xref: /openbmc/linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_opp.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/spinlock.h>
21 
22 #include <video/mipi_display.h>
23 
24 #include "dsi.h"
25 #include "dsi.xml.h"
26 #include "sfpb.xml.h"
27 #include "dsi_cfg.h"
28 #include "msm_kms.h"
29 
30 #define DSI_RESET_TOGGLE_DELAY_MS 20
31 
32 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
33 {
34 	u32 ver;
35 
36 	if (!major || !minor)
37 		return -EINVAL;
38 
39 	/*
40 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
41 	 * makes all other registers 4-byte shifted down.
42 	 *
43 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
44 	 * older, we read the DSI_VERSION register without any shift(offset
45 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
46 	 * the case of DSI6G, this has to be zero (the offset points to a
47 	 * scratch register which we never touch)
48 	 */
49 
50 	ver = msm_readl(base + REG_DSI_VERSION);
51 	if (ver) {
52 		/* older dsi host, there is no register shift */
53 		ver = FIELD(ver, DSI_VERSION_MAJOR);
54 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
55 			/* old versions */
56 			*major = ver;
57 			*minor = 0;
58 			return 0;
59 		} else {
60 			return -EINVAL;
61 		}
62 	} else {
63 		/*
64 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
65 		 * registers are shifted down, read DSI_VERSION again with
66 		 * the shifted offset
67 		 */
68 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
69 		ver = FIELD(ver, DSI_VERSION_MAJOR);
70 		if (ver == MSM_DSI_VER_MAJOR_6G) {
71 			/* 6G version */
72 			*major = ver;
73 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
74 			return 0;
75 		} else {
76 			return -EINVAL;
77 		}
78 	}
79 }
80 
81 #define DSI_ERR_STATE_ACK			0x0000
82 #define DSI_ERR_STATE_TIMEOUT			0x0001
83 #define DSI_ERR_STATE_DLN0_PHY			0x0002
84 #define DSI_ERR_STATE_FIFO			0x0004
85 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
86 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
87 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
88 
89 #define DSI_CLK_CTRL_ENABLE_CLKS	\
90 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
91 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
92 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
93 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
94 
95 struct msm_dsi_host {
96 	struct mipi_dsi_host base;
97 
98 	struct platform_device *pdev;
99 	struct drm_device *dev;
100 
101 	int id;
102 
103 	void __iomem *ctrl_base;
104 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
105 
106 	struct clk *bus_clks[DSI_BUS_CLK_MAX];
107 
108 	struct clk *byte_clk;
109 	struct clk *esc_clk;
110 	struct clk *pixel_clk;
111 	struct clk *byte_clk_src;
112 	struct clk *pixel_clk_src;
113 	struct clk *byte_intf_clk;
114 
115 	struct opp_table *opp_table;
116 	bool has_opp_table;
117 
118 	u32 byte_clk_rate;
119 	u32 pixel_clk_rate;
120 	u32 esc_clk_rate;
121 
122 	/* DSI v2 specific clocks */
123 	struct clk *src_clk;
124 	struct clk *esc_clk_src;
125 	struct clk *dsi_clk_src;
126 
127 	u32 src_clk_rate;
128 
129 	struct gpio_desc *disp_en_gpio;
130 	struct gpio_desc *te_gpio;
131 
132 	const struct msm_dsi_cfg_handler *cfg_hnd;
133 
134 	struct completion dma_comp;
135 	struct completion video_comp;
136 	struct mutex dev_mutex;
137 	struct mutex cmd_mutex;
138 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
139 
140 	u32 err_work_state;
141 	struct work_struct err_work;
142 	struct work_struct hpd_work;
143 	struct workqueue_struct *workqueue;
144 
145 	/* DSI 6G TX buffer*/
146 	struct drm_gem_object *tx_gem_obj;
147 
148 	/* DSI v2 TX buffer */
149 	void *tx_buf;
150 	dma_addr_t tx_buf_paddr;
151 
152 	int tx_size;
153 
154 	u8 *rx_buf;
155 
156 	struct regmap *sfpb;
157 
158 	struct drm_display_mode *mode;
159 
160 	/* connected device info */
161 	struct device_node *device_node;
162 	unsigned int channel;
163 	unsigned int lanes;
164 	enum mipi_dsi_pixel_format format;
165 	unsigned long mode_flags;
166 
167 	/* lane data parsed via DT */
168 	int dlane_swap;
169 	int num_data_lanes;
170 
171 	u32 dma_cmd_ctrl_restore;
172 
173 	bool registered;
174 	bool power_on;
175 	bool enabled;
176 	int irq;
177 };
178 
179 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
180 {
181 	switch (fmt) {
182 	case MIPI_DSI_FMT_RGB565:		return 16;
183 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
184 	case MIPI_DSI_FMT_RGB666:
185 	case MIPI_DSI_FMT_RGB888:
186 	default:				return 24;
187 	}
188 }
189 
190 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
191 {
192 	return msm_readl(msm_host->ctrl_base + reg);
193 }
194 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
195 {
196 	msm_writel(data, msm_host->ctrl_base + reg);
197 }
198 
199 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
200 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
201 
202 static const struct msm_dsi_cfg_handler *dsi_get_config(
203 						struct msm_dsi_host *msm_host)
204 {
205 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
206 	struct device *dev = &msm_host->pdev->dev;
207 	struct regulator *gdsc_reg;
208 	struct clk *ahb_clk;
209 	int ret;
210 	u32 major = 0, minor = 0;
211 
212 	gdsc_reg = regulator_get(dev, "gdsc");
213 	if (IS_ERR(gdsc_reg)) {
214 		pr_err("%s: cannot get gdsc\n", __func__);
215 		goto exit;
216 	}
217 
218 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
219 	if (IS_ERR(ahb_clk)) {
220 		pr_err("%s: cannot get interface clock\n", __func__);
221 		goto put_gdsc;
222 	}
223 
224 	pm_runtime_get_sync(dev);
225 
226 	ret = regulator_enable(gdsc_reg);
227 	if (ret) {
228 		pr_err("%s: unable to enable gdsc\n", __func__);
229 		goto put_gdsc;
230 	}
231 
232 	ret = clk_prepare_enable(ahb_clk);
233 	if (ret) {
234 		pr_err("%s: unable to enable ahb_clk\n", __func__);
235 		goto disable_gdsc;
236 	}
237 
238 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
239 	if (ret) {
240 		pr_err("%s: Invalid version\n", __func__);
241 		goto disable_clks;
242 	}
243 
244 	cfg_hnd = msm_dsi_cfg_get(major, minor);
245 
246 	DBG("%s: Version %x:%x\n", __func__, major, minor);
247 
248 disable_clks:
249 	clk_disable_unprepare(ahb_clk);
250 disable_gdsc:
251 	regulator_disable(gdsc_reg);
252 	pm_runtime_put_sync(dev);
253 put_gdsc:
254 	regulator_put(gdsc_reg);
255 exit:
256 	return cfg_hnd;
257 }
258 
259 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
260 {
261 	return container_of(host, struct msm_dsi_host, base);
262 }
263 
264 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
265 {
266 	struct regulator_bulk_data *s = msm_host->supplies;
267 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
268 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
269 	int i;
270 
271 	DBG("");
272 	for (i = num - 1; i >= 0; i--)
273 		if (regs[i].disable_load >= 0)
274 			regulator_set_load(s[i].consumer,
275 					   regs[i].disable_load);
276 
277 	regulator_bulk_disable(num, s);
278 }
279 
280 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
281 {
282 	struct regulator_bulk_data *s = msm_host->supplies;
283 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
284 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
285 	int ret, i;
286 
287 	DBG("");
288 	for (i = 0; i < num; i++) {
289 		if (regs[i].enable_load >= 0) {
290 			ret = regulator_set_load(s[i].consumer,
291 						 regs[i].enable_load);
292 			if (ret < 0) {
293 				pr_err("regulator %d set op mode failed, %d\n",
294 					i, ret);
295 				goto fail;
296 			}
297 		}
298 	}
299 
300 	ret = regulator_bulk_enable(num, s);
301 	if (ret < 0) {
302 		pr_err("regulator enable failed, %d\n", ret);
303 		goto fail;
304 	}
305 
306 	return 0;
307 
308 fail:
309 	for (i--; i >= 0; i--)
310 		regulator_set_load(s[i].consumer, regs[i].disable_load);
311 	return ret;
312 }
313 
314 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
315 {
316 	struct regulator_bulk_data *s = msm_host->supplies;
317 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
318 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
319 	int i, ret;
320 
321 	for (i = 0; i < num; i++)
322 		s[i].supply = regs[i].name;
323 
324 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
325 	if (ret < 0) {
326 		pr_err("%s: failed to init regulator, ret=%d\n",
327 						__func__, ret);
328 		return ret;
329 	}
330 
331 	return 0;
332 }
333 
334 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
335 {
336 	struct platform_device *pdev = msm_host->pdev;
337 	int ret = 0;
338 
339 	msm_host->src_clk = msm_clk_get(pdev, "src");
340 
341 	if (IS_ERR(msm_host->src_clk)) {
342 		ret = PTR_ERR(msm_host->src_clk);
343 		pr_err("%s: can't find src clock. ret=%d\n",
344 			__func__, ret);
345 		msm_host->src_clk = NULL;
346 		return ret;
347 	}
348 
349 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
350 	if (!msm_host->esc_clk_src) {
351 		ret = -ENODEV;
352 		pr_err("%s: can't get esc clock parent. ret=%d\n",
353 			__func__, ret);
354 		return ret;
355 	}
356 
357 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
358 	if (!msm_host->dsi_clk_src) {
359 		ret = -ENODEV;
360 		pr_err("%s: can't get src clock parent. ret=%d\n",
