1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_opp.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spinlock.h> 21 22 #include <video/mipi_display.h> 23 24 #include <drm/display/drm_dsc_helper.h> 25 #include <drm/drm_of.h> 26 27 #include "dsi.h" 28 #include "dsi.xml.h" 29 #include "sfpb.xml.h" 30 #include "dsi_cfg.h" 31 #include "msm_dsc_helper.h" 32 #include "msm_kms.h" 33 #include "msm_gem.h" 34 #include "phy/dsi_phy.h" 35 36 #define DSI_RESET_TOGGLE_DELAY_MS 20 37 38 static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc); 39 40 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 41 { 42 u32 ver; 43 44 if (!major || !minor) 45 return -EINVAL; 46 47 /* 48 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 49 * makes all other registers 4-byte shifted down. 50 * 51 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 52 * older, we read the DSI_VERSION register without any shift(offset 53 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 54 * the case of DSI6G, this has to be zero (the offset points to a 55 * scratch register which we never touch) 56 */ 57 58 ver = msm_readl(base + REG_DSI_VERSION); 59 if (ver) { 60 /* older dsi host, there is no register shift */ 61 ver = FIELD(ver, DSI_VERSION_MAJOR); 62 if (ver <= MSM_DSI_VER_MAJOR_V2) { 63 /* old versions */ 64 *major = ver; 65 *minor = 0; 66 return 0; 67 } else { 68 return -EINVAL; 69 } 70 } else { 71 /* 72 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 73 * registers are shifted down, read DSI_VERSION again with 74 * the shifted offset 75 */ 76 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 77 ver = FIELD(ver, DSI_VERSION_MAJOR); 78 if (ver == MSM_DSI_VER_MAJOR_6G) { 79 /* 6G version */ 80 *major = ver; 81 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 82 return 0; 83 } else { 84 return -EINVAL; 85 } 86 } 87 } 88 89 #define DSI_ERR_STATE_ACK 0x0000 90 #define DSI_ERR_STATE_TIMEOUT 0x0001 91 #define DSI_ERR_STATE_DLN0_PHY 0x0002 92 #define DSI_ERR_STATE_FIFO 0x0004 93 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 94 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 95 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 96 97 #define DSI_CLK_CTRL_ENABLE_CLKS \ 98 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 99 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 100 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 101 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 102 103 struct msm_dsi_host { 104 struct mipi_dsi_host base; 105 106 struct platform_device *pdev; 107 struct drm_device *dev; 108 109 int id; 110 111 void __iomem *ctrl_base; 112 phys_addr_t ctrl_size; 113 struct regulator_bulk_data *supplies; 114 115 int num_bus_clks; 116 struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX]; 117 118 struct clk *byte_clk; 119 struct clk *esc_clk; 120 struct clk *pixel_clk; 121 struct clk *byte_intf_clk; 122 123 unsigned long byte_clk_rate; 124 unsigned long byte_intf_clk_rate; 125 unsigned long pixel_clk_rate; 126 unsigned long esc_clk_rate; 127 128 /* DSI v2 specific clocks */ 129 struct clk *src_clk; 130 131 unsigned long src_clk_rate; 132 133 struct gpio_desc *disp_en_gpio; 134 struct gpio_desc *te_gpio; 135 136 const struct msm_dsi_cfg_handler *cfg_hnd; 137 138 struct completion dma_comp; 139 struct completion video_comp; 140 struct mutex dev_mutex; 141 struct mutex cmd_mutex; 142 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 143 144 u32 err_work_state; 145 struct work_struct err_work; 146 struct workqueue_struct *workqueue; 147 148 /* DSI 6G TX buffer*/ 149 struct drm_gem_object *tx_gem_obj; 150 151 /* DSI v2 TX buffer */ 152 void *tx_buf; 153 dma_addr_t tx_buf_paddr; 154 155 int tx_size; 156 157 u8 *rx_buf; 158 159 struct regmap *sfpb; 160 161 struct drm_display_mode *mode; 162 struct drm_dsc_config *dsc; 163 164 /* connected device info */ 165 unsigned int channel; 166 unsigned int lanes; 167 enum mipi_dsi_pixel_format format; 168 unsigned long mode_flags; 169 170 /* lane data parsed via DT */ 171 int dlane_swap; 172 int num_data_lanes; 173 174 /* from phy DT */ 175 bool cphy_mode; 176 177 u32 dma_cmd_ctrl_restore; 178 179 bool registered; 180 bool power_on; 181 bool enabled; 182 int irq; 183 }; 184 185 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 186 { 187 switch (fmt) { 188 case MIPI_DSI_FMT_RGB565: return 16; 189 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 190 case MIPI_DSI_FMT_RGB666: 191 case MIPI_DSI_FMT_RGB888: 192 default: return 24; 193 } 194 } 195 196 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 197 { 198 return msm_readl(msm_host->ctrl_base + reg); 199 } 200 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 201 { 202 msm_writel(data, msm_host->ctrl_base + reg); 203 } 204 205 static const struct msm_dsi_cfg_handler *dsi_get_config( 206 struct msm_dsi_host *msm_host) 207 { 208 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 209 struct device *dev = &msm_host->pdev->dev; 210 struct clk *ahb_clk; 211 int ret; 212 u32 major = 0, minor = 0; 213 214 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 215 if (IS_ERR(ahb_clk)) { 216 pr_err("%s: cannot get interface clock\n", __func__); 217 goto exit; 218 } 219 220 pm_runtime_get_sync(dev); 221 222 ret = clk_prepare_enable(ahb_clk); 223 if (ret) { 224 pr_err("%s: unable to enable ahb_clk\n", __func__); 225 goto runtime_put; 226 } 227 228 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 229 if (ret) { 230 pr_err("%s: Invalid version\n", __func__); 231 goto disable_clks; 232 } 233 234 cfg_hnd = msm_dsi_cfg_get(major, minor); 235 236 DBG("%s: Version %x:%x\n", __func__, major, minor); 237 238 disable_clks: 239 clk_disable_unprepare(ahb_clk); 240 runtime_put: 241 pm_runtime_put_sync(dev); 242 exit: 243 return cfg_hnd; 244 } 245 246 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 247 { 248 return container_of(host, struct msm_dsi_host, base); 249 } 250 251 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 252 { 253 struct platform_device *pdev = msm_host->pdev; 254 int ret = 0; 255 256 msm_host->src_clk = msm_clk_get(pdev, "src"); 257 258 if (IS_ERR(msm_host->src_clk)) { 259 ret = PTR_ERR(msm_host->src_clk); 260 pr_err("%s: can't find src clock. ret=%d\n", 261 __func__, ret); 262 msm_host->src_clk = NULL; 263 return ret; 264 } 265 266 return ret; 267 } 268 269 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 270 { 271 struct platform_device *pdev = msm_host->pdev; 272 int ret = 0; 273 274 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 275 if (IS_ERR(msm_host->byte_intf_clk)) { 276 ret = PTR_ERR(msm_host->byte_intf_clk); 277 pr_err("%s: can't find byte_intf clock. ret=%d\n", 278 __func__, ret); 279 } 280 281 return ret; 282 } 283 284 static int dsi_clk_init(struct msm_dsi_host *msm_host) 285 { 286 struct platform_device *pdev = msm_host->pdev; 287 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 288 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 289 int i, ret = 0; 290 291 /* get bus clocks */ 292 for (i = 0; i < cfg->num_bus_clks; i++) 293 msm_host->bus_clks[i].id = cfg->bus_clk_names[i]; 294 msm_host->num_bus_clks = cfg->num_bus_clks; 295 296 ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks); 297 if (ret < 0) { 298 dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret); 299 goto exit; 300 } 301 302 /* get link and source clocks */ 303 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 304 if (IS_ERR(msm_host->byte_clk)) { 305 ret = PTR_ERR(msm_host->byte_clk); 306 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 307 __func__, ret); 308 msm_host->byte_clk = NULL; 309 goto exit; 310 } 311 312 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 313 if (IS_ERR(msm_host->pixel_clk)) { 314 ret = PTR_ERR(msm_host->pixel_clk); 315 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 316 __func__, ret); 317 msm_host->pixel_clk = NULL; 318 goto exit; 319 } 320 321 msm_host->esc_clk = msm_clk_get(pdev, "core"); 322 if (IS_ERR(msm_host->esc_clk)) { 323 ret = PTR_ERR(msm_host->esc_clk); 324 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 325 __func__, ret); 326 msm_host->esc_clk = NULL; 327 goto exit; 328 } 329 330 if (cfg_hnd->ops->clk_init_ver) 331 ret = cfg_hnd->ops->clk_init_ver(msm_host); 332 exit: 333 return ret; 334 } 335 336 int msm_dsi_runtime_suspend(struct device *dev) 337 { 338 struct platform_device *pdev = to_platform_device(dev); 339 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 340 struct mipi_dsi_host *host = msm_dsi->host; 341 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 342 343 if (!msm_host->cfg_hnd) 344 return 0; 345 346 clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks); 347 348 return 0; 349 } 350 351 int msm_dsi_runtime_resume(struct device *dev) 352 { 353 struct platform_device *pdev = to_platform_device(dev); 354 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 355 struct mipi_dsi_host *host = msm_dsi->host; 356 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 357 358 if (!msm_host->cfg_hnd) 359 return 0; 360 361 return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks); 362 } 363 364 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) 365 { 366 int ret; 367 368 DBG("Set clk rates: pclk=%d, byteclk=%lu", 369 msm_host->mode->clock, msm_host->byte_clk_rate); 370 371 ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, 372 msm_host->byte_clk_rate); 373 if (ret) { 374 pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); 375 return ret; 376 } 377 378 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 379 if (ret) { 380 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 381 return ret; 382 } 383 384 if (msm_host->byte_intf_clk) { 385 ret = clk_set_rate(msm_host->byte_intf_clk, msm_host->byte_intf_clk_rate); 386 if (ret) { 387 pr_err("%s: Failed to set rate byte intf clk, %d\n", 388 __func__, ret); 389 return ret; 390 } 391 } 392 393 return 0; 394 } 395 396 397 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 398 { 399 int ret; 400 401 ret = clk_prepare_enable(msm_host->esc_clk); 402 if (ret) { 403 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 404 goto error; 405 } 406 407 ret = clk_prepare_enable(msm_host->byte_clk); 408 if (ret) { 409 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 410 goto byte_clk_err; 411 } 412 413 ret = clk_prepare_enable(msm_host->pixel_clk); 414 if (ret) { 415 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 416 goto pixel_clk_err; 417 } 418 419 ret = clk_prepare_enable(msm_host->byte_intf_clk); 420 if (ret) { 421 pr_err("%s: Failed to enable byte intf clk\n", 422 __func__); 423 goto byte_intf_clk_err; 424 } 425 426 return 0; 427 428 byte_intf_clk_err: 429 clk_disable_unprepare(msm_host->pixel_clk); 430 pixel_clk_err: 431 clk_disable_unprepare(msm_host->byte_clk); 432 byte_clk_err: 433 clk_disable_unprepare(msm_host->esc_clk); 434 error: 435 return ret; 436 } 437 438 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) 439 { 440 int ret; 441 442 DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu", 443 msm_host->mode->clock, msm_host->byte_clk_rate, 444 msm_host->esc_clk_rate, msm_host->src_clk_rate); 445 446 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 447 if (ret) { 448 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 449 return ret; 450 } 451 452 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 453 if (ret) { 454 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 455 return ret; 456 } 457 458 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 459 if (ret) { 460 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 461 return ret; 462 } 463 464 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 465 if (ret) { 466 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 467 return ret; 468 } 469 470 return 0; 471 } 472 473 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 474 { 475 int ret; 476 477 ret = clk_prepare_enable(msm_host->byte_clk); 478 if (ret) { 479 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 480 goto error; 481 } 482 483 ret = clk_prepare_enable(msm_host->esc_clk); 484 if (ret) { 485 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 486 goto esc_clk_err; 487 } 488 489 ret = clk_prepare_enable(msm_host->src_clk); 490 if (ret) { 491 pr_err("%s: Failed to enable dsi src clk\n", __func__); 492 goto src_clk_err; 493 } 494 495 ret = clk_prepare_enable(msm_host->pixel_clk); 496 if (ret) { 497 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 498 goto pixel_clk_err; 499 } 500 501 return 0; 502 503 pixel_clk_err: 504 clk_disable_unprepare(msm_host->src_clk); 505 src_clk_err: 506 clk_disable_unprepare(msm_host->esc_clk); 507 esc_clk_err: 508 clk_disable_unprepare(msm_host->byte_clk); 509 error: 510 return ret; 511 } 512 513 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 514 { 515 /* Drop the performance state vote */ 516 dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); 517 clk_disable_unprepare(msm_host->esc_clk); 518 clk_disable_unprepare(msm_host->pixel_clk); 519 clk_disable_unprepare(msm_host->byte_intf_clk); 520 clk_disable_unprepare(msm_host->byte_clk); 521 } 522 523 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 524 { 525 clk_disable_unprepare(msm_host->pixel_clk); 526 clk_disable_unprepare(msm_host->src_clk); 527 clk_disable_unprepare(msm_host->esc_clk); 528 clk_disable_unprepare(msm_host->byte_clk); 529 } 530 531 static unsigned long dsi_adjust_pclk_for_compression(const struct drm_display_mode *mode, 532 const struct drm_dsc_config *dsc) 533 { 534 int new_hdisplay = DIV_ROUND_UP(mode->hdisplay * drm_dsc_get_bpp_int(dsc), 535 dsc->bits_per_component * 3); 536 537 int new_htotal = mode->htotal - mode->hdisplay + new_hdisplay; 538 539 return new_htotal * mode->vtotal * drm_mode_vrefresh(mode); 540 } 541 542 static unsigned long dsi_get_pclk_rate(const struct drm_display_mode *mode, 543 const struct drm_dsc_config *dsc, bool is_bonded_dsi) 544 { 545 unsigned long pclk_rate; 546 547 pclk_rate = mode->clock * 1000; 548 549 if (dsc) 550 pclk_rate = dsi_adjust_pclk_for_compression(mode, dsc); 551 552 /* 553 * For bonded DSI mode, the current DRM mode has the complete width of the 554 * panel. Since, the complete panel is driven by two DSI controllers, 555 * the clock rates have to be split between the two dsi controllers. 556 * Adjust the byte and pixel clock rates for each dsi host accordingly. 557 */ 558 if (is_bonded_dsi) 559 pclk_rate /= 2; 560 561 return pclk_rate; 562 } 563 564 unsigned long dsi_byte_clk_get_rate(struct mipi_dsi_host *host, bool is_bonded_dsi, 565 const struct drm_display_mode *mode) 566 { 567 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 568 u8 lanes = msm_host->lanes; 569 u32 bpp = dsi_get_bpp(msm_host->format); 570 unsigned long pclk_rate = dsi_get_pclk_rate(mode, msm_host->dsc, is_bonded_dsi); 571 unsigned long pclk_bpp; 572 573 if (lanes == 0) { 574 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 575 lanes = 1; 576 } 577 578 /* CPHY "byte_clk" is in units of 16 bits */ 579 if (msm_host->cphy_mode) 580 pclk_bpp = mult_frac(pclk_rate, bpp, 16 * lanes); 581 else 582 pclk_bpp = mult_frac(pclk_rate, bpp, 8 * lanes); 583 584 return pclk_bpp; 585 } 586 587 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 588 { 589 msm_host->pixel_clk_rate = dsi_get_pclk_rate(msm_host->mode, msm_host->dsc, is_bonded_dsi); 590 msm_host->byte_clk_rate = dsi_byte_clk_get_rate(&msm_host->base, is_bonded_dsi, 591 msm_host->mode); 592 593 DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate, 594 msm_host->byte_clk_rate); 595 596 } 597 598 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 599 { 600 if (!msm_host->mode) { 601 pr_err("%s: mode not set\n", __func__); 602 return -EINVAL; 603 } 604 605 dsi_calc_pclk(msm_host, is_bonded_dsi); 606 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 607 return 0; 608 } 609 610 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 611 { 612 u32 bpp = dsi_get_bpp(msm_host->format); 613 unsigned int esc_mhz, esc_div; 614 unsigned long byte_mhz; 615 616 dsi_calc_pclk(msm_host, is_bonded_dsi); 617 618 msm_host->src_clk_rate = mult_frac(msm_host->pixel_clk_rate, bpp, 8); 619 620 /* 621 * esc clock is byte clock followed by a 4 bit divider, 622 * we need to find an escape clock frequency within the 623 * mipi DSI spec range within the maximum divider limit 624 * We iterate here between an escape clock frequencey 625 * between 20 Mhz to 5 Mhz and pick up the first one 626 * that can be supported by our divider 627 */ 628 629 byte_mhz = msm_host->byte_clk_rate / 1000000; 630 631 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 632 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 633 634 /* 635 * TODO: Ideally, we shouldn't know what sort of divider 636 * is available in mmss_cc, we're just assuming that 637 * it'll always be a 4 bit divider. Need to come up with 638 * a better way here. 639 */ 640 if (esc_div >= 1 && esc_div <= 16) 641 break; 642 } 643 644 if (esc_mhz < 5) 645 return -EINVAL; 646 647 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 648 649 DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate, 650 msm_host->src_clk_rate); 651 652 return 0; 653 } 654 655 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 656 { 