, 644 * we need to find an escape clock frequency within the 645 * mipi DSI spec range within the maximum divider limit 646 * We iterate here between an escape clock frequencey 647 * between 20 Mhz to 5 Mhz and pick up the first one 648 * that can be supported by our divider 649 */ 650 651 byte_mhz = msm_host->byte_clk_rate / 1000000; 652 653 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 654 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 655 656 /* 657 * TODO: Ideally, we shouldn't know what sort of divider 658 * is available in mmss_cc, we're just assuming that 659 * it'll always be a 4 bit divider. Need to come up with 660 * a better way here. 661 */ 662 if (esc_div >= 1 && esc_div <= 16) 663 break; 664 } 665 666 if (esc_mhz < 5) 667 return -EINVAL; 668 669 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 670 671 DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate, 672 msm_host->src_clk_rate); 673 674 return 0; 675 } 676 677 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 678 { 679 u32 intr; 680 unsigned long flags; 681 682 spin_lock_irqsave(&msm_host->intr_lock, flags); 683 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 684 685 if (enable) 686 intr |= mask; 687 else 688 intr &= ~mask; 689 690 DBG("intr=%x enable=%d", intr, enable); 691 692 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 693 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 694 } 695 696 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 697 { 698 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 699 return BURST_MODE; 700 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 701 return NON_BURST_SYNCH_PULSE; 702 703 return NON_BURST_SYNCH_EVENT; 704 } 705 706 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 707 const enum mipi_dsi_pixel_format mipi_fmt) 708 { 709 switch (mipi_fmt) { 710 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 711 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 712 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 713 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 714 default: return VID_DST_FORMAT_RGB888; 715 } 716 } 717 718 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 719 const enum mipi_dsi_pixel_format mipi_fmt) 720 { 721 switch (mipi_fmt) { 722 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 723 case MIPI_DSI_FMT_RGB666_PACKED: 724 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 725 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 726 default: return CMD_DST_FORMAT_RGB888; 727 } 728 } 729 730 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 731 struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy) 732 { 733 u32 flags = msm_host->mode_flags; 734 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 735 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 736 u32 data = 0, lane_ctrl = 0; 737 738 if (!enable) { 739 dsi_write(msm_host, REG_DSI_CTRL, 0); 740 return; 741 } 742 743 if (flags & MIPI_DSI_MODE_VIDEO) { 744 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 745 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 746 if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP) 747 data |= DSI_VID_CFG0_HFP_POWER_STOP; 748 if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP) 749 data |= DSI_VID_CFG0_HBP_POWER_STOP; 750 if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA) 751 data |= DSI_VID_CFG0_HSA_POWER_STOP; 752 /* Always set low power stop mode for BLLP 753 * to let command engine send packets 754 */ 755 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 756 DSI_VID_CFG0_BLLP_POWER_STOP; 757 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 758 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 759 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 760 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 761 762 /* Do not swap RGB colors */ 763 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 764 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 765 } else { 766 /* Do not swap RGB colors */ 767 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 768 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 769 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 770 771 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 772 DSI_CMD_CFG1_WR_MEM_CONTINUE( 773 MIPI_DCS_WRITE_MEMORY_CONTINUE); 774 /* Always insert DCS command */ 775 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 776 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 777 } 778 779 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 780 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 781 DSI_CMD_DMA_CTRL_LOW_POWER); 782 783 data = 0; 784 /* Always assume dedicated TE pin */ 785 data |= DSI_TRIG_CTRL_TE; 786 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 787 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 788 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 789 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 790 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 791 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 792 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 793 794 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 795 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 796 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 797 798 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 799 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 800 phy_shared_timings->clk_pre_inc_by_2) 801 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 802 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 803 804 data = 0; 805 if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET)) 806 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 807 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 808 809 /* allow only ack-err-status to generate interrupt */ 810 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 811 812 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 813 814 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 815 816 data = DSI_CTRL_CLK_EN; 817 818 DBG("lane number=%d", msm_host->lanes); 819 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 820 821 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 822 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 823 824 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { 825 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); 826 827 if (msm_dsi_phy_set_continuous_clock(phy, enable)) 828 lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY; 829 830 dsi_write(msm_host, REG_DSI_LANE_CTRL, 831 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 832 } 833 834 data |= DSI_CTRL_ENABLE; 835 836 dsi_write(msm_host, REG_DSI_CTRL, data); 837 838 if (msm_host->cphy_mode) 839 dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0)); 840 } 841 842 static void dsi_update_dsc_timing(struct msm_dsi_host *msm_host, bool is_cmd_mode, u32 hdisplay) 843 { 844 struct drm_dsc_config *dsc = msm_host->dsc; 845 u32 reg, intf_width, reg_ctrl, reg_ctrl2; 846 u32 slice_per_intf, total_bytes_per_intf; 847 u32 pkt_per_line; 848 u32 bytes_in_slice; 849 u32 eol_byte_num; 850 851 /* first calculate dsc parameters and then program 852 * compress mode registers 853 */ 854 intf_width = hdisplay; 855 slice_per_intf = DIV_ROUND_UP(intf_width, dsc->slice_width); 856 857 /* If slice_per_pkt is greater than slice_per_intf 858 * then default to 1. This can happen during partial 859 * update. 