361 			__func__, ret);
362 	}
363 
364 	return ret;
365 }
366 
367 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
368 {
369 	struct platform_device *pdev = msm_host->pdev;
370 	int ret = 0;
371 
372 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
373 	if (IS_ERR(msm_host->byte_intf_clk)) {
374 		ret = PTR_ERR(msm_host->byte_intf_clk);
375 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
376 			__func__, ret);
377 	}
378 
379 	return ret;
380 }
381 
382 static int dsi_clk_init(struct msm_dsi_host *msm_host)
383 {
384 	struct platform_device *pdev = msm_host->pdev;
385 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
386 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
387 	int i, ret = 0;
388 
389 	/* get bus clocks */
390 	for (i = 0; i < cfg->num_bus_clks; i++) {
391 		msm_host->bus_clks[i] = msm_clk_get(pdev,
392 						cfg->bus_clk_names[i]);
393 		if (IS_ERR(msm_host->bus_clks[i])) {
394 			ret = PTR_ERR(msm_host->bus_clks[i]);
395 			pr_err("%s: Unable to get %s clock, ret = %d\n",
396 				__func__, cfg->bus_clk_names[i], ret);
397 			goto exit;
398 		}
399 	}
400 
401 	/* get link and source clocks */
402 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
403 	if (IS_ERR(msm_host->byte_clk)) {
404 		ret = PTR_ERR(msm_host->byte_clk);
405 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
406 			__func__, ret);
407 		msm_host->byte_clk = NULL;
408 		goto exit;
409 	}
410 
411 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
412 	if (IS_ERR(msm_host->pixel_clk)) {
413 		ret = PTR_ERR(msm_host->pixel_clk);
414 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
415 			__func__, ret);
416 		msm_host->pixel_clk = NULL;
417 		goto exit;
418 	}
419 
420 	msm_host->esc_clk = msm_clk_get(pdev, "core");
421 	if (IS_ERR(msm_host->esc_clk)) {
422 		ret = PTR_ERR(msm_host->esc_clk);
423 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
424 			__func__, ret);
425 		msm_host->esc_clk = NULL;
426 		goto exit;
427 	}
428 
429 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
430 	if (IS_ERR(msm_host->byte_clk_src)) {
431 		ret = PTR_ERR(msm_host->byte_clk_src);
432 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
433 		goto exit;
434 	}
435 
436 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
437 	if (IS_ERR(msm_host->pixel_clk_src)) {
438 		ret = PTR_ERR(msm_host->pixel_clk_src);
439 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
440 		goto exit;
441 	}
442 
443 	if (cfg_hnd->ops->clk_init_ver)
444 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
445 exit:
446 	return ret;
447 }
448 
449 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
450 {
451 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
452 	int i, ret;
453 
454 	DBG("id=%d", msm_host->id);
455 
456 	for (i = 0; i < cfg->num_bus_clks; i++) {
457 		ret = clk_prepare_enable(msm_host->bus_clks[i]);
458 		if (ret) {
459 			pr_err("%s: failed to enable bus clock %d ret %d\n",
460 				__func__, i, ret);
461 			goto err;
462 		}
463 	}
464 
465 	return 0;
466 err:
467 	for (; i > 0; i--)
468 		clk_disable_unprepare(msm_host->bus_clks[i]);
469 
470 	return ret;
471 }
472 
473 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
474 {
475 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
476 	int i;
477 
478 	DBG("");
479 
480 	for (i = cfg->num_bus_clks - 1; i >= 0; i--)
481 		clk_disable_unprepare(msm_host->bus_clks[i]);
482 }
483 
484 int msm_dsi_runtime_suspend(struct device *dev)
485 {
486 	struct platform_device *pdev = to_platform_device(dev);
487 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
488 	struct mipi_dsi_host *host = msm_dsi->host;
489 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
490 
491 	if (!msm_host->cfg_hnd)
492 		return 0;
493 
494 	dsi_bus_clk_disable(msm_host);
495 
496 	return 0;
497 }
498 
499 int msm_dsi_runtime_resume(struct device *dev)
500 {
501 	struct platform_device *pdev = to_platform_device(dev);
502 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
503 	struct mipi_dsi_host *host = msm_dsi->host;
504 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
505 
506 	if (!msm_host->cfg_hnd)
507 		return 0;
508 
509 	return dsi_bus_clk_enable(msm_host);
510 }
511 
512 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host)
513 {
514 	int ret;
515 
516 	DBG("Set clk rates: pclk=%d, byteclk=%d",
517 		msm_host->mode->clock, msm_host->byte_clk_rate);
518 
519 	ret = dev_pm_opp_set_rate(&msm_host->pdev->dev,
520 				  msm_host->byte_clk_rate);
521 	if (ret) {
522 		pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret);
523 		return ret;
524 	}
525 
526 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
527 	if (ret) {
528 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
529 		return ret;
530 	}
531 
532 	if (msm_host->byte_intf_clk) {
533 		ret = clk_set_rate(msm_host->byte_intf_clk,
534 				   msm_host->byte_clk_rate / 2);
535 		if (ret) {
536 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
537 			       __func__, ret);
538 			return ret;
539 		}
540 	}
541 
542 	return 0;
543 }
544 
545 
546 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
547 {
548 	int ret;
549 
550 	ret = clk_prepare_enable(msm_host->esc_clk);
551 	if (ret) {
552 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
553 		goto error;
554 	}
555 
556 	ret = clk_prepare_enable(msm_host->byte_clk);
557 	if (ret) {
558 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
559 		goto byte_clk_err;
560 	}
561 
562 	ret = clk_prepare_enable(msm_host->pixel_clk);
563 	if (ret) {
564 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
565 		goto pixel_clk_err;
566 	}
567 
568 	if (msm_host->byte_intf_clk) {
569 		ret = clk_prepare_enable(msm_host->byte_intf_clk);
570 		if (ret) {
571 			pr_err("%s: Failed to enable byte intf clk\n",
572 			       __func__);
573 			goto byte_intf_clk_err;
574 		}
575 	}
576 
577 	return 0;
578 
579 byte_intf_clk_err:
580 	clk_disable_unprepare(msm_host->pixel_clk);
581 pixel_clk_err:
582 	clk_disable_unprepare(msm_host->byte_clk);
583 byte_clk_err:
584 	clk_disable_unprepare(msm_host->esc_clk);
585 error:
586 	return ret;
587 }
588 
589 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host)
590 {
591 	int ret;
592 
593 	DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
594 		msm_host->mode->clock, msm_host->byte_clk_rate,
595 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
596 
597 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
598 	if (ret) {
599 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
600 		return ret;
601 	}
602 
603 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
604 	if (ret) {
605 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
606 		return ret;
607 	}
608 
609 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
610 	if (ret) {
611 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
612 		return ret;
613 	}
614 
615 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
616 	if (ret) {
617 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
618 		return ret;
619 	}
620 
621 	return 0;
622 }
623 
624 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
625 {
626 	int ret;
627 
628 	ret = clk_prepare_enable(msm_host->byte_clk);
629 	if (ret) {
630 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
631 		goto error;
632 	}
633 
634 	ret = clk_prepare_enable(msm_host->esc_clk);
635 	if (ret) {
636 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
637 		goto esc_clk_err;
638 	}
639 
640 	ret = clk_prepare_enable(msm_host->src_clk);
641 	if (ret) {
642 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
643 		goto src_clk_err;
644 	}
645 
646 	ret = clk_prepare_enable(msm_host->pixel_clk);
647 	if (ret) {
648 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
649 		goto pixel_clk_err;
650 	}
651 
652 	return 0;
653 
654 pixel_clk_err:
655 	clk_disable_unprepare(msm_host->src_clk);
656 src_clk_err:
657 	clk_disable_unprepare(msm_host->esc_clk);
658 esc_clk_err:
659 	clk_disable_unprepare(msm_host->byte_clk);
660 error:
661 	return ret;
662 }
663 
664 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
665 {
666 	/* Drop the performance state vote */
667 	dev_pm_opp_set_rate(&msm_host->pdev->dev, 0);
668 	clk_disable_unprepare(msm_host->esc_clk);
669 	clk_disable_unprepare(msm_host->pixel_clk);
670 	if (msm_host->byte_intf_clk)
671 		clk_disable_unprepare(msm_host->byte_intf_clk);
672 	clk_disable_unprepare(msm_host->byte_clk);
673 }
674 
675 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
676 {
677 	clk_disable_unprepare(msm_host->pixel_clk);
678 	clk_disable_unprepare(msm_host->src_clk);
679 	clk_disable_unprepare(msm_host->esc_clk);
680 	clk_disable_unprepare(msm_host->byte_clk);
681 }
682 
683 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
684 {
685 	struct drm_display_mode *mode = msm_host->mode;
686 	u32 pclk_rate;
687 
688 	pclk_rate = mode->clock * 1000;
689 
690 	/*
691 	 * For dual DSI mode, the current DRM mode has the complete width of the
692 	 * panel. Since, the complete panel is driven by two DSI controllers,
693 	 * the clock rates have to be split between the two dsi controllers.