657 u32 intr; 658 unsigned long flags; 659 660 spin_lock_irqsave(&msm_host->intr_lock, flags); 661 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 662 663 if (enable) 664 intr |= mask; 665 else 666 intr &= ~mask; 667 668 DBG("intr=%x enable=%d", intr, enable); 669 670 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 671 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 672 } 673 674 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 675 { 676 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 677 return BURST_MODE; 678 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 679 return NON_BURST_SYNCH_PULSE; 680 681 return NON_BURST_SYNCH_EVENT; 682 } 683 684 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 685 const enum mipi_dsi_pixel_format mipi_fmt) 686 { 687 switch (mipi_fmt) { 688 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 689 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 690 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 691 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 692 default: return VID_DST_FORMAT_RGB888; 693 } 694 } 695 696 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 697 const enum mipi_dsi_pixel_format mipi_fmt) 698 { 699 switch (mipi_fmt) { 700 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 701 case MIPI_DSI_FMT_RGB666_PACKED: 702 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 703 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 704 default: return CMD_DST_FORMAT_RGB888; 705 } 706 } 707 708 static void dsi_ctrl_disable(struct msm_dsi_host *msm_host) 709 { 710 dsi_write(msm_host, REG_DSI_CTRL, 0); 711 } 712 713 static void dsi_ctrl_enable(struct msm_dsi_host *msm_host, 714 struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy) 715 { 716 u32 flags = msm_host->mode_flags; 717 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 718 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 719 u32 data = 0, lane_ctrl = 0; 720 721 if (flags & MIPI_DSI_MODE_VIDEO) { 722 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 723 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 724 if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP) 725 data |= DSI_VID_CFG0_HFP_POWER_STOP; 726 if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP) 727 data |= DSI_VID_CFG0_HBP_POWER_STOP; 728 if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA) 729 data |= DSI_VID_CFG0_HSA_POWER_STOP; 730 /* Always set low power stop mode for BLLP 731 * to let command engine send packets 732 */ 733 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 734 DSI_VID_CFG0_BLLP_POWER_STOP; 735 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 736 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 737 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 738 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 739 740 /* Do not swap RGB colors */ 741 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 742 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 743 } else { 744 /* Do not swap RGB colors */ 745 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 746 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 747 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 748 749 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 750 DSI_CMD_CFG1_WR_MEM_CONTINUE( 751 MIPI_DCS_WRITE_MEMORY_CONTINUE); 752 /* Always insert DCS command */ 753 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 754 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 755 } 756 757 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 758 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 759 DSI_CMD_DMA_CTRL_LOW_POWER); 760 761 data = 0; 762 /* Always assume dedicated TE pin */ 763 data |= DSI_TRIG_CTRL_TE; 764 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 765 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 766 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 767 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 768 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 769 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 770 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 771 772 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 773 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 774 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 775 776 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 777 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 778 phy_shared_timings->clk_pre_inc_by_2) 779 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 780 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 781 782 data = 0; 783 if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET)) 784 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 785 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 786 787 /* allow only ack-err-status to generate interrupt */ 788 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 789 790 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 791 792 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 793 794 data = DSI_CTRL_CLK_EN; 795 796 DBG("lane number=%d", msm_host->lanes); 797 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 798 799 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 800 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 801 802 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { 803 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); 804 805 if (msm_dsi_phy_set_continuous_clock(phy, true)) 806 lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY; 807 808 dsi_write(msm_host, REG_DSI_LANE_CTRL, 809 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 810 } 811 812 data |= DSI_CTRL_ENABLE; 813 814 dsi_write(msm_host, REG_DSI_CTRL, data); 815 816 if (msm_host->cphy_mode) 817 dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0)); 818 } 819 820 static void dsi_update_dsc_timing(struct msm_dsi_host *msm_host, bool is_cmd_mode, u32 hdisplay) 821 { 822 struct drm_dsc_config *dsc = msm_host->dsc; 823 u32 reg, reg_ctrl, reg_ctrl2; 824 u32 slice_per_intf, total_bytes_per_intf; 825 u32 pkt_per_line; 826 u32 eol_byte_num; 827 828 /* first calculate dsc parameters and then program 829 * compress mode registers 830 */ 831 slice_per_intf = msm_dsc_get_slices_per_intf(dsc, hdisplay); 832 833 total_bytes_per_intf = dsc->slice_chunk_size * slice_per_intf; 834 835 eol_byte_num = total_bytes_per_intf % 3; 836 837 /* 838 * Typically, pkt_per_line = slice_per_intf * slice_per_pkt. 839 * 840 * Since the current driver only supports slice_per_pkt = 1, 841 * pkt_per_line will be equal to slice per intf for now. 842 */ 843 pkt_per_line = slice_per_intf; 844 845 if (is_cmd_mode) /* packet data type */ 846 reg = DSI_COMMAND_COMPRESSION_MODE_CTRL_STREAM0_DATATYPE(MIPI_DSI_DCS_LONG_WRITE); 847 else 848 reg = DSI_VIDEO_COMPRESSION_MODE_CTRL_DATATYPE(MIPI_DSI_COMPRESSED_PIXEL_STREAM); 849 850 /* DSI_VIDEO_COMPRESSION_MODE & DSI_COMMAND_COMPRESSION_MODE 851 * registers have similar offsets, so for below common code use 852 * DSI_VIDEO_COMPRESSION_MODE_XXXX for setting bits 853 */ 854 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_PKT_PER_LINE(pkt_per_line >> 1); 855 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EOL_BYTE_NUM(eol_byte_num); 856 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EN; 857 858 if (is_cmd_mode) { 859 reg_ctrl = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL); 860 reg_ctrl2 = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2); 861 862 reg_ctrl &= ~0xffff; 863 reg_ctrl |= reg; 864 865 reg_ctrl2 &= ~DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH__MASK; 866 reg_ctrl2 |= DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH(dsc->slice_chunk_size); 867 868 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl); 869 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2); 870 } else { 871 dsi_write(msm_host, REG_DSI_VIDEO_COMPRESSION_MODE_CTRL, reg); 872 } 873 } 874 875 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 876 { 877 struct drm_display_mode *mode = msm_host->mode; 878 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 879 u32 h_total = mode->htotal; 880 u32 v_total = mode->vtotal; 881 u32 hs_end = mode->hsync_end - mode->hsync_start; 882 u32 vs_end = mode->vsync_end - mode->vsync_start; 883 u32 ha_start = h_total - mode->hsync_start; 884 u32 ha_end = ha_start + mode->hdisplay; 885 u32 va_start = v_total - mode->vsync_start; 886 u32 va_end = va_start + mode->vdisplay; 887 u32 hdisplay = mode->hdisplay; 888 u32 wc; 889 int ret; 890 891 DBG(""); 892 893 /* 894 * For bonded DSI mode, the current DRM mode has 895 * the complete width of the panel. Since, the complete 896 * panel is driven by two DSI controllers, the horizontal 897 * timings have to be split between the two dsi controllers. 