860 */ 861 if (slice_per_intf > dsc->slice_count) 862 dsc->slice_count = 1; 863 864 slice_per_intf = DIV_ROUND_UP(hdisplay, dsc->slice_width); 865 bytes_in_slice = DIV_ROUND_UP(dsc->slice_width * dsc->bits_per_pixel, 8); 866 867 dsc->slice_chunk_size = bytes_in_slice; 868 869 total_bytes_per_intf = bytes_in_slice * slice_per_intf; 870 871 eol_byte_num = total_bytes_per_intf % 3; 872 pkt_per_line = slice_per_intf / dsc->slice_count; 873 874 if (is_cmd_mode) /* packet data type */ 875 reg = DSI_COMMAND_COMPRESSION_MODE_CTRL_STREAM0_DATATYPE(MIPI_DSI_DCS_LONG_WRITE); 876 else 877 reg = DSI_VIDEO_COMPRESSION_MODE_CTRL_DATATYPE(MIPI_DSI_COMPRESSED_PIXEL_STREAM); 878 879 /* DSI_VIDEO_COMPRESSION_MODE & DSI_COMMAND_COMPRESSION_MODE 880 * registers have similar offsets, so for below common code use 881 * DSI_VIDEO_COMPRESSION_MODE_XXXX for setting bits 882 */ 883 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_PKT_PER_LINE(pkt_per_line >> 1); 884 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EOL_BYTE_NUM(eol_byte_num); 885 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EN; 886 887 if (is_cmd_mode) { 888 reg_ctrl = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL); 889 reg_ctrl2 = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2); 890 891 reg_ctrl &= ~0xffff; 892 reg_ctrl |= reg; 893 894 reg_ctrl2 &= ~DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH__MASK; 895 reg_ctrl2 |= DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH(bytes_in_slice); 896 897 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl); 898 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2); 899 } else { 900 dsi_write(msm_host, REG_DSI_VIDEO_COMPRESSION_MODE_CTRL, reg); 901 } 902 } 903 904 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 905 { 906 struct drm_display_mode *mode = msm_host->mode; 907 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 908 u32 h_total = mode->htotal; 909 u32 v_total = mode->vtotal; 910 u32 hs_end = mode->hsync_end - mode->hsync_start; 911 u32 vs_end = mode->vsync_end - mode->vsync_start; 912 u32 ha_start = h_total - mode->hsync_start; 913 u32 ha_end = ha_start + mode->hdisplay; 914 u32 va_start = v_total - mode->vsync_start; 915 u32 va_end = va_start + mode->vdisplay; 916 u32 hdisplay = mode->hdisplay; 917 u32 wc; 918 919 DBG(""); 920 921 /* 922 * For bonded DSI mode, the current DRM mode has 923 * the complete width of the panel. Since, the complete 924 * panel is driven by two DSI controllers, the horizontal 925 * timings have to be split between the two dsi controllers. 926 * Adjust the DSI host timing values accordingly. 927 */ 928 if (is_bonded_dsi) { 929 h_total /= 2; 930 hs_end /= 2; 931 ha_start /= 2; 932 ha_end /= 2; 933 hdisplay /= 2; 934 } 935 936 if (msm_host->dsc) { 937 struct drm_dsc_config *dsc = msm_host->dsc; 938 939 /* update dsc params with timing params */ 940 if (!dsc || !mode->hdisplay || !mode->vdisplay) { 941 pr_err("DSI: invalid input: pic_width: %d pic_height: %d\n", 942 mode->hdisplay, mode->vdisplay); 943 return; 944 } 945 946 dsc->pic_width = mode->hdisplay; 947 dsc->pic_height = mode->vdisplay; 948 DBG("Mode %dx%d\n", dsc->pic_width, dsc->pic_height); 949 950 /* we do the calculations for dsc parameters here so that 951 * panel can use these parameters 952 */ 953 dsi_populate_dsc_params(dsc); 954 955 /* Divide the display by 3 but keep back/font porch and 956 * pulse width same 957 */ 958 h_total -= hdisplay; 959 hdisplay /= 3; 960 h_total += hdisplay; 961 ha_end = ha_start + hdisplay; 962 } 963 964 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 965 if (msm_host->dsc) 966 dsi_update_dsc_timing(msm_host, false, mode->hdisplay); 967 968 dsi_write(msm_host, REG_DSI_ACTIVE_H, 969 DSI_ACTIVE_H_START(ha_start) | 970 DSI_ACTIVE_H_END(ha_end)); 971 dsi_write(msm_host, REG_DSI_ACTIVE_V, 972 DSI_ACTIVE_V_START(va_start) | 973 DSI_ACTIVE_V_END(va_end)); 974 dsi_write(msm_host, REG_DSI_TOTAL, 975 DSI_TOTAL_H_TOTAL(h_total - 1) | 976 DSI_TOTAL_V_TOTAL(v_total - 1)); 977 978 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 979 DSI_ACTIVE_HSYNC_START(hs_start) | 980 DSI_ACTIVE_HSYNC_END(hs_end)); 981 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 982 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 983 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 984 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 985 } else { /* command mode */ 986 if (msm_host->dsc) 987 dsi_update_dsc_timing(msm_host, true, mode->hdisplay); 988 989 /* image data and 1 byte write_memory_start cmd */ 990 if (!msm_host->dsc) 991 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 992 else 993 wc = mode->hdisplay / 2 + 1; 994 995 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, 996 DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | 997 DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( 998 msm_host->channel) | 999 DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( 1000 MIPI_DSI_DCS_LONG_WRITE)); 1001 1002 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, 1003 DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | 1004 DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); 1005 } 1006 } 1007 1008 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 1009 { 1010 u32 ctrl; 1011 1012 ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1013 1014 if (ctrl & DSI_CTRL_ENABLE) { 1015 dsi_write(msm_host, REG_DSI_CTRL, ctrl & ~DSI_CTRL_ENABLE); 1016 /* 1017 * dsi controller need to be disabled before 1018 * clocks turned on 1019 */ 1020 wmb(); 1021 } 1022 1023 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1024 wmb(); /* clocks need to be enabled before reset */ 1025 1026 /* dsi controller can only be reset while clocks are running */ 1027 dsi_write(msm_host, REG_DSI_RESET, 1); 1028 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1029 dsi_write(msm_host, REG_DSI_RESET, 0); 1030 wmb(); /* controller out of reset */ 1031 1032 if (ctrl & DSI_CTRL_ENABLE) { 1033 dsi_write(msm_host, REG_DSI_CTRL, ctrl); 1034 wmb(); /* make sure dsi controller enabled again */ 1035 } 1036 } 1037 1038 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 1039 bool video_mode, bool enable) 1040 { 1041 u32 dsi_ctrl; 1042 1043 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1044 1045 if (!enable) { 1046 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1047 DSI_CTRL_CMD_MODE_EN); 1048 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1049 DSI_IRQ_MASK_VIDEO_DONE, 0); 1050 } else { 1051 if (video_mode) { 1052 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1053 } else { /* command mode */ 1054 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1055 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1056 } 1057 dsi_ctrl |= DSI_CTRL_ENABLE; 1058 } 1059 1060 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1061 } 1062 1063 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1064 { 1065 u32 data; 1066 1067 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1068 1069 if (mode == 0) 1070 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1071 else 1072 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1073 1074 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1075 } 1076 1077 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1078 { 1079 u32 ret = 0; 1080 struct device *dev = &msm_host->pdev->dev; 1081 1082 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1083 1084 reinit_completion(&msm_host->video_comp); 1085 1086 ret = wait_for_completion_timeout(&msm_host->video_comp, 1087 msecs_to_jiffies(70)); 1088 1089 if (ret == 0) 1090 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1091 1092 