694 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
695 	 */
696 	if (is_dual_dsi)
697 		pclk_rate /= 2;
698 
699 	return pclk_rate;
700 }
701 
702 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
703 {
704 	u8 lanes = msm_host->lanes;
705 	u32 bpp = dsi_get_bpp(msm_host->format);
706 	u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
707 	u64 pclk_bpp = (u64)pclk_rate * bpp;
708 
709 	if (lanes == 0) {
710 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
711 		lanes = 1;
712 	}
713 
714 	do_div(pclk_bpp, (8 * lanes));
715 
716 	msm_host->pixel_clk_rate = pclk_rate;
717 	msm_host->byte_clk_rate = pclk_bpp;
718 
719 	DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
720 				msm_host->byte_clk_rate);
721 
722 }
723 
724 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
725 {
726 	if (!msm_host->mode) {
727 		pr_err("%s: mode not set\n", __func__);
728 		return -EINVAL;
729 	}
730 
731 	dsi_calc_pclk(msm_host, is_dual_dsi);
732 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
733 	return 0;
734 }
735 
736 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
737 {
738 	u32 bpp = dsi_get_bpp(msm_host->format);
739 	u64 pclk_bpp;
740 	unsigned int esc_mhz, esc_div;
741 	unsigned long byte_mhz;
742 
743 	dsi_calc_pclk(msm_host, is_dual_dsi);
744 
745 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
746 	do_div(pclk_bpp, 8);
747 	msm_host->src_clk_rate = pclk_bpp;
748 
749 	/*
750 	 * esc clock is byte clock followed by a 4 bit divider,
751 	 * we need to find an escape clock frequency within the
752 	 * mipi DSI spec range within the maximum divider limit
753 	 * We iterate here between an escape clock frequencey
754 	 * between 20 Mhz to 5 Mhz and pick up the first one
755 	 * that can be supported by our divider
756 	 */
757 
758 	byte_mhz = msm_host->byte_clk_rate / 1000000;
759 
760 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
761 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
762 
763 		/*
764 		 * TODO: Ideally, we shouldn't know what sort of divider
765 		 * is available in mmss_cc, we're just assuming that
766 		 * it'll always be a 4 bit divider. Need to come up with
767 		 * a better way here.
768 		 */
769 		if (esc_div >= 1 && esc_div <= 16)
770 			break;
771 	}
772 
773 	if (esc_mhz < 5)
774 		return -EINVAL;
775 
776 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
777 
778 	DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
779 		msm_host->src_clk_rate);
780 
781 	return 0;
782 }
783 
784 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
785 {
786 	u32 intr;
787 	unsigned long flags;
788 
789 	spin_lock_irqsave(&msm_host->intr_lock, flags);
790 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
791 
792 	if (enable)
793 		intr |= mask;
794 	else
795 		intr &= ~mask;
796 
797 	DBG("intr=%x enable=%d", intr, enable);
798 
799 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
800 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
801 }
802 
803 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
804 {
805 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
806 		return BURST_MODE;
807 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
808 		return NON_BURST_SYNCH_PULSE;
809 
810 	return NON_BURST_SYNCH_EVENT;
811 }
812 
813 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
814 				const enum mipi_dsi_pixel_format mipi_fmt)
815 {
816 	switch (mipi_fmt) {
817 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
818 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
819 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
820 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
821 	default:			return VID_DST_FORMAT_RGB888;
822 	}
823 }
824 
825 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
826 				const enum mipi_dsi_pixel_format mipi_fmt)
827 {
828 	switch (mipi_fmt) {
829 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
830 	case MIPI_DSI_FMT_RGB666_PACKED:
831 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
832 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
833 	default:			return CMD_DST_FORMAT_RGB888;
834 	}
835 }
836 
837 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
838 			struct msm_dsi_phy_shared_timings *phy_shared_timings)
839 {
840 	u32 flags = msm_host->mode_flags;
841 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
842 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
843 	u32 data = 0, lane_ctrl = 0;
844 
845 	if (!enable) {
846 		dsi_write(msm_host, REG_DSI_CTRL, 0);
847 		return;
848 	}
849 
850 	if (flags & MIPI_DSI_MODE_VIDEO) {
851 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
852 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
853 		if (flags & MIPI_DSI_MODE_VIDEO_HFP)
854 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
855 		if (flags & MIPI_DSI_MODE_VIDEO_HBP)
856 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
857 		if (flags & MIPI_DSI_MODE_VIDEO_HSA)
858 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
859 		/* Always set low power stop mode for BLLP
860 		 * to let command engine send packets
861 		 */
862 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
863 			DSI_VID_CFG0_BLLP_POWER_STOP;
864 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
865 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
866 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
867 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
868 
869 		/* Do not swap RGB colors */
870 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
871 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
872 	} else {
873 		/* Do not swap RGB colors */
874 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
875 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
876 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
877 
878 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
879 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
880 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
881 		/* Always insert DCS command */
882 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
883 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
884 	}
885 
886 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
887 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
888 			DSI_CMD_DMA_CTRL_LOW_POWER);
889 
890 	data = 0;
891 	/* Always assume dedicated TE pin */
892 	data |= DSI_TRIG_CTRL_TE;
893 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
894 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
895 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
896 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
897 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
898 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
899 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
900 
901 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
902 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
903 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
904 
905 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
906 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
907 	    phy_shared_timings->clk_pre_inc_by_2)
908 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
909 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
910 
911 	data = 0;
912 	if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
913 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
914 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
915 
916 	/* allow only ack-err-status to generate interrupt */
917 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
918 
919 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
920 
921 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
922 
923 	data = DSI_CTRL_CLK_EN;
924 
925 	DBG("lane number=%d", msm_host->lanes);
926 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
927 
928 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
929 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
930 
931 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) {
932 		lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL);
933 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
934 			lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
935 	}
936 
937 	data |= DSI_CTRL_ENABLE;
938 
939 	dsi_write(msm_host, REG_DSI_CTRL, data);
940 }
941 
942 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
943 {
944 	struct drm_display_mode *mode = msm_host->mode;
945 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
946 	u32 h_total = mode->htotal;
947 	u32 v_total = mode->vtotal;
948 	u32 hs_end = mode->hsync_end - mode->hsync_start;
949 	u32 vs_end = mode->vsync_end - mode->vsync_start;
950 	u32 ha_start = h_total - mode->hsync_start;
951 	u32 ha_end = ha_start + mode->hdisplay;
952 	u32 va_start = v_total - mode->vsync_start;
953 	u32 va_end = va_start + mode->vdisplay;
954 	u32 hdisplay = mode->hdisplay;
955 	u32 wc;
956 
957 	DBG("");
958 
959 	/*
960 	 * For dual DSI mode, the current DRM mode has
961 	 * the complete width of the panel. Since, the complete
962 	 * panel is driven by two DSI controllers, the horizontal
963 	 * timings have to be split between the two dsi controllers.