898 * Adjust the DSI host timing values accordingly. 899 */ 900 if (is_bonded_dsi) { 901 h_total /= 2; 902 hs_end /= 2; 903 ha_start /= 2; 904 ha_end /= 2; 905 hdisplay /= 2; 906 } 907 908 if (msm_host->dsc) { 909 struct drm_dsc_config *dsc = msm_host->dsc; 910 911 /* update dsc params with timing params */ 912 if (!dsc || !mode->hdisplay || !mode->vdisplay) { 913 pr_err("DSI: invalid input: pic_width: %d pic_height: %d\n", 914 mode->hdisplay, mode->vdisplay); 915 return; 916 } 917 918 dsc->pic_width = mode->hdisplay; 919 dsc->pic_height = mode->vdisplay; 920 DBG("Mode %dx%d\n", dsc->pic_width, dsc->pic_height); 921 922 /* we do the calculations for dsc parameters here so that 923 * panel can use these parameters 924 */ 925 ret = dsi_populate_dsc_params(msm_host, dsc); 926 if (ret) 927 return; 928 929 /* Divide the display by 3 but keep back/font porch and 930 * pulse width same 931 */ 932 h_total -= hdisplay; 933 hdisplay = DIV_ROUND_UP(msm_dsc_get_bytes_per_line(msm_host->dsc), 3); 934 h_total += hdisplay; 935 ha_end = ha_start + hdisplay; 936 } 937 938 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 939 if (msm_host->dsc) 940 dsi_update_dsc_timing(msm_host, false, mode->hdisplay); 941 942 dsi_write(msm_host, REG_DSI_ACTIVE_H, 943 DSI_ACTIVE_H_START(ha_start) | 944 DSI_ACTIVE_H_END(ha_end)); 945 dsi_write(msm_host, REG_DSI_ACTIVE_V, 946 DSI_ACTIVE_V_START(va_start) | 947 DSI_ACTIVE_V_END(va_end)); 948 dsi_write(msm_host, REG_DSI_TOTAL, 949 DSI_TOTAL_H_TOTAL(h_total - 1) | 950 DSI_TOTAL_V_TOTAL(v_total - 1)); 951 952 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 953 DSI_ACTIVE_HSYNC_START(hs_start) | 954 DSI_ACTIVE_HSYNC_END(hs_end)); 955 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 956 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 957 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 958 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 959 } else { /* command mode */ 960 if (msm_host->dsc) 961 dsi_update_dsc_timing(msm_host, true, mode->hdisplay); 962 963 /* image data and 1 byte write_memory_start cmd */ 964 if (!msm_host->dsc) 965 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 966 else 967 /* 968 * When DSC is enabled, WC = slice_chunk_size * slice_per_pkt + 1. 969 * Currently, the driver only supports default value of slice_per_pkt = 1 970 * 971 * TODO: Expand mipi_dsi_device struct to hold slice_per_pkt info 972 * and adjust DSC math to account for slice_per_pkt. 973 */ 974 wc = msm_host->dsc->slice_chunk_size + 1; 975 976 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, 977 DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | 978 DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( 979 msm_host->channel) | 980 DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( 981 MIPI_DSI_DCS_LONG_WRITE)); 982 983 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, 984 DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | 985 DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); 986 } 987 } 988 989 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 990 { 991 u32 ctrl; 992 993 ctrl = dsi_read(msm_host, REG_DSI_CTRL); 994 995 if (ctrl & DSI_CTRL_ENABLE) { 996 dsi_write(msm_host, REG_DSI_CTRL, ctrl & ~DSI_CTRL_ENABLE); 997 /* 998 * dsi controller need to be disabled before 999 * clocks turned on 1000 */ 1001 wmb(); 1002 } 1003 1004 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1005 wmb(); /* clocks need to be enabled before reset */ 1006 1007 /* dsi controller can only be reset while clocks are running */ 1008 dsi_write(msm_host, REG_DSI_RESET, 1); 1009 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1010 dsi_write(msm_host, REG_DSI_RESET, 0); 1011 wmb(); /* controller out of reset */ 1012 1013 if (ctrl & DSI_CTRL_ENABLE) { 1014 dsi_write(msm_host, REG_DSI_CTRL, ctrl); 1015 wmb(); /* make sure dsi controller enabled again */ 1016 } 1017 } 1018 1019 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 1020 bool video_mode, bool enable) 1021 { 1022 u32 dsi_ctrl; 1023 1024 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1025 1026 if (!enable) { 1027 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1028 DSI_CTRL_CMD_MODE_EN); 1029 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1030 DSI_IRQ_MASK_VIDEO_DONE, 0); 1031 } else { 1032 if (video_mode) { 1033 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1034 } else { /* command mode */ 1035 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1036 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1037 } 1038 dsi_ctrl |= DSI_CTRL_ENABLE; 1039 } 1040 1041 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1042 } 1043 1044 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1045 { 1046 u32 data; 1047 1048 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1049 1050 if (mode == 0) 1051 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1052 else 1053 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1054 1055 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1056 } 1057 1058 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1059 { 1060 u32 ret = 0; 1061 struct device *dev = &msm_host->pdev->dev; 1062 1063 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1064 1065 reinit_completion(&msm_host->video_comp); 1066 1067 ret = wait_for_completion_timeout(&msm_host->video_comp, 1068 msecs_to_jiffies(70)); 1069 1070 if (ret == 0) 1071 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1072 1073 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1074 } 1075 1076 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1077 { 1078 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1079 return; 1080 1081 if (msm_host->power_on && msm_host->enabled) { 1082 dsi_wait4video_done(msm_host); 1083 /* delay 4 ms to skip BLLP */ 1084 usleep_range(2000, 4000); 1085 } 1086 } 1087 1088 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1089 { 1090 struct drm_device *dev = msm_host->dev; 1091 struct msm_drm_private *priv = dev->dev_private; 1092 uint64_t iova; 1093 u8 *data; 1094 1095 data = msm_gem_kernel_new(dev, size, MSM_BO_WC, 1096 priv->kms->aspace, 1097 &msm_host->tx_gem_obj, &iova); 1098 1099 if (IS_ERR(data)) { 1100 msm_host->tx_gem_obj = NULL; 1101 return PTR_ERR(data); 1102 } 1103 1104 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1105 1106 msm_host->tx_size = msm_host->tx_gem_obj->size; 1107 1108 return 0; 1109 } 1110 1111 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1112 { 1113 struct drm_device *dev = msm_host->dev; 1114 1115 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1116 &msm_host->tx_buf_paddr, GFP_KERNEL); 1117 if (!msm_host->tx_buf) 1118 return -ENOMEM; 1119 1120 msm_host->tx_size = size; 1121 1122 return 0; 1123 } 1124 1125 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1126 { 1127 struct drm_device *dev = msm_host->dev; 1128 struct msm_drm_private *priv; 1129 1130 /* 1131 * This is possible if we're tearing down before we've had a chance to 1132 * fully initialize. A very real possibility if our probe is deferred, 1133 * in which case we'll hit msm_dsi_host_destroy() without having run 1134 * through the dsi_tx_buf_alloc(). 