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1093 } 1094 1095 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1096 { 1097 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1098 return; 1099 1100 if (msm_host->power_on && msm_host->enabled) { 1101 dsi_wait4video_done(msm_host); 1102 /* delay 4 ms to skip BLLP */ 1103 usleep_range(2000, 4000); 1104 } 1105 } 1106 1107 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1108 { 1109 struct drm_device *dev = msm_host->dev; 1110 struct msm_drm_private *priv = dev->dev_private; 1111 uint64_t iova; 1112 u8 *data; 1113 1114 data = msm_gem_kernel_new(dev, size, MSM_BO_WC, 1115 priv->kms->aspace, 1116 &msm_host->tx_gem_obj, &iova); 1117 1118 if (IS_ERR(data)) { 1119 msm_host->tx_gem_obj = NULL; 1120 return PTR_ERR(data); 1121 } 1122 1123 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1124 1125 msm_host->tx_size = msm_host->tx_gem_obj->size; 1126 1127 return 0; 1128 } 1129 1130 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1131 { 1132 struct drm_device *dev = msm_host->dev; 1133 1134 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1135 &msm_host->tx_buf_paddr, GFP_KERNEL); 1136 if (!msm_host->tx_buf) 1137 return -ENOMEM; 1138 1139 msm_host->tx_size = size; 1140 1141 return 0; 1142 } 1143 1144 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1145 { 1146 struct drm_device *dev = msm_host->dev; 1147 struct msm_drm_private *priv; 1148 1149 /* 1150 * This is possible if we're tearing down before we've had a chance to 1151 * fully initialize. A very real possibility if our probe is deferred, 1152 * in which case we'll hit msm_dsi_host_destroy() without having run 1153 * through the dsi_tx_buf_alloc(). 1154 */ 1155 if (!dev) 1156 return; 1157 1158 priv = dev->dev_private; 1159 if (msm_host->tx_gem_obj) { 1160 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1161 drm_gem_object_put(msm_host->tx_gem_obj); 1162 msm_host->tx_gem_obj = NULL; 1163 } 1164 1165 if (msm_host->tx_buf) 1166 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1167 msm_host->tx_buf_paddr); 1168 } 1169 1170 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1171 { 1172 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1173 } 1174 1175 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1176 { 1177 return msm_host->tx_buf; 1178 } 1179 1180 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1181 { 1182 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1183 } 1184 1185 /* 1186 * prepare cmd buffer to be txed 1187 */ 1188 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1189 const struct mipi_dsi_msg *msg) 1190 { 1191 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1192 struct mipi_dsi_packet packet; 1193 int len; 1194 int ret; 1195 u8 *data; 1196 1197 ret = mipi_dsi_create_packet(&packet, msg); 1198 if (ret) { 1199 pr_err("%s: create packet failed, %d\n", __func__, ret); 1200 return ret; 1201 } 1202 len = (packet.size + 3) & (~0x3); 1203 1204 if (len > msm_host->tx_size) { 1205 pr_err("%s: packet size is too big\n", __func__); 1206 return -EINVAL; 1207 } 1208 1209 data = cfg_hnd->ops->tx_buf_get(msm_host); 1210 if (IS_ERR(data)) { 1211 ret = PTR_ERR(data); 1212 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1213 return ret; 1214 } 1215 1216 /* MSM specific command format in memory */ 1217 data[0] = packet.header[1]; 1218 data[1] = packet.header[2]; 1219 data[2] = packet.header[0]; 1220 data[3] = BIT(7); /* Last packet */ 1221 if (mipi_dsi_packet_format_is_long(msg->type)) 1222 data[3] |= BIT(6); 1223 if (msg->rx_buf && msg->rx_len) 1224 data[3] |= BIT(5); 1225 1226 /* Long packet */ 1227 if (packet.payload && packet.payload_length) 1228 memcpy(data + 4, packet.payload, packet.payload_length); 1229 1230 /* Append 0xff to the end */ 1231 if (packet.size < len) 1232 memset(data + packet.size, 0xff, len - packet.size); 1233 1234 if (cfg_hnd->ops->tx_buf_put) 1235 cfg_hnd->ops->tx_buf_put(msm_host); 1236 1237 return len; 1238 } 1239 1240 /* 1241 * dsi_short_read1_resp: 1 parameter 1242 */ 1243 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1244 { 1245 u8 *data = msg->rx_buf; 1246 if (data && (msg->rx_len >= 1)) { 1247 *data = buf[1]; /* strip out dcs type */ 1248 return 1; 1249 } else { 1250 pr_err("%s: read data does not match with rx_buf len %zu\n", 1251 __func__, msg->rx_len); 1252 return -EINVAL; 1253 } 1254 } 1255 1256 /* 1257 * dsi_short_read2_resp: 2 parameter 1258 */ 1259 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1260 { 1261 u8 *data = msg->rx_buf; 1262 if (data && (msg->rx_len >= 2)) { 1263 data[0] = buf[1]; /* strip out dcs type */ 1264 data[1] = buf[2]; 1265 return 2; 1266 } else { 1267 pr_err("%s: read data does not match with rx_buf len %zu\n", 1268 __func__, msg->rx_len); 1269 return -EINVAL; 1270 } 1271 } 1272 1273 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1274 { 1275 /* strip out 4 byte dcs header */ 1276 if (msg->rx_buf && msg->rx_len) 1277 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1278 1279 return msg->rx_len; 1280 } 1281 1282 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1283 { 1284 struct drm_device *dev = msm_host->dev; 1285 struct msm_drm_private *priv = dev->dev_private; 1286 1287 if (!dma_base) 1288 return -EINVAL; 1289 1290 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1291 priv->kms->aspace, dma_base); 1292 } 1293 1294 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1295 { 1296 if (!dma_base) 1297 return -EINVAL; 1298 1299 *dma_base = msm_host->tx_buf_paddr; 1300 return 0; 1301 } 1302 1303 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1304 { 1305 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1306 int ret; 1307 uint64_t dma_base; 1308 bool triggered; 1309 1310 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1311 if (ret) { 1312 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1313 return ret; 1314 } 1315 1316 reinit_completion(&msm_host->dma_comp); 1317 1318 dsi_wait4video_eng_busy(msm_host); 1319 1320 triggered = msm_dsi_manager_cmd_xfer_trigger( 1321 msm_host->id, dma_base, len); 1322 if (triggered) { 1323 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1324 msecs_to_jiffies(200)); 1325 DBG("ret=%d", ret); 1326 if (ret == 0) 1327 ret = -ETIMEDOUT; 1328 else 1329 ret = len; 1330 } else 1331 ret = len; 1332 1333 return ret; 1334 } 1335 1336 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1337 u8 *buf, int rx_byte, int pkt_size) 1338 { 1339 u32 *temp, data; 1340 int i, j = 0, cnt; 1341 u32 read_cnt; 1342 u8 reg[16]; 1343 int repeated_bytes = 0; 1344 int buf_offset = buf - msm_host->rx_buf; 1345 1346 temp = (u32 *)reg; 1347 cnt = (rx_byte + 3) >> 2; 1348 if (cnt > 4) 1349 cnt = 4; /* 4 x 32 bits registers only */ 1350 1351 if (rx_byte == 4) 1352 read_cnt = 4; 1353 else 1354 read_cnt = pkt_size + 6; 1355 1356 /* 1357 * In case of multiple reads from the panel, after the first read, there 1358 * is possibility that there are some bytes in the payload repeating in 1359 * the RDBK_DATA registers. Since we read all the parameters from the 1360 * panel right from the first byte for every pass. We need to skip the 1361 * repeating bytes and then append the new parameters to the rx buffer. 1362 */ 1363 if (read_cnt > 16) { 1364 int bytes_shifted; 1365 /* Any data more than 16 bytes will be shifted out. 1366 * The temp read buffer should already contain these bytes. 1367 * The remaining bytes in read buffer are the repeated bytes. 