964 	 * Adjust the DSI host timing values accordingly.
965 	 */
966 	if (is_dual_dsi) {
967 		h_total /= 2;
968 		hs_end /= 2;
969 		ha_start /= 2;
970 		ha_end /= 2;
971 		hdisplay /= 2;
972 	}
973 
974 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
975 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
976 			DSI_ACTIVE_H_START(ha_start) |
977 			DSI_ACTIVE_H_END(ha_end));
978 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
979 			DSI_ACTIVE_V_START(va_start) |
980 			DSI_ACTIVE_V_END(va_end));
981 		dsi_write(msm_host, REG_DSI_TOTAL,
982 			DSI_TOTAL_H_TOTAL(h_total - 1) |
983 			DSI_TOTAL_V_TOTAL(v_total - 1));
984 
985 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
986 			DSI_ACTIVE_HSYNC_START(hs_start) |
987 			DSI_ACTIVE_HSYNC_END(hs_end));
988 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
989 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
990 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
991 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
992 	} else {		/* command mode */
993 		/* image data and 1 byte write_memory_start cmd */
994 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
995 
996 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL,
997 			DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) |
998 			DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL(
999 					msm_host->channel) |
1000 			DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE(
1001 					MIPI_DSI_DCS_LONG_WRITE));
1002 
1003 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL,
1004 			DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) |
1005 			DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay));
1006 	}
1007 }
1008 
1009 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
1010 {
1011 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1012 	wmb(); /* clocks need to be enabled before reset */
1013 
1014 	dsi_write(msm_host, REG_DSI_RESET, 1);
1015 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1016 	dsi_write(msm_host, REG_DSI_RESET, 0);
1017 }
1018 
1019 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
1020 					bool video_mode, bool enable)
1021 {
1022 	u32 dsi_ctrl;
1023 
1024 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1025 
1026 	if (!enable) {
1027 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1028 				DSI_CTRL_CMD_MODE_EN);
1029 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1030 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1031 	} else {
1032 		if (video_mode) {
1033 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1034 		} else {		/* command mode */
1035 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1036 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1037 		}
1038 		dsi_ctrl |= DSI_CTRL_ENABLE;
1039 	}
1040 
1041 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1042 }
1043 
1044 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1045 {
1046 	u32 data;
1047 
1048 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1049 
1050 	if (mode == 0)
1051 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1052 	else
1053 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1054 
1055 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1056 }
1057 
1058 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1059 {
1060 	u32 ret = 0;
1061 	struct device *dev = &msm_host->pdev->dev;
1062 
1063 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1064 
1065 	reinit_completion(&msm_host->video_comp);
1066 
1067 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1068 			msecs_to_jiffies(70));
1069 
1070 	if (ret == 0)
1071 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1072 
1073 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1074 }
1075 
1076 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1077 {
1078 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1079 		return;
1080 
1081 	if (msm_host->power_on && msm_host->enabled) {
1082 		dsi_wait4video_done(msm_host);
1083 		/* delay 4 ms to skip BLLP */
1084 		usleep_range(2000, 4000);
1085 	}
1086 }
1087 
1088 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1089 {
1090 	struct drm_device *dev = msm_host->dev;
1091 	struct msm_drm_private *priv = dev->dev_private;
1092 	uint64_t iova;
1093 	u8 *data;
1094 
1095 	data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
1096 					priv->kms->aspace,
1097 					&msm_host->tx_gem_obj, &iova);
1098 
1099 	if (IS_ERR(data)) {
1100 		msm_host->tx_gem_obj = NULL;
1101 		return PTR_ERR(data);
1102 	}
1103 
1104 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1105 
1106 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1107 
1108 	return 0;
1109 }
1110 
1111 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1112 {
1113 	struct drm_device *dev = msm_host->dev;
1114 
1115 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1116 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1117 	if (!msm_host->tx_buf)
1118 		return -ENOMEM;
1119 
1120 	msm_host->tx_size = size;
1121 
1122 	return 0;
1123 }
1124 
1125 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1126 {
1127 	struct drm_device *dev = msm_host->dev;
1128 	struct msm_drm_private *priv;
1129 
1130 	/*
1131 	 * This is possible if we're tearing down before we've had a chance to
1132 	 * fully initialize. A very real possibility if our probe is deferred,
1133 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1134 	 * through the dsi_tx_buf_alloc().
1135 	 */
1136 	if (!dev)
1137 		return;
1138 
1139 	priv = dev->dev_private;
1140 	if (msm_host->tx_gem_obj) {
1141 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1142 		drm_gem_object_put(msm_host->tx_gem_obj);
1143 		msm_host->tx_gem_obj = NULL;
1144 	}
1145 
1146 	if (msm_host->tx_buf)
1147 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1148 			msm_host->tx_buf_paddr);
1149 }
1150 
1151 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1152 {
1153 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1154 }
1155 
1156 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1157 {
1158 	return msm_host->tx_buf;
1159 }
1160 
1161 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1162 {
1163 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1164 }
1165 
1166 /*
1167  * prepare cmd buffer to be txed
1168  */
1169 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1170 			   const struct mipi_dsi_msg *msg)
1171 {
1172 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1173 	struct mipi_dsi_packet packet;
1174 	int len;
1175 	int ret;
1176 	u8 *data;
1177 
1178 	ret = mipi_dsi_create_packet(&packet, msg);
1179 	if (ret) {
1180 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1181 		return ret;
1182 	}
1183 	len = (packet.size + 3) & (~0x3);
1184 
1185 	if (len > msm_host->tx_size) {
1186 		pr_err("%s: packet size is too big\n", __func__);
1187 		return -EINVAL;
1188 	}
1189 
1190 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1191 	if (IS_ERR(data)) {
1192 		ret = PTR_ERR(data);
1193 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1194 		return ret;
1195 	}
1196 
1197 	/* MSM specific command format in memory */
1198 	data[0] = packet.header[1];
1199 	data[1] = packet.header[2];
1200 	data[2] = packet.header[0];
1201 	data[3] = BIT(7); /* Last packet */
1202 	if (mipi_dsi_packet_format_is_long(msg->type))
1203 		data[3] |= BIT(6);
1204 	if (msg->rx_buf && msg->rx_len)
1205 		data[3] |= BIT(5);
1206 
1207 	/* Long packet */
1208 	if (packet.payload && packet.payload_length)
1209 		memcpy(data + 4, packet.payload, packet.payload_length);
1210 
1211 	/* Append 0xff to the end */
1212 	if (packet.size < len)
1213 		memset(data + packet.size, 0xff, len - packet.size);
1214 
1215 	if (cfg_hnd->ops->tx_buf_put)
1216 		cfg_hnd->ops->tx_buf_put(msm_host);
1217 
1218 	return len;
1219 }
1220 
1221 /*
1222  * dsi_short_read1_resp: 1 parameter
1223  */
1224 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1225 {
1226 	u8 *data = msg->rx_buf;
1227 	if (data && (msg->rx_len >= 1)) {
1228 		*data = buf[1]; /* strip out dcs type */
1229 		return 1;
1230 	} else {
1231 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1232 			__func__, msg->rx_len);
1233 		return -EINVAL;
1234 	}
1235 }
1236 
1237 /*
1238  * dsi_short_read2_resp: 2 parameter
1239  */
1240 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1241 {
1242 	u8 *data = msg->rx_buf;
1243 	if (data && (msg->rx_len >= 2)) {
1244 		data[0] = buf[1]; /* strip out dcs type */
1245 		data[1] = buf[2];
1246 		return 2;
1247 	} else {
1248 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1249 			__func__, msg->rx_len);
1250 		return -EINVAL;
1251 	}
1252 }
1253 
1254 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1255 {
1256 	/* strip out 4 byte dcs header */
1257 	if (msg->rx_buf && msg->rx_len)
1258 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1259 
1260 	return msg->rx_len;
1261 }
1262 
1263 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1264 {
1265 	struct drm_device *dev = msm_host->dev;
1266 	struct msm_drm_private *priv = dev->dev_private;
1267 
1268 	if (!dma_base)
1269 		return -EINVAL;
1270 
1271 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1272 				priv->kms->aspace, dma_base);
1273 }
1274 
1275 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1276 {
1277 	if (!dma_base)
1278 		return -EINVAL;
1279 
1280 	*dma_base = msm_host->tx_buf_paddr;
1281 	return 0;
1282 }
1283 
1284 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1285 {
1286 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1287 	int ret;
1288 	uint64_t dma_base;
1289 	bool triggered;
1290 
1291 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1292 	if (ret) {
1293 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1294 		return ret;
1295 	}
1296 
1297 	reinit_completion(&msm_host->dma_comp);
1298 
1299 	dsi_wait4video_eng_busy(msm_host);
1300 
1301 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1302 						msm_host->id, dma_base, len);
1303 	if (triggered) {
1304 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1305 					msecs_to_jiffies(200));
1306 		DBG("ret=%d", ret);
1307 		if (ret == 0)
1308 			ret = -ETIMEDOUT;
1309 		else
1310 			ret = len;
1311 	} else
1312 		ret = len;
1313 
1314 	return ret;
1315 }
1316 
1317 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1318 			u8 *buf, int rx_byte, int pkt_size)
1319 {
1320 	u32 *temp, data;
1321 	int i, j = 0, cnt;
1322 	u32 read_cnt;
1323 	u8 reg[16];
1324 	int repeated_bytes = 0;
1325 	int buf_offset = buf - msm_host->rx_buf;
1326 
1327 	temp = (u32 *)reg;
1328 	cnt = (rx_byte + 3) >> 2;
1329 	if (cnt > 4)
1330 		cnt = 4; /* 4 x 32 bits registers only */
1331 
1332 	if (rx_byte == 4)
1333 		read_cnt = 4;
1334 	else
1335 		read_cnt = pkt_size + 6;
1336 
1337 	/*
1338 	 * In case of multiple reads from the panel, after the first read, there
1339 	 * is possibility that there are some bytes in the payload repeating in
1340 	 * the RDBK_DATA registers. Since we read all the parameters from the
1341 	 * panel right from the first byte for every pass. We need to skip the
1342 	 * repeating bytes and then append the new parameters to the rx buffer.