1135 */ 1136 if (!dev) 1137 return; 1138 1139 priv = dev->dev_private; 1140 if (msm_host->tx_gem_obj) { 1141 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1142 drm_gem_object_put(msm_host->tx_gem_obj); 1143 msm_host->tx_gem_obj = NULL; 1144 } 1145 1146 if (msm_host->tx_buf) 1147 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1148 msm_host->tx_buf_paddr); 1149 } 1150 1151 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1152 { 1153 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1154 } 1155 1156 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1157 { 1158 return msm_host->tx_buf; 1159 } 1160 1161 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1162 { 1163 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1164 } 1165 1166 /* 1167 * prepare cmd buffer to be txed 1168 */ 1169 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1170 const struct mipi_dsi_msg *msg) 1171 { 1172 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1173 struct mipi_dsi_packet packet; 1174 int len; 1175 int ret; 1176 u8 *data; 1177 1178 ret = mipi_dsi_create_packet(&packet, msg); 1179 if (ret) { 1180 pr_err("%s: create packet failed, %d\n", __func__, ret); 1181 return ret; 1182 } 1183 len = (packet.size + 3) & (~0x3); 1184 1185 if (len > msm_host->tx_size) { 1186 pr_err("%s: packet size is too big\n", __func__); 1187 return -EINVAL; 1188 } 1189 1190 data = cfg_hnd->ops->tx_buf_get(msm_host); 1191 if (IS_ERR(data)) { 1192 ret = PTR_ERR(data); 1193 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1194 return ret; 1195 } 1196 1197 /* MSM specific command format in memory */ 1198 data[0] = packet.header[1]; 1199 data[1] = packet.header[2]; 1200 data[2] = packet.header[0]; 1201 data[3] = BIT(7); /* Last packet */ 1202 if (mipi_dsi_packet_format_is_long(msg->type)) 1203 data[3] |= BIT(6); 1204 if (msg->rx_buf && msg->rx_len) 1205 data[3] |= BIT(5); 1206 1207 /* Long packet */ 1208 if (packet.payload && packet.payload_length) 1209 memcpy(data + 4, packet.payload, packet.payload_length); 1210 1211 /* Append 0xff to the end */ 1212 if (packet.size < len) 1213 memset(data + packet.size, 0xff, len - packet.size); 1214 1215 if (cfg_hnd->ops->tx_buf_put) 1216 cfg_hnd->ops->tx_buf_put(msm_host); 1217 1218 return len; 1219 } 1220 1221 /* 1222 * dsi_short_read1_resp: 1 parameter 1223 */ 1224 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1225 { 1226 u8 *data = msg->rx_buf; 1227 if (data && (msg->rx_len >= 1)) { 1228 *data = buf[1]; /* strip out dcs type */ 1229 return 1; 1230 } else { 1231 pr_err("%s: read data does not match with rx_buf len %zu\n", 1232 __func__, msg->rx_len); 1233 return -EINVAL; 1234 } 1235 } 1236 1237 /* 1238 * dsi_short_read2_resp: 2 parameter 1239 */ 1240 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1241 { 1242 u8 *data = msg->rx_buf; 1243 if (data && (msg->rx_len >= 2)) { 1244 data[0] = buf[1]; /* strip out dcs type */ 1245 data[1] = buf[2]; 1246 return 2; 1247 } else { 1248 pr_err("%s: read data does not match with rx_buf len %zu\n", 1249 __func__, msg->rx_len); 1250 return -EINVAL; 1251 } 1252 } 1253 1254 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1255 { 1256 /* strip out 4 byte dcs header */ 1257 if (msg->rx_buf && msg->rx_len) 1258 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1259 1260 return msg->rx_len; 1261 } 1262 1263 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1264 { 1265 struct drm_device *dev = msm_host->dev; 1266 struct msm_drm_private *priv = dev->dev_private; 1267 1268 if (!dma_base) 1269 return -EINVAL; 1270 1271 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1272 priv->kms->aspace, dma_base); 1273 } 1274 1275 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1276 { 1277 if (!dma_base) 1278 return -EINVAL; 1279 1280 *dma_base = msm_host->tx_buf_paddr; 1281 return 0; 1282 } 1283 1284 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1285 { 1286 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1287 int ret; 1288 uint64_t dma_base; 1289 bool triggered; 1290 1291 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1292 if (ret) { 1293 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1294 return ret; 1295 } 1296 1297 reinit_completion(&msm_host->dma_comp); 1298 1299 dsi_wait4video_eng_busy(msm_host); 1300 1301 triggered = msm_dsi_manager_cmd_xfer_trigger( 1302 msm_host->id, dma_base, len); 1303 if (triggered) { 1304 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1305 msecs_to_jiffies(200)); 1306 DBG("ret=%d", ret); 1307 if (ret == 0) 1308 ret = -ETIMEDOUT; 1309 else 1310 ret = len; 1311 } else 1312 ret = len; 1313 1314 return ret; 1315 } 1316 1317 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1318 u8 *buf, int rx_byte, int pkt_size) 1319 { 1320 u32 *temp, data; 1321 int i, j = 0, cnt; 1322 u32 read_cnt; 1323 u8 reg[16]; 1324 int repeated_bytes = 0; 1325 int buf_offset = buf - msm_host->rx_buf; 1326 1327 temp = (u32 *)reg; 1328 cnt = (rx_byte + 3) >> 2; 1329 if (cnt > 4) 1330 cnt = 4; /* 4 x 32 bits registers only */ 1331 1332 if (rx_byte == 4) 1333 read_cnt = 4; 1334 else 1335 read_cnt = pkt_size + 6; 1336 1337 /* 1338 * In case of multiple reads from the panel, after the first read, there 1339 * is possibility that there are some bytes in the payload repeating in 1340 * the RDBK_DATA registers. Since we read all the parameters from the 1341 * panel right from the first byte for every pass. We need to skip the 1342 * repeating bytes and then append the new parameters to the rx buffer. 1343 */ 1344 if (read_cnt > 16) { 1345 int bytes_shifted; 1346 /* Any data more than 16 bytes will be shifted out. 1347 * The temp read buffer should already contain these bytes. 1348 * The remaining bytes in read buffer are the repeated bytes. 1349 */ 1350 bytes_shifted = read_cnt - 16; 1351 repeated_bytes = buf_offset - bytes_shifted; 1352 } 1353 1354 for (i = cnt - 1; i >= 0; i--) { 1355 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1356 *temp++ = ntohl(data); /* to host byte order */ 1357 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1358 } 1359 1360 for (i = repeated_bytes; i < 16; i++) 1361 buf[j++] = reg[i]; 1362 1363 return j; 1364 } 1365 1366 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1367 const struct mipi_dsi_msg *msg) 1368 { 1369 int len, ret; 1370 int bllp_len = msm_host->mode->hdisplay * 1371 dsi_get_bpp(msm_host->format) / 8; 1372 1373 len = dsi_cmd_dma_add(msm_host, msg); 1374 if (len < 0) { 1375 pr_err("%s: failed to add cmd type = 0x%x\n", 1376 __func__, msg->type); 1377 return len; 1378 } 1379 1380 /* for video mode, do not send cmds more than 1381 * one pixel line, since it only transmit it 1382 * during BLLP. 1383 */ 1384 /* TODO: if the command is sent in LP mode, the bit rate is only 1385 * half of esc clk rate. In this case, if the video is already 1386 * actively streaming, we need to check more carefully if the 1387 * command can be fit into one BLLP. 1388 */ 1389 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1390 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1391 __func__, len); 1392 return -EINVAL; 1393 } 1394 1395 ret = dsi_cmd_dma_tx(msm_host, len); 1396 if (ret < 0) { 1397 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d, ret=%d\n", 1398 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len, ret); 1399 return ret; 1400 } else if (ret < len) { 1401 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, ret=%d len=%d\n", 1402 __func__, msg->type, (*(u8 *)(msg->tx_buf)), ret, len); 1403 return -EIO; 1404 } 1405 1406 return len; 1407 } 1408 1409 static void dsi_err_worker(struct work_struct *work) 1410 { 1411 struct msm_dsi_host *msm_host = 1412 container_of(work, struct msm_dsi_host, err_work); 1413 u32 status = msm_host->err_work_state; 1414 1415 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1416 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1417 dsi_sw_reset(msm_host); 1418 1419 /* It is safe to clear here because error irq is disabled. */ 1420 msm_host->err_work_state = 0; 1421 1422 /* enable dsi error interrupt */ 1423 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1424 } 1425 1426 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1427 { 1428 u32 status; 1429 1430 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1431 1432 if (status) { 1433 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1434 /* Writing of an extra 0 needed to clear error bits */ 1435 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1436 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1437 } 1438 } 1439 1440 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1441 { 1442 u32 status; 1443 1444 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1445 1446 if (status) { 1447 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1448 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1449 } 1450 } 1451 1452 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1453 { 1454 u32 status; 1455 1456 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1457 1458 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1459 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1460 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1461 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1462 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1463 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1464 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1465 } 1466 } 1467 1468 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1469 { 1470 u32 status; 1471 1472 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1473 1474 /* fifo underflow, overflow */ 1475 if (status) { 1476 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1477 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1478 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1479 msm_host->err_work_state |= 1480 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1481 } 1482 } 1483 1484 