1368 */ 1369 bytes_shifted = read_cnt - 16; 1370 repeated_bytes = buf_offset - bytes_shifted; 1371 } 1372 1373 for (i = cnt - 1; i >= 0; i--) { 1374 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1375 *temp++ = ntohl(data); /* to host byte order */ 1376 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1377 } 1378 1379 for (i = repeated_bytes; i < 16; i++) 1380 buf[j++] = reg[i]; 1381 1382 return j; 1383 } 1384 1385 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1386 const struct mipi_dsi_msg *msg) 1387 { 1388 int len, ret; 1389 int bllp_len = msm_host->mode->hdisplay * 1390 dsi_get_bpp(msm_host->format) / 8; 1391 1392 len = dsi_cmd_dma_add(msm_host, msg); 1393 if (len < 0) { 1394 pr_err("%s: failed to add cmd type = 0x%x\n", 1395 __func__, msg->type); 1396 return len; 1397 } 1398 1399 /* for video mode, do not send cmds more than 1400 * one pixel line, since it only transmit it 1401 * during BLLP. 1402 */ 1403 /* TODO: if the command is sent in LP mode, the bit rate is only 1404 * half of esc clk rate. In this case, if the video is already 1405 * actively streaming, we need to check more carefully if the 1406 * command can be fit into one BLLP. 1407 */ 1408 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1409 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1410 __func__, len); 1411 return -EINVAL; 1412 } 1413 1414 ret = dsi_cmd_dma_tx(msm_host, len); 1415 if (ret < 0) { 1416 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d, ret=%d\n", 1417 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len, ret); 1418 return ret; 1419 } else if (ret < len) { 1420 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, ret=%d len=%d\n", 1421 __func__, msg->type, (*(u8 *)(msg->tx_buf)), ret, len); 1422 return -EIO; 1423 } 1424 1425 return len; 1426 } 1427 1428 static void dsi_err_worker(struct work_struct *work) 1429 { 1430 struct msm_dsi_host *msm_host = 1431 container_of(work, struct msm_dsi_host, err_work); 1432 u32 status = msm_host->err_work_state; 1433 1434 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1435 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1436 dsi_sw_reset(msm_host); 1437 1438 /* It is safe to clear here because error irq is disabled. */ 1439 msm_host->err_work_state = 0; 1440 1441 /* enable dsi error interrupt */ 1442 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1443 } 1444 1445 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1446 { 1447 u32 status; 1448 1449 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1450 1451 if (status) { 1452 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1453 /* Writing of an extra 0 needed to clear error bits */ 1454 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1455 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1456 } 1457 } 1458 1459 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1460 { 1461 u32 status; 1462 1463 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1464 1465 if (status) { 1466 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1467 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1468 } 1469 } 1470 1471 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1472 { 1473 u32 status; 1474 1475 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1476 1477 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1478 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1479 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1480 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1481 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1482 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1483 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1484 } 1485 } 1486 1487 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1488 { 1489 u32 status; 1490 1491 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1492 1493 /* fifo underflow, overflow */ 1494 if (status) { 1495 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1496 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1497 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1498 msm_host->err_work_state |= 1499 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1500 } 1501 } 1502 1503 static void dsi_status(struct msm_dsi_host *msm_host) 1504 { 1505 u32 status; 1506 1507 status = dsi_read(msm_host, REG_DSI_STATUS0); 1508 1509 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1510 dsi_write(msm_host, REG_DSI_STATUS0, status); 1511 msm_host->err_work_state |= 1512 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1513 } 1514 } 1515 1516 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1517 { 1518 u32 status; 1519 1520 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1521 1522 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1523 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1524 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1525 } 1526 } 1527 1528 static void dsi_error(struct msm_dsi_host *msm_host) 1529 { 1530 /* disable dsi error interrupt */ 1531 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1532 1533 dsi_clk_status(msm_host); 1534 dsi_fifo_status(msm_host); 1535 dsi_ack_err_status(msm_host); 1536 dsi_timeout_status(msm_host); 1537 dsi_status(msm_host); 1538 dsi_dln0_phy_err(msm_host); 1539 1540 queue_work(msm_host->workqueue, &msm_host->err_work); 1541 } 1542 1543 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1544 { 1545 struct msm_dsi_host *msm_host = ptr; 1546 u32 isr; 1547 unsigned long flags; 1548 1549 if (!msm_host->ctrl_base) 1550 return IRQ_HANDLED; 1551 1552 spin_lock_irqsave(&msm_host->intr_lock, flags); 1553 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1554 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1555 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1556 1557 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1558 1559 if (isr & DSI_IRQ_ERROR) 1560 dsi_error(msm_host); 1561 1562 if (isr & DSI_IRQ_VIDEO_DONE) 1563 complete(&msm_host->video_comp); 1564 1565 if (isr & DSI_IRQ_CMD_DMA_DONE) 1566 complete(&msm_host->dma_comp); 1567 1568 return IRQ_HANDLED; 1569 } 1570 1571 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1572 struct device *panel_device) 1573 { 1574 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1575 "disp-enable", 1576 GPIOD_OUT_LOW); 1577 if (IS_ERR(msm_host->disp_en_gpio)) { 1578 DBG("cannot get disp-enable-gpios %ld", 1579 PTR_ERR(msm_host->disp_en_gpio)); 1580 return PTR_ERR(msm_host->disp_en_gpio); 1581 } 1582 1583 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1584 GPIOD_IN); 1585 if (IS_ERR(msm_host->te_gpio)) { 1586 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1587 return PTR_ERR(msm_host->te_gpio); 1588 } 1589 1590 return 0; 1591 } 1592 1593 static int dsi_host_attach(struct mipi_dsi_host *host, 1594 struct mipi_dsi_device *dsi) 1595 { 1596 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1597 int ret; 1598 1599 if (dsi->lanes > msm_host->num_data_lanes) 1600 return -EINVAL; 1601 1602 msm_host->channel = dsi->channel; 1603 msm_host->lanes = dsi->lanes; 1604 msm_host->format = dsi->format; 1605 msm_host->mode_flags = dsi->mode_flags; 1606 if (dsi->dsc) 1607 msm_host->dsc = dsi->dsc; 1608 1609 /* Some gpios defined in panel DT need to be controlled by host */ 1610 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1611 if (ret) 1612 return ret; 1613 1614 ret = dsi_dev_attach(msm_host->pdev); 1615 if (ret) 1616 return ret; 1617 1618 DBG("id=%d", msm_host->id); 1619 1620 return 0; 1621 } 1622 1623 static int dsi_host_detach(struct mipi_dsi_host *host, 1624 struct mipi_dsi_device *dsi) 1625 { 1626 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1627 1628 dsi_dev_detach(msm_host->pdev); 1629 1630 DBG("id=%d", msm_host->id); 1631 1632 return 0; 1633 } 1634 1635 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1636 const struct mipi_dsi_msg *msg) 1637 { 1638 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1639 int ret; 1640 1641 if (!msg || !msm_host->power_on) 1642 return -EINVAL; 1643 1644 mutex_lock(&msm_host->cmd_mutex); 1645 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1646 mutex_unlock(&msm_host->cmd_mutex); 1647 1648 return ret; 1649 } 1650 1651 static const struct mipi_dsi_host_ops dsi_host_ops = { 1652 .attach = dsi_host_attach, 1653 .detach = dsi_host_detach, 1654 .transfer = dsi_host_transfer, 1655 }; 1656 1657 /* 1658 * List of supported physical to logical lane mappings. 