1343 	 */
1344 	if (read_cnt > 16) {
1345 		int bytes_shifted;
1346 		/* Any data more than 16 bytes will be shifted out.
1347 		 * The temp read buffer should already contain these bytes.
1348 		 * The remaining bytes in read buffer are the repeated bytes.
1349 		 */
1350 		bytes_shifted = read_cnt - 16;
1351 		repeated_bytes = buf_offset - bytes_shifted;
1352 	}
1353 
1354 	for (i = cnt - 1; i >= 0; i--) {
1355 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1356 		*temp++ = ntohl(data); /* to host byte order */
1357 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1358 	}
1359 
1360 	for (i = repeated_bytes; i < 16; i++)
1361 		buf[j++] = reg[i];
1362 
1363 	return j;
1364 }
1365 
1366 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1367 				const struct mipi_dsi_msg *msg)
1368 {
1369 	int len, ret;
1370 	int bllp_len = msm_host->mode->hdisplay *
1371 			dsi_get_bpp(msm_host->format) / 8;
1372 
1373 	len = dsi_cmd_dma_add(msm_host, msg);
1374 	if (!len) {
1375 		pr_err("%s: failed to add cmd type = 0x%x\n",
1376 			__func__,  msg->type);
1377 		return -EINVAL;
1378 	}
1379 
1380 	/* for video mode, do not send cmds more than
1381 	* one pixel line, since it only transmit it
1382 	* during BLLP.
1383 	*/
1384 	/* TODO: if the command is sent in LP mode, the bit rate is only
1385 	 * half of esc clk rate. In this case, if the video is already
1386 	 * actively streaming, we need to check more carefully if the
1387 	 * command can be fit into one BLLP.
1388 	 */
1389 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1390 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1391 			__func__, len);
1392 		return -EINVAL;
1393 	}
1394 
1395 	ret = dsi_cmd_dma_tx(msm_host, len);
1396 	if (ret < len) {
1397 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1398 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1399 		return -ECOMM;
1400 	}
1401 
1402 	return len;
1403 }
1404 
1405 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1406 {
1407 	u32 data0, data1;
1408 
1409 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1410 	data1 = data0;
1411 	data1 &= ~DSI_CTRL_ENABLE;
1412 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1413 	/*
1414 	 * dsi controller need to be disabled before
1415 	 * clocks turned on
1416 	 */
1417 	wmb();
1418 
1419 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1420 	wmb();	/* make sure clocks enabled */
1421 
1422 	/* dsi controller can only be reset while clocks are running */
1423 	dsi_write(msm_host, REG_DSI_RESET, 1);
1424 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1425 	dsi_write(msm_host, REG_DSI_RESET, 0);
1426 	wmb();	/* controller out of reset */
1427 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1428 	wmb();	/* make sure dsi controller enabled again */
1429 }
1430 
1431 static void dsi_hpd_worker(struct work_struct *work)
1432 {
1433 	struct msm_dsi_host *msm_host =
1434 		container_of(work, struct msm_dsi_host, hpd_work);
1435 
1436 	drm_helper_hpd_irq_event(msm_host->dev);
1437 }
1438 
1439 static void dsi_err_worker(struct work_struct *work)
1440 {
1441 	struct msm_dsi_host *msm_host =
1442 		container_of(work, struct msm_dsi_host, err_work);
1443 	u32 status = msm_host->err_work_state;
1444 
1445 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1446 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1447 		dsi_sw_reset_restore(msm_host);
1448 
1449 	/* It is safe to clear here because error irq is disabled. */
1450 	msm_host->err_work_state = 0;
1451 
1452 	/* enable dsi error interrupt */
1453 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1454 }
1455 
1456 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1457 {
1458 	u32 status;
1459 
1460 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1461 
1462 	if (status) {
1463 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1464 		/* Writing of an extra 0 needed to clear error bits */
1465 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1466 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1467 	}
1468 }
1469 
1470 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1471 {
1472 	u32 status;
1473 
1474 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1475 
1476 	if (status) {
1477 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1478 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1479 	}
1480 }
1481 
1482 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1483 {
1484 	u32 status;
1485 
1486 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1487 
1488 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1489 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1490 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1491 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1492 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1493 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1494 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1495 	}
1496 }
1497 
1498 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1499 {
1500 	u32 status;
1501 
1502 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1503 
1504 	/* fifo underflow, overflow */
1505 	if (status) {
1506 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1507 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1508 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1509 			msm_host->err_work_state |=
1510 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1511 	}
1512 }
1513 
1514 static void dsi_status(struct msm_dsi_host *msm_host)
1515 {
1516 	u32 status;
1517 
1518 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1519 
1520 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1521 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1522 		msm_host->err_work_state |=
1523 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1524 	}
1525 }
1526 
1527 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1528 {
1529 	u32 status;
1530 
1531 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1532 
1533 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1534 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1535 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1536 	}
1537 }
1538 
1539 static void dsi_error(struct msm_dsi_host *msm_host)
1540 {
1541 	/* disable dsi error interrupt */
1542 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1543 
1544 	dsi_clk_status(msm_host);
1545 	dsi_fifo_status(msm_host);
1546 	dsi_ack_err_status(msm_host);
1547 	dsi_timeout_status(msm_host);
1548 	dsi_status(msm_host);
1549 	dsi_dln0_phy_err(msm_host);
1550 
1551 	queue_work(msm_host->workqueue, &msm_host->err_work);
1552 }
1553 
1554 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1555 {
1556 	struct msm_dsi_host *msm_host = ptr;
1557 	u32 isr;
1558 	unsigned long flags;
1559 
1560 	if (!msm_host->ctrl_base)
1561 		return IRQ_HANDLED;
1562 
1563 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1564 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1565 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1566 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1567 
1568 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1569 
1570 	if (isr & DSI_IRQ_ERROR)
1571 		dsi_error(msm_host);
1572 
1573 	if (isr & DSI_IRQ_VIDEO_DONE)
1574 		complete(&msm_host->video_comp);
1575 
1576 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1577 		complete(&msm_host->dma_comp);
1578 
1579 	return IRQ_HANDLED;
1580 }
1581 
1582 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1583 			struct device *panel_device)
1584 {
1585 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1586 							 "disp-enable",
1587 							 GPIOD_OUT_LOW);
1588 	if (IS_ERR(msm_host->disp_en_gpio)) {
1589 		DBG("cannot get disp-enable-gpios %ld",
1590 				PTR_ERR(msm_host->disp_en_gpio));
1591 		return PTR_ERR(msm_host->disp_en_gpio);
1592 	}
1593 
1594 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1595 								GPIOD_IN);
1596 	if (IS_ERR(msm_host->te_gpio)) {
1597 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1598 		return PTR_ERR(msm_host->te_gpio);
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static int dsi_host_attach(struct mipi_dsi_host *host,
1605 					struct mipi_dsi_device *dsi)
1606 {
1607 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1608 	int ret;
1609 
1610 	if (dsi->lanes > msm_host->num_data_lanes)
1611 		return -EINVAL;
1612 
1613 	msm_host->channel = dsi->channel;
1614 	msm_host->lanes = dsi->lanes;
1615 	msm_host->format = dsi->format;
1616 	msm_host->mode_flags = dsi->mode_flags;
1617 
1618 	/* Some gpios defined in panel DT need to be controlled by host */
1619 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1620 	if (ret)
1621 		return ret;
1622 
1623 	DBG("id=%d", msm_host->id);
1624 	if (msm_host->dev)
1625 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1626 
1627 	return 0;
1628 }
1629 
1630 static int dsi_host_detach(struct mipi_dsi_host *host,
1631 					struct mipi_dsi_device *dsi)
1632 {
1633 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1634 
1635 	msm_host->device_node = NULL;
1636 
1637 	DBG("id=%d", msm_host->id);
1638 	if (msm_host->dev)
1639 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1640 
1641 	return 0;
1642 }
1643 
1644 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1645 					const struct mipi_dsi_msg *msg)
1646 {
1647 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1648 	int ret;
1649 
1650 	if (!msg || !msm_host->power_on)
1651 		return -EINVAL;
1652 
1653 	mutex_lock(&msm_host->cmd_mutex);
1654 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1655 	mutex_unlock(&msm_host->cmd_mutex);
1656 
1657 	return ret;
1658 }
1659 
1660 static struct mipi_dsi_host_ops dsi_host_ops = {
1661 	.attach = dsi_host_attach,
1662 	.detach = dsi_host_detach,
1663 	.transfer = dsi_host_transfer,
1664 };
1665 
1666 /*
1667  * List of supported physical to logical lane mappings.