static void dsi_status(struct msm_dsi_host *msm_host) 1485 { 1486 u32 status; 1487 1488 status = dsi_read(msm_host, REG_DSI_STATUS0); 1489 1490 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1491 dsi_write(msm_host, REG_DSI_STATUS0, status); 1492 msm_host->err_work_state |= 1493 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1494 } 1495 } 1496 1497 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1498 { 1499 u32 status; 1500 1501 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1502 1503 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1504 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1505 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1506 } 1507 } 1508 1509 static void dsi_error(struct msm_dsi_host *msm_host) 1510 { 1511 /* disable dsi error interrupt */ 1512 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1513 1514 dsi_clk_status(msm_host); 1515 dsi_fifo_status(msm_host); 1516 dsi_ack_err_status(msm_host); 1517 dsi_timeout_status(msm_host); 1518 dsi_status(msm_host); 1519 dsi_dln0_phy_err(msm_host); 1520 1521 queue_work(msm_host->workqueue, &msm_host->err_work); 1522 } 1523 1524 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1525 { 1526 struct msm_dsi_host *msm_host = ptr; 1527 u32 isr; 1528 unsigned long flags; 1529 1530 if (!msm_host->ctrl_base) 1531 return IRQ_HANDLED; 1532 1533 spin_lock_irqsave(&msm_host->intr_lock, flags); 1534 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1535 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1536 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1537 1538 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1539 1540 if (isr & DSI_IRQ_ERROR) 1541 dsi_error(msm_host); 1542 1543 if (isr & DSI_IRQ_VIDEO_DONE) 1544 complete(&msm_host->video_comp); 1545 1546 if (isr & DSI_IRQ_CMD_DMA_DONE) 1547 complete(&msm_host->dma_comp); 1548 1549 return IRQ_HANDLED; 1550 } 1551 1552 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1553 struct device *panel_device) 1554 { 1555 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1556 "disp-enable", 1557 GPIOD_OUT_LOW); 1558 if (IS_ERR(msm_host->disp_en_gpio)) { 1559 DBG("cannot get disp-enable-gpios %ld", 1560 PTR_ERR(msm_host->disp_en_gpio)); 1561 return PTR_ERR(msm_host->disp_en_gpio); 1562 } 1563 1564 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1565 GPIOD_IN); 1566 if (IS_ERR(msm_host->te_gpio)) { 1567 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1568 return PTR_ERR(msm_host->te_gpio); 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int dsi_host_attach(struct mipi_dsi_host *host, 1575 struct mipi_dsi_device *dsi) 1576 { 1577 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1578 int ret; 1579 1580 if (dsi->lanes > msm_host->num_data_lanes) 1581 return -EINVAL; 1582 1583 msm_host->channel = dsi->channel; 1584 msm_host->lanes = dsi->lanes; 1585 msm_host->format = dsi->format; 1586 msm_host->mode_flags = dsi->mode_flags; 1587 if (dsi->dsc) 1588 msm_host->dsc = dsi->dsc; 1589 1590 /* Some gpios defined in panel DT need to be controlled by host */ 1591 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1592 if (ret) 1593 return ret; 1594 1595 ret = dsi_dev_attach(msm_host->pdev); 1596 if (ret) 1597 return ret; 1598 1599 DBG("id=%d", msm_host->id); 1600 1601 return 0; 1602 } 1603 1604 static int dsi_host_detach(struct mipi_dsi_host *host, 1605 struct mipi_dsi_device *dsi) 1606 { 1607 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1608 1609 dsi_dev_detach(msm_host->pdev); 1610 1611 DBG("id=%d", msm_host->id); 1612 1613 return 0; 1614 } 1615 1616 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1617 const struct mipi_dsi_msg *msg) 1618 { 1619 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1620 int ret; 1621 1622 if (!msg || !msm_host->power_on) 1623 return -EINVAL; 1624 1625 mutex_lock(&msm_host->cmd_mutex); 1626 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1627 mutex_unlock(&msm_host->cmd_mutex); 1628 1629 return ret; 1630 } 1631 1632 static const struct mipi_dsi_host_ops dsi_host_ops = { 1633 .attach = dsi_host_attach, 1634 .detach = dsi_host_detach, 1635 .transfer = dsi_host_transfer, 1636 }; 1637 1638 /* 1639 * List of supported physical to logical lane mappings. 1640 * For example, the 2nd entry represents the following mapping: 1641 * 1642 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1643 */ 1644 static const int supported_data_lane_swaps[][4] = { 1645 { 0, 1, 2, 3 }, 1646 { 3, 0, 1, 2 }, 1647 { 2, 3, 0, 1 }, 1648 { 1, 2, 3, 0 }, 1649 { 0, 3, 2, 1 }, 1650 { 1, 0, 3, 2 }, 1651 { 2, 1, 0, 3 }, 1652 { 3, 2, 1, 0 }, 1653 }; 1654 1655 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1656 struct device_node *ep) 1657 { 1658 struct device *dev = &msm_host->pdev->dev; 1659 struct property *prop; 1660 u32 lane_map[4]; 1661 int ret, i, len, num_lanes; 1662 1663 prop = of_find_property(ep, "data-lanes", &len); 1664 if (!prop) { 1665 DRM_DEV_DEBUG(dev, 1666 "failed to find data lane mapping, using default\n"); 1667 /* Set the number of date lanes to 4 by default. */ 1668 msm_host->num_data_lanes = 4; 1669 return 0; 1670 } 1671 1672 num_lanes = drm_of_get_data_lanes_count(ep, 1, 4); 1673 if (num_lanes < 0) { 1674 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1675 return num_lanes; 1676 } 1677 1678 msm_host->num_data_lanes = num_lanes; 1679 1680 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1681 num_lanes); 1682 if (ret) { 1683 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1684 return ret; 1685 } 1686 1687 /* 1688 * compare DT specified physical-logical lane mappings with the ones 1689 * supported by hardware 1690 */ 1691 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1692 const int *swap = supported_data_lane_swaps[i]; 1693 int j; 1694 1695 /* 1696 * the data-lanes array we get from DT has a logical->physical 1697 * mapping. The "data lane swap" register field represents 1698 * supported configurations in a physical->logical mapping. 1699 * Translate the DT mapping to what we understand and find a 1700 * configuration that works. 1701 */ 1702 for (j = 0; j < num_lanes; j++) { 1703 if (lane_map[j] < 0 || lane_map[j] > 3) 1704 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1705 lane_map[j]); 1706 1707 if (swap[lane_map[j]] != j) 1708 break; 1709 } 1710 1711 if (j == num_lanes) { 1712 msm_host->dlane_swap = i; 1713 return 0; 1714 } 1715 } 1716 1717 return -EINVAL; 1718 } 1719 1720 static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc) 1721 { 1722 int ret; 1723 1724 if (dsc->bits_per_pixel & 0xf) { 1725 DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support fractional bits_per_pixel\n"); 1726 return -EINVAL; 1727 } 1728 1729 if (dsc->bits_per_component != 8) { 1730 DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support bits_per_component != 8 yet\n"); 1731 return -EOPNOTSUPP; 1732 } 1733 1734 dsc->simple_422 = 0; 1735 dsc->convert_rgb = 1; 1736 dsc->vbr_enable = 0; 1737 1738 drm_dsc_set_const_params(dsc); 1739 drm_dsc_set_rc_buf_thresh(dsc); 1740 1741 /* handle only bpp = bpc = 8, pre-SCR panels */ 1742 ret = drm_dsc_setup_rc_params(dsc, DRM_DSC_1_1_PRE_SCR); 1743 if (ret) { 1744 DRM_DEV_ERROR(&msm_host->pdev->dev, "could not find DSC RC parameters\n"); 1745 return ret; 1746 } 1747 1748 dsc->initial_scale_value = drm_dsc_initial_scale_value(dsc); 1749 dsc->line_buf_depth = dsc->bits_per_component + 1; 1750 1751 return drm_dsc_compute_rc_parameters(dsc); 1752 } 1753 1754 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1755 { 1756 struct device *dev = &msm_host->pdev->dev; 1757 struct device_node *np = dev->of_node; 1758 struct device_node *endpoint; 1759 int ret = 0; 1760 1761 /* 1762 * Get the endpoint of the output port of the DSI host. In our case, 1763 * this is mapped to port number with reg = 1. Don't return an error if 1764 * the remote endpoint isn't defined. It's possible that there is 1765 * nothing connected to the dsi output. 