1659 * For example, the 2nd entry represents the following mapping: 1660 * 1661 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1662 */ 1663 static const int supported_data_lane_swaps[][4] = { 1664 { 0, 1, 2, 3 }, 1665 { 3, 0, 1, 2 }, 1666 { 2, 3, 0, 1 }, 1667 { 1, 2, 3, 0 }, 1668 { 0, 3, 2, 1 }, 1669 { 1, 0, 3, 2 }, 1670 { 2, 1, 0, 3 }, 1671 { 3, 2, 1, 0 }, 1672 }; 1673 1674 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1675 struct device_node *ep) 1676 { 1677 struct device *dev = &msm_host->pdev->dev; 1678 struct property *prop; 1679 u32 lane_map[4]; 1680 int ret, i, len, num_lanes; 1681 1682 prop = of_find_property(ep, "data-lanes", &len); 1683 if (!prop) { 1684 DRM_DEV_DEBUG(dev, 1685 "failed to find data lane mapping, using default\n"); 1686 /* Set the number of date lanes to 4 by default. */ 1687 msm_host->num_data_lanes = 4; 1688 return 0; 1689 } 1690 1691 num_lanes = drm_of_get_data_lanes_count(ep, 1, 4); 1692 if (num_lanes < 0) { 1693 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1694 return num_lanes; 1695 } 1696 1697 msm_host->num_data_lanes = num_lanes; 1698 1699 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1700 num_lanes); 1701 if (ret) { 1702 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1703 return ret; 1704 } 1705 1706 /* 1707 * compare DT specified physical-logical lane mappings with the ones 1708 * supported by hardware 1709 */ 1710 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1711 const int *swap = supported_data_lane_swaps[i]; 1712 int j; 1713 1714 /* 1715 * the data-lanes array we get from DT has a logical->physical 1716 * mapping. The "data lane swap" register field represents 1717 * supported configurations in a physical->logical mapping. 1718 * Translate the DT mapping to what we understand and find a 1719 * configuration that works. 1720 */ 1721 for (j = 0; j < num_lanes; j++) { 1722 if (lane_map[j] < 0 || lane_map[j] > 3) 1723 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1724 lane_map[j]); 1725 1726 if (swap[lane_map[j]] != j) 1727 break; 1728 } 1729 1730 if (j == num_lanes) { 1731 msm_host->dlane_swap = i; 1732 return 0; 1733 } 1734 } 1735 1736 return -EINVAL; 1737 } 1738 1739 static u32 dsi_dsc_rc_buf_thresh[DSC_NUM_BUF_RANGES - 1] = { 1740 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 1741 0x69, 0x70, 0x77, 0x79, 0x7b, 0x7d, 0x7e 1742 }; 1743 1744 /* only 8bpc, 8bpp added */ 1745 static char min_qp[DSC_NUM_BUF_RANGES] = { 1746 0, 0, 1, 1, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 13 1747 }; 1748 1749 static char max_qp[DSC_NUM_BUF_RANGES] = { 1750 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13, 15 1751 }; 1752 1753 static char bpg_offset[DSC_NUM_BUF_RANGES] = { 1754 2, 0, 0, -2, -4, -6, -8, -8, -8, -10, -10, -12, -12, -12, -12 1755 }; 1756 1757 static int dsi_populate_dsc_params(struct drm_dsc_config *dsc) 1758 { 1759 int mux_words_size; 1760 int groups_per_line, groups_total; 1761 int min_rate_buffer_size; 1762 int hrd_delay; 1763 int pre_num_extra_mux_bits, num_extra_mux_bits; 1764 int slice_bits; 1765 int target_bpp_x16; 1766 int data; 1767 int final_value, final_scale; 1768 int i; 1769 1770 dsc->rc_model_size = 8192; 1771 dsc->first_line_bpg_offset = 12; 1772 dsc->rc_edge_factor = 6; 1773 dsc->rc_tgt_offset_high = 3; 1774 dsc->rc_tgt_offset_low = 3; 1775 dsc->simple_422 = 0; 1776 dsc->convert_rgb = 1; 1777 dsc->vbr_enable = 0; 1778 1779 /* handle only bpp = bpc = 8 */ 1780 for (i = 0; i < DSC_NUM_BUF_RANGES - 1 ; i++) 1781 dsc->rc_buf_thresh[i] = dsi_dsc_rc_buf_thresh[i]; 1782 1783 for (i = 0; i < DSC_NUM_BUF_RANGES; i++) { 1784 dsc->rc_range_params[i].range_min_qp = min_qp[i]; 1785 dsc->rc_range_params[i].range_max_qp = max_qp[i]; 1786 dsc->rc_range_params[i].range_bpg_offset = bpg_offset[i]; 1787 } 1788 1789 dsc->initial_offset = 6144; /* Not bpp 12 */ 1790 if (dsc->bits_per_pixel != 8) 1791 dsc->initial_offset = 2048; /* bpp = 12 */ 1792 1793 mux_words_size = 48; /* bpc == 8/10 */ 1794 if (dsc->bits_per_component == 12) 1795 mux_words_size = 64; 1796 1797 dsc->initial_xmit_delay = 512; 1798 dsc->initial_scale_value = 32; 1799 dsc->first_line_bpg_offset = 12; 1800 dsc->line_buf_depth = dsc->bits_per_component + 1; 1801 1802 /* bpc 8 */ 1803 dsc->flatness_min_qp = 3; 1804 dsc->flatness_max_qp = 12; 1805 dsc->rc_quant_incr_limit0 = 11; 1806 dsc->rc_quant_incr_limit1 = 11; 1807 dsc->mux_word_size = DSC_MUX_WORD_SIZE_8_10_BPC; 1808 1809 /* FIXME: need to call drm_dsc_compute_rc_parameters() so that rest of 1810 * params are calculated 1811 */ 1812 groups_per_line = DIV_ROUND_UP(dsc->slice_width, 3); 1813 dsc->slice_chunk_size = dsc->slice_width * dsc->bits_per_pixel / 8; 1814 if ((dsc->slice_width * dsc->bits_per_pixel) % 8) 1815 dsc->slice_chunk_size++; 1816 1817 /* rbs-min */ 1818 min_rate_buffer_size = dsc->rc_model_size - dsc->initial_offset + 1819 dsc->initial_xmit_delay * dsc->bits_per_pixel + 1820 groups_per_line * dsc->first_line_bpg_offset; 1821 1822 hrd_delay = DIV_ROUND_UP(min_rate_buffer_size, dsc->bits_per_pixel); 1823 1824 dsc->initial_dec_delay = hrd_delay - dsc->initial_xmit_delay; 1825 1826 dsc->initial_scale_value = 8 * dsc->rc_model_size / 1827 (dsc->rc_model_size - dsc->initial_offset); 1828 1829 slice_bits = 8 * dsc->slice_chunk_size * dsc->slice_height; 1830 1831 groups_total = groups_per_line * dsc->slice_height; 1832 1833 data = dsc->first_line_bpg_offset * 2048; 1834 1835 dsc->nfl_bpg_offset = DIV_ROUND_UP(data, (dsc->slice_height - 1)); 1836 1837 pre_num_extra_mux_bits = 3 * (mux_words_size + (4 * dsc->bits_per_component + 4) - 2); 1838 1839 num_extra_mux_bits = pre_num_extra_mux_bits - (mux_words_size - 1840 ((slice_bits - pre_num_extra_mux_bits) % mux_words_size)); 1841 1842 data = 2048 * (dsc->rc_model_size - dsc->initial_offset + num_extra_mux_bits); 1843 dsc->slice_bpg_offset = DIV_ROUND_UP(data, groups_total); 1844 1845 /* bpp * 16 + 0.5 */ 1846 data = dsc->bits_per_pixel * 16; 1847 data *= 2; 1848 data++; 1849 data /= 2; 1850 target_bpp_x16 = data; 1851 1852 data = (dsc->initial_xmit_delay * target_bpp_x16) / 16; 1853 final_value = dsc->rc_model_size - data + num_extra_mux_bits; 1854 dsc->final_offset = final_value; 1855 1856 final_scale = 8 * dsc->rc_model_size / (dsc->rc_model_size - final_value); 1857 1858 data = (final_scale - 9) * (dsc->nfl_bpg_offset + dsc->slice_bpg_offset); 1859 dsc->scale_increment_interval = (2048 * dsc->final_offset) / data; 1860 1861 dsc->scale_decrement_interval = groups_per_line / (dsc->initial_scale_value - 8); 1862 1863 return 0; 1864 } 1865 1866 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1867 { 1868 struct device *dev = &msm_host->pdev->dev; 1869 struct device_node *np = dev->of_node; 1870 struct device_node *endpoint; 1871 int ret = 0; 1872 1873 /* 1874 * Get the endpoint of the output port of the DSI host. In our case, 1875 * this is mapped to port number with reg = 1. Don't return an error if 1876 * the remote endpoint isn't defined. It's possible that there is 1877 * nothing connected to the dsi output. 