1668  * For example, the 2nd entry represents the following mapping:
1669  *
1670  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1671  */
1672 static const int supported_data_lane_swaps[][4] = {
1673 	{ 0, 1, 2, 3 },
1674 	{ 3, 0, 1, 2 },
1675 	{ 2, 3, 0, 1 },
1676 	{ 1, 2, 3, 0 },
1677 	{ 0, 3, 2, 1 },
1678 	{ 1, 0, 3, 2 },
1679 	{ 2, 1, 0, 3 },
1680 	{ 3, 2, 1, 0 },
1681 };
1682 
1683 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1684 				    struct device_node *ep)
1685 {
1686 	struct device *dev = &msm_host->pdev->dev;
1687 	struct property *prop;
1688 	u32 lane_map[4];
1689 	int ret, i, len, num_lanes;
1690 
1691 	prop = of_find_property(ep, "data-lanes", &len);
1692 	if (!prop) {
1693 		DRM_DEV_DEBUG(dev,
1694 			"failed to find data lane mapping, using default\n");
1695 		return 0;
1696 	}
1697 
1698 	num_lanes = len / sizeof(u32);
1699 
1700 	if (num_lanes < 1 || num_lanes > 4) {
1701 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1702 		return -EINVAL;
1703 	}
1704 
1705 	msm_host->num_data_lanes = num_lanes;
1706 
1707 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1708 					 num_lanes);
1709 	if (ret) {
1710 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1711 		return ret;
1712 	}
1713 
1714 	/*
1715 	 * compare DT specified physical-logical lane mappings with the ones
1716 	 * supported by hardware
1717 	 */
1718 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1719 		const int *swap = supported_data_lane_swaps[i];
1720 		int j;
1721 
1722 		/*
1723 		 * the data-lanes array we get from DT has a logical->physical
1724 		 * mapping. The "data lane swap" register field represents
1725 		 * supported configurations in a physical->logical mapping.
1726 		 * Translate the DT mapping to what we understand and find a
1727 		 * configuration that works.
1728 		 */
1729 		for (j = 0; j < num_lanes; j++) {
1730 			if (lane_map[j] < 0 || lane_map[j] > 3)
1731 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1732 					lane_map[j]);
1733 
1734 			if (swap[lane_map[j]] != j)
1735 				break;
1736 		}
1737 
1738 		if (j == num_lanes) {
1739 			msm_host->dlane_swap = i;
1740 			return 0;
1741 		}
1742 	}
1743 
1744 	return -EINVAL;
1745 }
1746 
1747 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1748 {
1749 	struct device *dev = &msm_host->pdev->dev;
1750 	struct device_node *np = dev->of_node;
1751 	struct device_node *endpoint, *device_node;
1752 	int ret = 0;
1753 
1754 	/*
1755 	 * Get the endpoint of the output port of the DSI host. In our case,
1756 	 * this is mapped to port number with reg = 1. Don't return an error if
1757 	 * the remote endpoint isn't defined. It's possible that there is
1758 	 * nothing connected to the dsi output.
1759 	 */
1760 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1761 	if (!endpoint) {
1762 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1763 		return 0;
1764 	}
1765 
1766 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1767 	if (ret) {
1768 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1769 			__func__, ret);
1770 		ret = -EINVAL;
1771 		goto err;
1772 	}
1773 
1774 	/* Get panel node from the output port's endpoint data */
1775 	device_node = of_graph_get_remote_node(np, 1, 0);
1776 	if (!device_node) {
1777 		DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1778 		ret = -ENODEV;
1779 		goto err;
1780 	}
1781 
1782 	msm_host->device_node = device_node;
1783 
1784 	if (of_property_read_bool(np, "syscon-sfpb")) {
1785 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1786 					"syscon-sfpb");
1787 		if (IS_ERR(msm_host->sfpb)) {
1788 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1789 				__func__);
1790 			ret = PTR_ERR(msm_host->sfpb);
1791 		}
1792 	}
1793 
1794 	of_node_put(device_node);
1795 
1796 err:
1797 	of_node_put(endpoint);
1798 
1799 	return ret;
1800 }
1801 
1802 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1803 {
1804 	struct platform_device *pdev = msm_host->pdev;
1805 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1806 	struct resource *res;
1807 	int i;
1808 
1809 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1810 	if (!res)
1811 		return -EINVAL;
1812 
1813 	for (i = 0; i < cfg->num_dsi; i++) {
1814 		if (cfg->io_start[i] == res->start)
1815 			return i;
1816 	}
1817 
1818 	return -EINVAL;
1819 }
1820 
1821 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1822 {
1823 	struct msm_dsi_host *msm_host = NULL;
1824 	struct platform_device *pdev = msm_dsi->pdev;
1825 	int ret;
1826 
1827 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1828 	if (!msm_host) {
1829 		pr_err("%s: FAILED: cannot alloc dsi host\n",
1830 		       __func__);
1831 		ret = -ENOMEM;
1832 		goto fail;
1833 	}
1834 
1835 	msm_host->pdev = pdev;
1836 	msm_dsi->host = &msm_host->base;
1837 
1838 	ret = dsi_host_parse_dt(msm_host);
1839 	if (ret) {
1840 		pr_err("%s: failed to parse dt\n", __func__);
1841 		goto fail;
1842 	}
1843 
1844 	msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
1845 	if (IS_ERR(msm_host->ctrl_base)) {
1846 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1847 		ret = PTR_ERR(msm_host->ctrl_base);
1848 		goto fail;
1849 	}
1850 
1851 	pm_runtime_enable(&pdev->dev);
1852 
1853 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1854 	if (!msm_host->cfg_hnd) {
1855 		ret = -EINVAL;
1856 		pr_err("%s: get config failed\n", __func__);
1857 		goto fail;
1858 	}
1859 
1860 	msm_host->id = dsi_host_get_id(msm_host);
1861 	if (msm_host->id < 0) {
1862 		ret = msm_host->id;
1863 		pr_err("%s: unable to identify DSI host index\n", __func__);
1864 		goto fail;
1865 	}
1866 
1867 	/* fixup base address by io offset */
1868 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1869 
1870 	ret = dsi_regulator_init(msm_host);
1871 	if (ret) {
1872 		pr_err("%s: regulator init failed\n", __func__);
1873 		goto fail;
1874 	}
1875 
1876 	ret = dsi_clk_init(msm_host);
1877 	if (ret) {
1878 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1879 		goto fail;
1880 	}
1881 
1882 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1883 	if (!msm_host->rx_buf) {
1884 		ret = -ENOMEM;
1885 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1886 		goto fail;
1887 	}
1888 
1889 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "byte");
1890 	if (IS_ERR(msm_host->opp_table))
1891 		return PTR_ERR(msm_host->opp_table);
1892 	/* OPP table is optional */
1893 	ret = dev_pm_opp_of_add_table(&pdev->dev);
1894 	if (!ret) {
1895 		msm_host->has_opp_table = true;
1896 	} else if (ret != -ENODEV) {
1897 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1898 		dev_pm_opp_put_clkname(msm_host->opp_table);
1899 		return ret;
1900 	}
1901 
1902 	init_completion(&msm_host->dma_comp);
1903 	init_completion(&msm_host->video_comp);
1904 	mutex_init(&msm_host->dev_mutex);
1905 	mutex_init(&msm_host->cmd_mutex);
1906 	spin_lock_init(&msm_host->intr_lock);
1907 
1908 	/* setup workqueue */
1909 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1910 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1911 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1912 
1913 	msm_dsi->id = msm_host->id;
1914 
1915 	DBG("Dsi Host %d initialized", msm_host->id);
1916 	return 0;
1917 
1918 fail:
1919 	return ret;
1920 }
1921 
1922 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1923 {
1924 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1925 
1926 	DBG("");
1927 	dsi_tx_buf_free(msm_host);
1928 	if (msm_host->workqueue) {
1929 		flush_workqueue(msm_host->workqueue);
1930 		destroy_workqueue(msm_host->workqueue);
1931 		msm_host->workqueue = NULL;
1932 	}
1933 
1934 	mutex_destroy(&msm_host->cmd_mutex);