1766 */ 1767 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1768 if (!endpoint) { 1769 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1770 return 0; 1771 } 1772 1773 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1774 if (ret) { 1775 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1776 __func__, ret); 1777 ret = -EINVAL; 1778 goto err; 1779 } 1780 1781 if (of_property_read_bool(np, "syscon-sfpb")) { 1782 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1783 "syscon-sfpb"); 1784 if (IS_ERR(msm_host->sfpb)) { 1785 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1786 __func__); 1787 ret = PTR_ERR(msm_host->sfpb); 1788 } 1789 } 1790 1791 err: 1792 of_node_put(endpoint); 1793 1794 return ret; 1795 } 1796 1797 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1798 { 1799 struct platform_device *pdev = msm_host->pdev; 1800 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1801 struct resource *res; 1802 int i, j; 1803 1804 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1805 if (!res) 1806 return -EINVAL; 1807 1808 for (i = 0; i < VARIANTS_MAX; i++) 1809 for (j = 0; j < DSI_MAX; j++) 1810 if (cfg->io_start[i][j] == res->start) 1811 return j; 1812 1813 return -EINVAL; 1814 } 1815 1816 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1817 { 1818 struct msm_dsi_host *msm_host = NULL; 1819 struct platform_device *pdev = msm_dsi->pdev; 1820 const struct msm_dsi_config *cfg; 1821 int ret; 1822 1823 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1824 if (!msm_host) { 1825 return -ENOMEM; 1826 } 1827 1828 msm_host->pdev = pdev; 1829 msm_dsi->host = &msm_host->base; 1830 1831 ret = dsi_host_parse_dt(msm_host); 1832 if (ret) { 1833 pr_err("%s: failed to parse dt\n", __func__); 1834 return ret; 1835 } 1836 1837 msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size); 1838 if (IS_ERR(msm_host->ctrl_base)) { 1839 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1840 return PTR_ERR(msm_host->ctrl_base); 1841 } 1842 1843 pm_runtime_enable(&pdev->dev); 1844 1845 msm_host->cfg_hnd = dsi_get_config(msm_host); 1846 if (!msm_host->cfg_hnd) { 1847 pr_err("%s: get config failed\n", __func__); 1848 return -EINVAL; 1849 } 1850 cfg = msm_host->cfg_hnd->cfg; 1851 1852 msm_host->id = dsi_host_get_id(msm_host); 1853 if (msm_host->id < 0) { 1854 pr_err("%s: unable to identify DSI host index\n", __func__); 1855 return msm_host->id; 1856 } 1857 1858 /* fixup base address by io offset */ 1859 msm_host->ctrl_base += cfg->io_offset; 1860 1861 ret = devm_regulator_bulk_get_const(&pdev->dev, cfg->num_regulators, 1862 cfg->regulator_data, 1863 &msm_host->supplies); 1864 if (ret) 1865 return ret; 1866 1867 ret = dsi_clk_init(msm_host); 1868 if (ret) { 1869 pr_err("%s: unable to initialize dsi clks\n", __func__); 1870 return ret; 1871 } 1872 1873 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1874 if (!msm_host->rx_buf) { 1875 pr_err("%s: alloc rx temp buf failed\n", __func__); 1876 return -ENOMEM; 1877 } 1878 1879 ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); 1880 if (ret) 1881 return ret; 1882 /* OPP table is optional */ 1883 ret = devm_pm_opp_of_add_table(&pdev->dev); 1884 if (ret && ret != -ENODEV) { 1885 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1886 return ret; 1887 } 1888 1889 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1890 if (msm_host->irq < 0) { 1891 ret = msm_host->irq; 1892 dev_err(&pdev->dev, "failed to get irq: %d\n", ret); 1893 return ret; 1894 } 1895 1896 /* do not autoenable, will be enabled later */ 1897 ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, 1898 IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN, 1899 "dsi_isr", msm_host); 1900 if (ret < 0) { 1901 dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", 1902 msm_host->irq, ret); 1903 return ret; 1904 } 1905 1906 init_completion(&msm_host->dma_comp); 1907 init_completion(&msm_host->video_comp); 1908 mutex_init(&msm_host->dev_mutex); 1909 mutex_init(&msm_host->cmd_mutex); 1910 spin_lock_init(&msm_host->intr_lock); 1911 1912 /* setup workqueue */ 1913 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1914 if (!msm_host->workqueue) 1915 return -ENOMEM; 1916 1917 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1918 1919 msm_dsi->id = msm_host->id; 1920 1921 DBG("Dsi Host %d initialized", msm_host->id); 1922 return 0; 1923 } 1924 1925 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1926 { 1927 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1928 1929 DBG(""); 1930 dsi_tx_buf_free(msm_host); 1931 if (msm_host->workqueue) { 1932 destroy_workqueue(msm_host->workqueue); 1933 msm_host->workqueue = NULL; 1934 } 1935 1936 mutex_destroy(&msm_host->cmd_mutex); 1937 mutex_destroy(&msm_host->dev_mutex); 1938 1939 pm_runtime_disable(&msm_host->pdev->dev); 1940 } 1941 1942 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1943 struct drm_device *dev) 1944 { 1945 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1946 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1947 int ret; 1948 1949 msm_host->dev = dev; 1950 1951 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1952 if (ret) { 1953 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1954 return ret; 1955 } 1956 1957 return 0; 1958 } 1959 1960 int msm_dsi_host_register(struct mipi_dsi_host *host) 1961 { 1962 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1963 int ret; 1964 1965 /* Register mipi dsi host */ 1966 if (!msm_host->registered) { 1967 host->dev = &msm_host->pdev->dev; 1968 host->ops = &dsi_host_ops; 1969 ret = mipi_dsi_host_register(host); 1970 if (ret) 1971 return ret; 1972 1973 msm_host->registered = true; 1974 } 1975 1976 return 0; 1977 } 1978 1979 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 1980 { 1981 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1982 1983 if (msm_host->registered) { 1984 mipi_dsi_host_unregister(host); 1985 host->dev = NULL; 1986 host->ops = NULL; 1987 msm_host->registered = false; 1988 } 1989 } 1990 1991 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 1992 const struct mipi_dsi_msg *msg) 1993 { 1994 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1995 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1996 1997 /* TODO: make sure dsi_cmd_mdp is idle. 1998 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 1999 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 2000 * How to handle the old versions? Wait for mdp cmd done? 2001 */ 2002 2003 /* 2004 * mdss interrupt is generated in mdp core clock domain 2005 * mdp clock need to be enabled to receive dsi interrupt 2006 */ 2007 pm_runtime_get_sync(&msm_host->pdev->dev); 2008 cfg_hnd->ops->link_clk_set_rate(msm_host); 2009 cfg_hnd->ops->link_clk_enable(msm_host); 2010 2011 /* TODO: vote for bus bandwidth */ 2012 2013 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2014 dsi_set_tx_power_mode(0, msm_host); 2015 2016 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2017 dsi_write(msm_host, REG_DSI_CTRL, 2018 msm_host->dma_cmd_ctrl_restore | 2019 DSI_CTRL_CMD_MODE_EN | 2020 DSI_CTRL_ENABLE); 2021 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2022 2023 return 0; 2024 } 2025 2026 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2027 const struct mipi_dsi_msg *msg) 2028 { 2029 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2030 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2031 2032 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2033 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2034 2035 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2036 dsi_set_tx_power_mode(1, msm_host); 2037 2038 /* TODO: unvote for bus bandwidth */ 2039 2040 cfg_hnd->ops->link_clk_disable(msm_host); 2041 pm_runtime_put(&msm_host->pdev->dev); 2042 } 2043 2044 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2045 const struct mipi_dsi_msg *msg) 2046 { 2047 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2048 2049 return dsi_cmds2buf_tx(msm_host, msg); 2050 } 2051 2052 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2053 const struct mipi_dsi_msg *msg) 2054 { 2055 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2056 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2057 int data_byte, rx_byte, dlen, end; 2058 int short_response, diff, pkt_size, ret = 0; 2059 char cmd; 2060 int rlen = msg->rx_len; 2061 u8 *buf; 2062 2063 if (rlen <= 2) { 2064 short_response = 1; 2065 pkt_size = rlen; 2066 rx_byte = 4; 2067 } else { 2068 short_response = 0; 2069 data_byte = 10; /* first read */ 2070 if (rlen < data_byte) 2071 pkt_size = rlen; 2072 else 2073 pkt_size = data_byte; 2074 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2075 } 2076 2077 buf = msm_host->rx_buf; 2078 end = 0; 2079 while (!end) { 2080 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2081 struct mipi_dsi_msg max_pkt_size_msg = { 2082 .channel = msg->channel, 2083 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2084 .tx_len = 2, 2085 .tx_buf = tx, 2086 }; 2087 2088 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2089 rlen, pkt_size, rx_byte); 2090 2091 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2092 if (ret < 2) { 2093 pr_err("%s: Set max pkt size failed, %d\n", 2094 __func__, ret); 2095 return -EINVAL; 2096 } 2097 2098 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2099 