1878 */ 1879 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1880 if (!endpoint) { 1881 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1882 return 0; 1883 } 1884 1885 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1886 if (ret) { 1887 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1888 __func__, ret); 1889 ret = -EINVAL; 1890 goto err; 1891 } 1892 1893 if (of_property_read_bool(np, "syscon-sfpb")) { 1894 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1895 "syscon-sfpb"); 1896 if (IS_ERR(msm_host->sfpb)) { 1897 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1898 __func__); 1899 ret = PTR_ERR(msm_host->sfpb); 1900 } 1901 } 1902 1903 err: 1904 of_node_put(endpoint); 1905 1906 return ret; 1907 } 1908 1909 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1910 { 1911 struct platform_device *pdev = msm_host->pdev; 1912 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1913 struct resource *res; 1914 int i; 1915 1916 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1917 if (!res) 1918 return -EINVAL; 1919 1920 for (i = 0; i < cfg->num_dsi; i++) { 1921 if (cfg->io_start[i] == res->start) 1922 return i; 1923 } 1924 1925 return -EINVAL; 1926 } 1927 1928 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1929 { 1930 struct msm_dsi_host *msm_host = NULL; 1931 struct platform_device *pdev = msm_dsi->pdev; 1932 const struct msm_dsi_config *cfg; 1933 int ret; 1934 1935 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1936 if (!msm_host) { 1937 ret = -ENOMEM; 1938 goto fail; 1939 } 1940 1941 msm_host->pdev = pdev; 1942 msm_dsi->host = &msm_host->base; 1943 1944 ret = dsi_host_parse_dt(msm_host); 1945 if (ret) { 1946 pr_err("%s: failed to parse dt\n", __func__); 1947 goto fail; 1948 } 1949 1950 msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size); 1951 if (IS_ERR(msm_host->ctrl_base)) { 1952 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1953 ret = PTR_ERR(msm_host->ctrl_base); 1954 goto fail; 1955 } 1956 1957 pm_runtime_enable(&pdev->dev); 1958 1959 msm_host->cfg_hnd = dsi_get_config(msm_host); 1960 if (!msm_host->cfg_hnd) { 1961 ret = -EINVAL; 1962 pr_err("%s: get config failed\n", __func__); 1963 goto fail; 1964 } 1965 cfg = msm_host->cfg_hnd->cfg; 1966 1967 msm_host->id = dsi_host_get_id(msm_host); 1968 if (msm_host->id < 0) { 1969 ret = msm_host->id; 1970 pr_err("%s: unable to identify DSI host index\n", __func__); 1971 goto fail; 1972 } 1973 1974 /* fixup base address by io offset */ 1975 msm_host->ctrl_base += cfg->io_offset; 1976 1977 ret = devm_regulator_bulk_get_const(&pdev->dev, cfg->num_regulators, 1978 cfg->regulator_data, 1979 &msm_host->supplies); 1980 if (ret) 1981 goto fail; 1982 1983 ret = dsi_clk_init(msm_host); 1984 if (ret) { 1985 pr_err("%s: unable to initialize dsi clks\n", __func__); 1986 goto fail; 1987 } 1988 1989 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1990 if (!msm_host->rx_buf) { 1991 ret = -ENOMEM; 1992 pr_err("%s: alloc rx temp buf failed\n", __func__); 1993 goto fail; 1994 } 1995 1996 ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); 1997 if (ret) 1998 return ret; 1999 /* OPP table is optional */ 2000 ret = devm_pm_opp_of_add_table(&pdev->dev); 2001 if (ret && ret != -ENODEV) { 2002 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 2003 return ret; 2004 } 2005 2006 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 2007 if (msm_host->irq < 0) { 2008 ret = msm_host->irq; 2009 dev_err(&pdev->dev, "failed to get irq: %d\n", ret); 2010 return ret; 2011 } 2012 2013 /* do not autoenable, will be enabled later */ 2014 ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, 2015 IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN, 2016 "dsi_isr", msm_host); 2017 if (ret < 0) { 2018 dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", 2019 msm_host->irq, ret); 2020 return ret; 2021 } 2022 2023 init_completion(&msm_host->dma_comp); 2024 init_completion(&msm_host->video_comp); 2025 mutex_init(&msm_host->dev_mutex); 2026 mutex_init(&msm_host->cmd_mutex); 2027 spin_lock_init(&msm_host->intr_lock); 2028 2029 /* setup workqueue */ 2030 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 2031 INIT_WORK(&msm_host->err_work, dsi_err_worker); 2032 2033 msm_dsi->id = msm_host->id; 2034 2035 DBG("Dsi Host %d initialized", msm_host->id); 2036 return 0; 2037 2038 fail: 2039 return ret; 2040 } 2041 2042 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 2043 { 2044 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2045 2046 DBG(""); 2047 dsi_tx_buf_free(msm_host); 2048 if (msm_host->workqueue) { 2049 destroy_workqueue(msm_host->workqueue); 2050 msm_host->workqueue = NULL; 2051 } 2052 2053 mutex_destroy(&msm_host->cmd_mutex); 2054 mutex_destroy(&msm_host->dev_mutex); 2055 2056 pm_runtime_disable(&msm_host->pdev->dev); 2057 } 2058 2059 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 2060 struct drm_device *dev) 2061 { 2062 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2063 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2064 int ret; 2065 2066 msm_host->dev = dev; 2067 2068 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 2069 if (ret) { 2070 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 2071 return ret; 2072 } 2073 2074 return 0; 2075 } 2076 2077 int msm_dsi_host_register(struct mipi_dsi_host *host) 2078 { 2079 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2080 int ret; 2081 2082 /* Register mipi dsi host */ 2083 if (!msm_host->registered) { 2084 host->dev = &msm_host->pdev->dev; 2085 host->ops = &dsi_host_ops; 2086 ret = mipi_dsi_host_register(host); 2087 if (ret) 2088 return ret; 2089 2090 msm_host->registered = true; 2091 } 2092 2093 return 0; 2094 } 2095 2096 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 2097 { 2098 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2099 2100 if (msm_host->registered) { 2101 mipi_dsi_host_unregister(host); 2102 host->dev = NULL; 2103 host->ops = NULL; 2104 msm_host->registered = false; 2105 } 2106 } 2107 2108 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 2109 const struct mipi_dsi_msg *msg) 2110 { 2111 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2112 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2113 2114 /* TODO: make sure dsi_cmd_mdp is idle. 2115 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 2116 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 2117 * How to handle the old versions? Wait for mdp cmd done? 2118 */ 2119 2120 /* 2121 * mdss interrupt is generated in mdp core clock domain 2122 * mdp clock need to be enabled to receive dsi interrupt 2123 */ 2124 pm_runtime_get_sync(&msm_host->pdev->dev); 2125 cfg_hnd->ops->link_clk_set_rate(msm_host); 2126 cfg_hnd->ops->link_clk_enable(msm_host); 2127 2128 /* TODO: vote for bus bandwidth */ 2129 2130 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2131 dsi_set_tx_power_mode(0, msm_host); 2132 2133 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2134 dsi_write(msm_host, REG_DSI_CTRL, 2135 msm_host->dma_cmd_ctrl_restore | 2136 DSI_CTRL_CMD_MODE_EN | 2137 DSI_CTRL_ENABLE); 2138 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2139 2140 return 0; 2141 } 2142 2143 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2144 const struct mipi_dsi_msg *msg) 2145 { 2146 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2147 