1935 	mutex_destroy(&msm_host->dev_mutex);
1936 
1937 	if (msm_host->has_opp_table)
1938 		dev_pm_opp_of_remove_table(&msm_host->pdev->dev);
1939 	dev_pm_opp_put_clkname(msm_host->opp_table);
1940 	pm_runtime_disable(&msm_host->pdev->dev);
1941 }
1942 
1943 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1944 					struct drm_device *dev)
1945 {
1946 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1947 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1948 	struct platform_device *pdev = msm_host->pdev;
1949 	int ret;
1950 
1951 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1952 	if (msm_host->irq < 0) {
1953 		ret = msm_host->irq;
1954 		DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret);
1955 		return ret;
1956 	}
1957 
1958 	ret = devm_request_irq(&pdev->dev, msm_host->irq,
1959 			dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1960 			"dsi_isr", msm_host);
1961 	if (ret < 0) {
1962 		DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n",
1963 				msm_host->irq, ret);
1964 		return ret;
1965 	}
1966 
1967 	msm_host->dev = dev;
1968 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1969 	if (ret) {
1970 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1971 		return ret;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
1978 {
1979 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1980 	int ret;
1981 
1982 	/* Register mipi dsi host */
1983 	if (!msm_host->registered) {
1984 		host->dev = &msm_host->pdev->dev;
1985 		host->ops = &dsi_host_ops;
1986 		ret = mipi_dsi_host_register(host);
1987 		if (ret)
1988 			return ret;
1989 
1990 		msm_host->registered = true;
1991 
1992 		/* If the panel driver has not been probed after host register,
1993 		 * we should defer the host's probe.
1994 		 * It makes sure panel is connected when fbcon detects
1995 		 * connector status and gets the proper display mode to
1996 		 * create framebuffer.
1997 		 * Don't try to defer if there is nothing connected to the dsi
1998 		 * output
1999 		 */
2000 		if (check_defer && msm_host->device_node) {
2001 			if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
2002 				if (!of_drm_find_bridge(msm_host->device_node))
2003 					return -EPROBE_DEFER;
2004 		}
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
2011 {
2012 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2013 
2014 	if (msm_host->registered) {
2015 		mipi_dsi_host_unregister(host);
2016 		host->dev = NULL;
2017 		host->ops = NULL;
2018 		msm_host->registered = false;
2019 	}
2020 }
2021 
2022 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
2023 				const struct mipi_dsi_msg *msg)
2024 {
2025 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2026 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2027 
2028 	/* TODO: make sure dsi_cmd_mdp is idle.
2029 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
2030 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
2031 	 * How to handle the old versions? Wait for mdp cmd done?
2032 	 */
2033 
2034 	/*
2035 	 * mdss interrupt is generated in mdp core clock domain
2036 	 * mdp clock need to be enabled to receive dsi interrupt
2037 	 */
2038 	pm_runtime_get_sync(&msm_host->pdev->dev);
2039 	cfg_hnd->ops->link_clk_set_rate(msm_host);
2040 	cfg_hnd->ops->link_clk_enable(msm_host);
2041 
2042 	/* TODO: vote for bus bandwidth */
2043 
2044 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2045 		dsi_set_tx_power_mode(0, msm_host);
2046 
2047 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2048 	dsi_write(msm_host, REG_DSI_CTRL,
2049 		msm_host->dma_cmd_ctrl_restore |
2050 		DSI_CTRL_CMD_MODE_EN |
2051 		DSI_CTRL_ENABLE);
2052 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2053 
2054 	return 0;
2055 }
2056 
2057 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2058 				const struct mipi_dsi_msg *msg)
2059 {
2060 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2061 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2062 
2063 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2064 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2065 
2066 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2067 		dsi_set_tx_power_mode(1, msm_host);
2068 
2069 	/* TODO: unvote for bus bandwidth */
2070 
2071 	cfg_hnd->ops->link_clk_disable(msm_host);
2072 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2073 }
2074 
2075 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2076 				const struct mipi_dsi_msg *msg)
2077 {
2078 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2079 
2080 	return dsi_cmds2buf_tx(msm_host, msg);
2081 }
2082 
2083 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2084 				const struct mipi_dsi_msg *msg)
2085 {
2086 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2087 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2088 	int data_byte, rx_byte, dlen, end;
2089 	int short_response, diff, pkt_size, ret = 0;
2090 	char cmd;
2091 	int rlen = msg->rx_len;
2092 	u8 *buf;
2093 
2094 	if (rlen <= 2) {
2095 		short_response = 1;
2096 		pkt_size = rlen;
2097 		rx_byte = 4;
2098 	} else {
2099 		short_response = 0;
2100 		data_byte = 10;	/* first read */
2101 		if (rlen < data_byte)
2102 			pkt_size = rlen;
2103 		else
2104 			pkt_size = data_byte;
2105 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2106 	}
2107 
2108 	buf = msm_host->rx_buf;
2109 	end = 0;
2110 	while (!end) {
2111 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2112 		struct mipi_dsi_msg max_pkt_size_msg = {
2113 			.channel = msg->channel,
2114 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2115 			.tx_len = 2,
2116 			.tx_buf = tx,
2117 		};
2118 
2119 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2120 			rlen, pkt_size, rx_byte);
2121 
2122 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2123 		if (ret < 2) {
2124 			pr_err("%s: Set max pkt size failed, %d\n",
2125 				__func__, ret);
2126 			return -EINVAL;
2127 		}
2128 
2129 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2130 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2131 			/* Clear the RDBK_DATA registers */
2132 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2133 					DSI_RDBK_DATA_CTRL_CLR);
2134 			wmb(); /* make sure the RDBK registers are cleared */
2135 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2136 			wmb(); /* release cleared status before transfer */
2137 		}
2138 
2139 		ret = dsi_cmds2buf_tx(msm_host, msg);
2140 		if (ret < msg->tx_len) {
2141 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2142 			return ret;
2143 		}
2144 
2145 		/*
2146 		 * once cmd_dma_done interrupt received,
2147 		 * return data from client is ready and stored
2148 		 * at RDBK_DATA register already
2149 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2150 		 * after that dcs header lost during shift into registers
2151 		 */
2152 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2153 
2154 		if (dlen <= 0)
2155 			return 0;
2156 
2157 		if (short_response)
2158 			break;
2159 
2160 		if (rlen <= data_byte) {
2161 			diff = data_byte - rlen;
2162 			end = 1;
2163 		} else {
2164 			diff = 0;
2165 			rlen -= data_byte;
2166 		}
2167 
2168 		if (!end) {
2169 			dlen -= 2; /* 2 crc */
2170 			dlen -= diff;
2171 			buf += dlen;	/* next start position */
2172 			data_byte = 14;	/* NOT first read */
2173 			if (rlen < data_byte)
2174 				pkt_size += rlen;
2175 			else
2176 				pkt_size += data_byte;
2177 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * For single Long read, if the requested rlen < 10,
2183 	 * we need to shift the start position of rx
2184 	 * data buffer to skip the bytes which are not
2185 	 * updated.