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2148 2149 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2150 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2151 2152 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2153 dsi_set_tx_power_mode(1, msm_host); 2154 2155 /* TODO: unvote for bus bandwidth */ 2156 2157 cfg_hnd->ops->link_clk_disable(msm_host); 2158 pm_runtime_put(&msm_host->pdev->dev); 2159 } 2160 2161 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2162 const struct mipi_dsi_msg *msg) 2163 { 2164 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2165 2166 return dsi_cmds2buf_tx(msm_host, msg); 2167 } 2168 2169 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2170 const struct mipi_dsi_msg *msg) 2171 { 2172 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2173 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2174 int data_byte, rx_byte, dlen, end; 2175 int short_response, diff, pkt_size, ret = 0; 2176 char cmd; 2177 int rlen = msg->rx_len; 2178 u8 *buf; 2179 2180 if (rlen <= 2) { 2181 short_response = 1; 2182 pkt_size = rlen; 2183 rx_byte = 4; 2184 } else { 2185 short_response = 0; 2186 data_byte = 10; /* first read */ 2187 if (rlen < data_byte) 2188 pkt_size = rlen; 2189 else 2190 pkt_size = data_byte; 2191 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2192 } 2193 2194 buf = msm_host->rx_buf; 2195 end = 0; 2196 while (!end) { 2197 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2198 struct mipi_dsi_msg max_pkt_size_msg = { 2199 .channel = msg->channel, 2200 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2201 .tx_len = 2, 2202 .tx_buf = tx, 2203 }; 2204 2205 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2206 rlen, pkt_size, rx_byte); 2207 2208 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2209 if (ret < 2) { 2210 pr_err("%s: Set max pkt size failed, %d\n", 2211 __func__, ret); 2212 return -EINVAL; 2213 } 2214 2215 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2216 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2217 /* Clear the RDBK_DATA registers */ 2218 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2219 DSI_RDBK_DATA_CTRL_CLR); 2220 wmb(); /* make sure the RDBK registers are cleared */ 2221 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2222 wmb(); /* release cleared status before transfer */ 2223 } 2224 2225 ret = dsi_cmds2buf_tx(msm_host, msg); 2226 if (ret < 0) { 2227 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2228 return ret; 2229 } else if (ret < msg->tx_len) { 2230 pr_err("%s: Read cmd Tx failed, too short: %d\n", __func__, ret); 2231 return -ECOMM; 2232 } 2233 2234 /* 2235 * once cmd_dma_done interrupt received, 2236 * return data from client is ready and stored 2237 * at RDBK_DATA register already 2238 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2239 * after that dcs header lost during shift into registers 2240 */ 2241 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2242 2243 if (dlen <= 0) 2244 return 0; 2245 2246 if (short_response) 2247 break; 2248 2249 if (rlen <= data_byte) { 2250 diff = data_byte - rlen; 2251 end = 1; 2252 } else { 2253 diff = 0; 2254 rlen -= data_byte; 2255 } 2256 2257 if (!end) { 2258 dlen -= 2; /* 2 crc */ 2259 dlen -= diff; 2260 buf += dlen; /* next start position */ 2261 data_byte = 14; /* NOT first read */ 2262 if (rlen < data_byte) 2263 pkt_size += rlen; 2264 else 2265 pkt_size += data_byte; 2266 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2267 } 2268 } 2269 2270 /* 2271 * For single Long read, if the requested rlen < 10, 2272 * we need to shift the start position of rx 2273 * data buffer to skip the bytes which are not 2274 * updated. 2275 */ 2276 if (pkt_size < 10 && !short_response) 2277 buf = msm_host->rx_buf + (10 - rlen); 2278 else 2279 buf = msm_host->rx_buf; 2280 2281 cmd = buf[0]; 2282 switch (cmd) { 2283 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2284 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2285 ret = 0; 2286 break; 2287 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2288 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2289 ret = dsi_short_read1_resp(buf, msg); 2290 break; 2291 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2292 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2293 ret = dsi_short_read2_resp(buf, msg); 2294 break; 2295 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2296 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2297 ret = dsi_long_read_resp(buf, msg); 2298 break; 2299 default: 2300 pr_warn("%s:Invalid response cmd\n", __func__); 2301 ret = 0; 2302 } 2303 2304 return ret; 2305 } 2306 2307 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2308 u32 len) 2309 { 2310 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2311 2312 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2313 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2314 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2315 2316 /* Make sure trigger happens */ 2317 wmb(); 2318 } 2319 2320 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host, 2321 struct msm_dsi_phy *src_phy) 2322 { 2323 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2324 2325 msm_host->cphy_mode = src_phy->cphy_mode; 2326 } 2327 2328 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2329 { 2330 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2331 2332 DBG(""); 2333 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2334 /* Make sure fully reset */ 2335 wmb(); 2336 udelay(1000); 2337 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2338 udelay(100); 2339 } 2340 2341 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2342 struct msm_dsi_phy_clk_request *clk_req, 2343 bool is_bonded_dsi) 2344 { 2345 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2346 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2347 int ret; 2348 2349 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi); 2350 if (ret) { 2351 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2352 return; 2353 } 2354 2355 /* CPHY transmits 16 bits over 7 clock cycles 2356 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk), 2357 * so multiply by 7 to get the "bitclk rate" 2358 */ 2359 if (msm_host->cphy_mode) 2360 clk_req->bitclk_rate = msm_host->byte_clk_rate * 7; 2361 else 2362 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2363 clk_req->escclk_rate = msm_host->esc_clk_rate; 2364 } 2365 2366 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host) 2367 { 2368 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2369 2370 enable_irq(msm_host->irq); 2371 } 2372 2373 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host) 2374 { 2375 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2376 2377 disable_irq(msm_host->irq); 2378 } 2379 2380 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2381 { 2382 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2383 2384 dsi_op_mode_config(msm_host, 2385 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2386 2387 /* TODO: clock should be turned off for command mode, 2388 * and only turned on before MDP START. 2389 * This part of code should be enabled once mdp driver support it. 2390 */ 2391 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2392 * dsi_link_clk_disable(msm_host); 2393 * pm_runtime_put(&msm_host->pdev->dev); 2394 * } 2395 */ 2396 msm_host->enabled = true; 2397 return 0; 2398 } 2399 2400 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2401 { 2402 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2403 2404 msm_host->enabled = false; 2405 dsi_op_mode_config(msm_host, 2406 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2407 2408 /* Since we have disabled INTF, the video engine won't stop so that 2409 * the cmd engine will be blocked. 2410 * Reset to disable video engine so that we can send off cmd. 2411 */ 2412 dsi_sw_reset(msm_host); 2413 2414 return 0; 2415 } 2416 2417 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2418 { 2419 enum sfpb_ahb_arb_master_port_en en; 2420 2421 if (!msm_host->sfpb) 2422 return; 2423 2424 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2425 2426 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2427 SFPB_GPREG_MASTER_PORT_EN__MASK, 2428 SFPB_GPREG_MASTER_PORT_EN(en)); 2429 } 2430 2431 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2432 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2433 bool is_bonded_dsi, struct msm_dsi_phy *phy) 2434 { 2435 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2436 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2437 int ret = 0; 2438 2439 mutex_lock(&msm_host->dev_mutex); 2440 if (msm_host->power_on) { 2441 DBG("dsi host already on"); 2442 goto unlock_ret; 2443 } 2444 2445 msm_dsi_sfpb_config(msm_host, true); 2446 2447 ret = regulator_bulk_enable(msm_host->cfg_hnd->cfg->num_regulators, 2448 msm_host->supplies); 2449 if (ret) { 2450 pr_err("%s:Failed to enable vregs.ret=%d\n", 2451 __func__, ret); 2452 goto unlock_ret; 2453 } 2454 2455 pm_runtime_get_sync(&msm_host->pdev->dev); 2456 ret = cfg_hnd->ops->link_clk_set_rate(msm_host); 2457 if (!ret) 2458 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2459 if (ret) { 2460 pr_err("%s: failed to enable link clocks. ret=%d\n", 2461 __func__, ret); 2462 goto fail_disable_reg; 2463 } 2464 2465 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2466 if (ret) { 2467 pr_err("%s: failed to set pinctrl default state, %d\n", 2468 __func__, ret); 2469 goto fail_disable_clk; 2470 } 2471 2472 dsi_timing_setup(msm_host, is_bonded_dsi); 2473 dsi_sw_reset(msm_host); 2474 dsi_ctrl_config(msm_host, true, phy_shared_timings, phy); 2475 2476 if (msm_host->disp_en_gpio) 2477 gpiod_set_value(msm_host->disp_en_gpio, 1); 2478 2479 msm_host->power_on = true; 2480 mutex_unlock(&msm_host->dev_mutex); 2481 2482 return 0; 2483 2484 fail_disable_clk: 2485 cfg_hnd->ops->link_clk_disable(msm_host); 2486 pm_runtime_put(&msm_host->pdev->dev); 2487 fail_disable_reg: 2488 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2489 msm_host->supplies); 2490 unlock_ret: 2491 mutex_unlock(&msm_host->dev_mutex); 2492 return ret; 2493 } 2494 2495 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2496 { 2497 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2498 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2499 2500 mutex_lock(&msm_host->dev_mutex); 2501 if (!msm_host->power_on) { 2502 DBG("dsi host already off"); 2503 goto unlock_ret; 2504 } 2505 2506 dsi_ctrl_config(msm_host, false, NULL, NULL); 2507 2508 if (msm_host->disp_en_gpio) 2509 gpiod_set_value(msm_host->disp_en_gpio, 0); 2510 2511 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2512 2513 cfg_hnd->ops->link_clk_disable(msm_host); 2514 pm_runtime_put(&msm_host->pdev->dev); 2515 2516 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2517 msm_host->supplies); 2518 2519 msm_dsi_sfpb_config(msm_host, false); 2520 2521 DBG("-"); 2522 2523 msm_host->power_on = false; 2524 2525 unlock_ret: 2526 mutex_unlock(&msm_host->dev_mutex); 2527 return 0; 2528 } 2529 2530 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2531 const struct drm_display_mode *mode) 2532 { 2533 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2534 2535 if (msm_host->mode) { 2536 drm_mode_destroy(msm_host->dev, msm_host->mode); 2537 msm_host->mode = NULL; 2538 } 2539 2540 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2541 if (!msm_host->mode) { 2542 pr_err("%s: cannot duplicate mode\n", __func__); 2543 return -ENOMEM; 2544 } 2545 2546 return 0; 2547 } 2548 2549 enum drm_mode_status msm_dsi_host_check_dsc(struct mipi_dsi_host *host, 2550 const struct drm_display_mode *mode) 2551 { 2552 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2553 struct drm_dsc_config *dsc = msm_host->dsc; 2554 int pic_width = mode->hdisplay; 2555 int pic_height = mode->vdisplay; 2556 2557 if (!msm_host->dsc) 2558 return MODE_OK; 2559 2560 if (pic_width % dsc->slice_width) { 2561 pr_err("DSI: pic_width %d has to be multiple of slice %d\n", 2562 pic_width, dsc->slice_width); 2563 return MODE_H_ILLEGAL; 2564 } 2565 2566 if (pic_height % dsc->slice_height) { 2567 pr_err("DSI: pic_height %d has to be multiple of slice %d\n", 2568 pic_height, dsc->slice_height); 2569 return MODE_V_ILLEGAL; 2570 } 2571 2572 return MODE_OK; 2573 } 2574 2575 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2576 { 2577 return to_msm_dsi_host(host)->mode_flags; 2578 } 2579 2580 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) 2581 { 2582 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2583 2584 pm_runtime_get_sync(&msm_host->pdev->dev); 2585 2586 msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, 2587 msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); 2588 2589 pm_runtime_put_sync(&msm_host->pdev->dev); 2590 } 2591 2592 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host) 2593 { 2594 u32 reg; 2595 2596 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2597 2598 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff); 2599 /* draw checkered rectangle pattern */ 2600 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL, 2601 DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN); 2602 /* use 24-bit RGB test pttern */ 2603 dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG, 2604 DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) | 2605 DSI_TPG_VIDEO_CONFIG_RGB); 2606 2607 reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN); 2608 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2609 2610 DBG("Video test pattern setup done\n"); 2611 } 2612 2613 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host) 2614 { 2615 u32 reg; 2616 2617 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2618 2619 /* initial value for test pattern */ 2620 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff); 2621 2622 reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN); 2623 2624 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2625 /* draw checkered rectangle pattern */ 2626 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2, 2627 DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN); 2628 2629 DBG("Cmd test pattern setup done\n"); 2630 } 2631 2632 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host) 2633 { 2634 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2635 bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO); 2636 u32 reg; 2637 2638 if (is_video_mode) 2639 msm_dsi_host_video_test_pattern_setup(msm_host); 2640 else 2641 msm_dsi_host_cmd_test_pattern_setup(msm_host); 2642 2643 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2644 /* enable the test pattern generator */ 2645 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN)); 2646 2647 /* for command mode need to trigger one frame from tpg */ 2648 if (!is_video_mode) 2649 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, 2650 DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER); 2651 } 2652 2653 struct drm_dsc_config *msm_dsi_host_get_dsc_config(struct mipi_dsi_host *host) 2654 { 2655 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2656 2657 return msm_host->dsc; 2658 } 2659