2186 	 */
2187 	if (pkt_size < 10 && !short_response)
2188 		buf = msm_host->rx_buf + (10 - rlen);
2189 	else
2190 		buf = msm_host->rx_buf;
2191 
2192 	cmd = buf[0];
2193 	switch (cmd) {
2194 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2195 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2196 		ret = 0;
2197 		break;
2198 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2199 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2200 		ret = dsi_short_read1_resp(buf, msg);
2201 		break;
2202 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2203 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2204 		ret = dsi_short_read2_resp(buf, msg);
2205 		break;
2206 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2207 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2208 		ret = dsi_long_read_resp(buf, msg);
2209 		break;
2210 	default:
2211 		pr_warn("%s:Invalid response cmd\n", __func__);
2212 		ret = 0;
2213 	}
2214 
2215 	return ret;
2216 }
2217 
2218 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2219 				  u32 len)
2220 {
2221 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2222 
2223 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2224 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2225 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2226 
2227 	/* Make sure trigger happens */
2228 	wmb();
2229 }
2230 
2231 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
2232 	struct msm_dsi_pll *src_pll)
2233 {
2234 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2235 	struct clk *byte_clk_provider, *pixel_clk_provider;
2236 	int ret;
2237 
2238 	ret = msm_dsi_pll_get_clk_provider(src_pll,
2239 				&byte_clk_provider, &pixel_clk_provider);
2240 	if (ret) {
2241 		pr_info("%s: can't get provider from pll, don't set parent\n",
2242 			__func__);
2243 		return 0;
2244 	}
2245 
2246 	ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
2247 	if (ret) {
2248 		pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
2249 			__func__, ret);
2250 		goto exit;
2251 	}
2252 
2253 	ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
2254 	if (ret) {
2255 		pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
2256 			__func__, ret);
2257 		goto exit;
2258 	}
2259 
2260 	if (msm_host->dsi_clk_src) {
2261 		ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
2262 		if (ret) {
2263 			pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
2264 				__func__, ret);
2265 			goto exit;
2266 		}
2267 	}
2268 
2269 	if (msm_host->esc_clk_src) {
2270 		ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
2271 		if (ret) {
2272 			pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
2273 				__func__, ret);
2274 			goto exit;
2275 		}
2276 	}
2277 
2278 exit:
2279 	return ret;
2280 }
2281 
2282 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2283 {
2284 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2285 
2286 	DBG("");
2287 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2288 	/* Make sure fully reset */
2289 	wmb();
2290 	udelay(1000);
2291 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2292 	udelay(100);
2293 }
2294 
2295 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2296 			struct msm_dsi_phy_clk_request *clk_req,
2297 			bool is_dual_dsi)
2298 {
2299 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2300 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2301 	int ret;
2302 
2303 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
2304 	if (ret) {
2305 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2306 		return;
2307 	}
2308 
2309 	clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2310 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2311 }
2312 
2313 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2314 {
2315 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2316 
2317 	dsi_op_mode_config(msm_host,
2318 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2319 
2320 	/* TODO: clock should be turned off for command mode,
2321 	 * and only turned on before MDP START.
2322 	 * This part of code should be enabled once mdp driver support it.
2323 	 */
2324 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2325 	 *	dsi_link_clk_disable(msm_host);
2326 	 *	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2327 	 * }
2328 	 */
2329 	msm_host->enabled = true;
2330 	return 0;
2331 }
2332 
2333 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2334 {
2335 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2336 
2337 	msm_host->enabled = false;
2338 	dsi_op_mode_config(msm_host,
2339 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2340 
2341 	/* Since we have disabled INTF, the video engine won't stop so that
2342 	 * the cmd engine will be blocked.
2343 	 * Reset to disable video engine so that we can send off cmd.
2344 	 */
2345 	dsi_sw_reset(msm_host);
2346 
2347 	return 0;
2348 }
2349 
2350 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2351 {
2352 	enum sfpb_ahb_arb_master_port_en en;
2353 
2354 	if (!msm_host->sfpb)
2355 		return;
2356 
2357 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2358 
2359 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2360 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2361 			SFPB_GPREG_MASTER_PORT_EN(en));
2362 }
2363 
2364 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2365 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2366 			bool is_dual_dsi)
2367 {
2368 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2369 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2370 	int ret = 0;
2371 
2372 	mutex_lock(&msm_host->dev_mutex);
2373 	if (msm_host->power_on) {
2374 		DBG("dsi host already on");
2375 		goto unlock_ret;
2376 	}
2377 
2378 	msm_dsi_sfpb_config(msm_host, true);
2379 
2380 	ret = dsi_host_regulator_enable(msm_host);
2381 	if (ret) {
2382 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2383 			__func__, ret);
2384 		goto unlock_ret;
2385 	}
2386 
2387 	pm_runtime_get_sync(&msm_host->pdev->dev);
2388 	ret = cfg_hnd->ops->link_clk_set_rate(msm_host);
2389 	if (!ret)
2390 		ret = cfg_hnd->ops->link_clk_enable(msm_host);
2391 	if (ret) {
2392 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2393 		       __func__, ret);
2394 		goto fail_disable_reg;
2395 	}
2396 
2397 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2398 	if (ret) {
2399 		pr_err("%s: failed to set pinctrl default state, %d\n",
2400 			__func__, ret);
2401 		goto fail_disable_clk;
2402 	}
2403 
2404 	dsi_timing_setup(msm_host, is_dual_dsi);
2405 	dsi_sw_reset(msm_host);
2406 	dsi_ctrl_config(msm_host, true, phy_shared_timings);
2407 
2408 	if (msm_host->disp_en_gpio)
2409 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2410 
2411 	msm_host->power_on = true;
2412 	mutex_unlock(&msm_host->dev_mutex);
2413 
2414 	return 0;
2415 
2416 fail_disable_clk:
2417 	cfg_hnd->ops->link_clk_disable(msm_host);
2418 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2419 fail_disable_reg:
2420 	dsi_host_regulator_disable(msm_host);
2421 unlock_ret:
2422 	mutex_unlock(&msm_host->dev_mutex);
2423 	return ret;
2424 }
2425 
2426 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2427 {
2428 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2429 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2430 
2431 	mutex_lock(&msm_host->dev_mutex);
2432 	if (!msm_host->power_on) {
2433 		DBG("dsi host already off");
2434 		goto unlock_ret;
2435 	}
2436 
2437 	dsi_ctrl_config(msm_host, false, NULL);
2438 
2439 	if (msm_host->disp_en_gpio)
2440 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2441 
2442 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2443 
2444 	cfg_hnd->ops->link_clk_disable(msm_host);
2445 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2446 
2447 	dsi_host_regulator_disable(msm_host);
2448 
2449 	msm_dsi_sfpb_config(msm_host, false);
2450 
2451 	DBG("-");
2452 
2453 	msm_host->power_on = false;
2454 
2455 unlock_ret:
2456 	mutex_unlock(&msm_host->dev_mutex);
2457 	return 0;
2458 }
2459 
2460 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2461 				  const struct drm_display_mode *mode)
2462 {
2463 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2464 
2465 	if (msm_host->mode) {
2466 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2467 		msm_host->mode = NULL;
2468 	}
2469 
2470 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2471 	if (!msm_host->mode) {
2472 		pr_err("%s: cannot duplicate mode\n", __func__);
2473 		return -ENOMEM;
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2480 {
2481 	return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2482 }
2483 
2484 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2485 {
2486 	return to_msm_dsi_host(host)->mode_flags;
2487 }
2488 
2489 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2490 {
2491 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2492 
2493 	return of_drm_find_bridge(msm_host->device_node);
2494 }
2495