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2100 /* Clear the RDBK_DATA registers */ 2101 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2102 DSI_RDBK_DATA_CTRL_CLR); 2103 wmb(); /* make sure the RDBK registers are cleared */ 2104 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2105 wmb(); /* release cleared status before transfer */ 2106 } 2107 2108 ret = dsi_cmds2buf_tx(msm_host, msg); 2109 if (ret < 0) { 2110 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2111 return ret; 2112 } else if (ret < msg->tx_len) { 2113 pr_err("%s: Read cmd Tx failed, too short: %d\n", __func__, ret); 2114 return -ECOMM; 2115 } 2116 2117 /* 2118 * once cmd_dma_done interrupt received, 2119 * return data from client is ready and stored 2120 * at RDBK_DATA register already 2121 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2122 * after that dcs header lost during shift into registers 2123 */ 2124 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2125 2126 if (dlen <= 0) 2127 return 0; 2128 2129 if (short_response) 2130 break; 2131 2132 if (rlen <= data_byte) { 2133 diff = data_byte - rlen; 2134 end = 1; 2135 } else { 2136 diff = 0; 2137 rlen -= data_byte; 2138 } 2139 2140 if (!end) { 2141 dlen -= 2; /* 2 crc */ 2142 dlen -= diff; 2143 buf += dlen; /* next start position */ 2144 data_byte = 14; /* NOT first read */ 2145 if (rlen < data_byte) 2146 pkt_size += rlen; 2147 else 2148 pkt_size += data_byte; 2149 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2150 } 2151 } 2152 2153 /* 2154 * For single Long read, if the requested rlen < 10, 2155 * we need to shift the start position of rx 2156 * data buffer to skip the bytes which are not 2157 * updated. 2158 */ 2159 if (pkt_size < 10 && !short_response) 2160 buf = msm_host->rx_buf + (10 - rlen); 2161 else 2162 buf = msm_host->rx_buf; 2163 2164 cmd = buf[0]; 2165 switch (cmd) { 2166 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2167 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2168 ret = 0; 2169 break; 2170 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2171 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2172 ret = dsi_short_read1_resp(buf, msg); 2173 break; 2174 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2175 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2176 ret = dsi_short_read2_resp(buf, msg); 2177 break; 2178 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2179 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2180 ret = dsi_long_read_resp(buf, msg); 2181 break; 2182 default: 2183 pr_warn("%s:Invalid response cmd\n", __func__); 2184 ret = 0; 2185 } 2186 2187 return ret; 2188 } 2189 2190 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2191 u32 len) 2192 { 2193 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2194 2195 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2196 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2197 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2198 2199 /* Make sure trigger happens */ 2200 wmb(); 2201 } 2202 2203 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host, 2204 struct msm_dsi_phy *src_phy) 2205 { 2206 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2207 2208 msm_host->cphy_mode = src_phy->cphy_mode; 2209 } 2210 2211 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2212 { 2213 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2214 2215 DBG(""); 2216 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2217 /* Make sure fully reset */ 2218 wmb(); 2219 udelay(1000); 2220 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2221 udelay(100); 2222 } 2223 2224 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2225 struct msm_dsi_phy_clk_request *clk_req, 2226 bool is_bonded_dsi) 2227 { 2228 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2229 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2230 int ret; 2231 2232 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi); 2233 if (ret) { 2234 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2235 return; 2236 } 2237 2238 /* CPHY transmits 16 bits over 7 clock cycles 2239 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk), 2240 * so multiply by 7 to get the "bitclk rate" 2241 */ 2242 if (msm_host->cphy_mode) 2243 clk_req->bitclk_rate = msm_host->byte_clk_rate * 7; 2244 else 2245 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2246 clk_req->escclk_rate = msm_host->esc_clk_rate; 2247 } 2248 2249 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host) 2250 { 2251 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2252 2253 enable_irq(msm_host->irq); 2254 } 2255 2256 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host) 2257 { 2258 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2259 2260 disable_irq(msm_host->irq); 2261 } 2262 2263 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2264 { 2265 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2266 2267 dsi_op_mode_config(msm_host, 2268 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2269 2270 /* TODO: clock should be turned off for command mode, 2271 * and only turned on before MDP START. 2272 * This part of code should be enabled once mdp driver support it. 2273 */ 2274 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2275 * dsi_link_clk_disable(msm_host); 2276 * pm_runtime_put(&msm_host->pdev->dev); 2277 * } 2278 */ 2279 msm_host->enabled = true; 2280 return 0; 2281 } 2282 2283 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2284 { 2285 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2286 2287 msm_host->enabled = false; 2288 dsi_op_mode_config(msm_host, 2289 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2290 2291 /* Since we have disabled INTF, the video engine won't stop so that 2292 * the cmd engine will be blocked. 2293 * Reset to disable video engine so that we can send off cmd. 2294 */ 2295 dsi_sw_reset(msm_host); 2296 2297 return 0; 2298 } 2299 2300 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2301 { 2302 enum sfpb_ahb_arb_master_port_en en; 2303 2304 if (!msm_host->sfpb) 2305 return; 2306 2307 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2308 2309 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2310 SFPB_GPREG_MASTER_PORT_EN__MASK, 2311 SFPB_GPREG_MASTER_PORT_EN(en)); 2312 } 2313 2314 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2315 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2316 bool is_bonded_dsi, struct msm_dsi_phy *phy) 2317 { 2318 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2319 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2320 int ret = 0; 2321 2322 mutex_lock(&msm_host->dev_mutex); 2323 if (msm_host->power_on) { 2324 DBG("dsi host already on"); 2325 goto unlock_ret; 2326 } 2327 2328 msm_host->byte_intf_clk_rate = msm_host->byte_clk_rate; 2329 if (phy_shared_timings->byte_intf_clk_div_2) 2330 msm_host->byte_intf_clk_rate /= 2; 2331 2332 msm_dsi_sfpb_config(msm_host, true); 2333 2334 ret = regulator_bulk_enable(msm_host->cfg_hnd->cfg->num_regulators, 2335 msm_host->supplies); 2336 if (ret) { 2337 pr_err("%s:Failed to enable vregs.ret=%d\n", 2338 __func__, ret); 2339 goto unlock_ret; 2340 } 2341 2342 pm_runtime_get_sync(&msm_host->pdev->dev); 2343 ret = cfg_hnd->ops->link_clk_set_rate(msm_host); 2344 if (!ret) 2345 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2346 if (ret) { 2347 pr_err("%s: failed to enable link clocks. ret=%d\n", 2348 __func__, ret); 2349 goto fail_disable_reg; 2350 } 2351 2352 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2353 if (ret) { 2354 pr_err("%s: failed to set pinctrl default state, %d\n", 2355 __func__, ret); 2356 goto fail_disable_clk; 2357 } 2358 2359 dsi_timing_setup(msm_host, is_bonded_dsi); 2360 dsi_sw_reset(msm_host); 2361 dsi_ctrl_enable(msm_host, phy_shared_timings, phy); 2362 2363 if (msm_host->disp_en_gpio) 2364 gpiod_set_value(msm_host->disp_en_gpio, 1); 2365 2366 msm_host->power_on = true; 2367 mutex_unlock(&msm_host->dev_mutex); 2368 2369 return 0; 2370 2371 fail_disable_clk: 2372 cfg_hnd->ops->link_clk_disable(msm_host); 2373 pm_runtime_put(&msm_host->pdev->dev); 2374 fail_disable_reg: 2375 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2376 msm_host->supplies); 2377 unlock_ret: 2378 mutex_unlock(&msm_host->dev_mutex); 2379 return ret; 2380 } 2381 2382 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2383 { 2384 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2385 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2386 2387 mutex_lock(&msm_host->dev_mutex); 2388 if (!msm_host->power_on) { 2389 DBG("dsi host already off"); 2390 goto unlock_ret; 2391 } 2392 2393 dsi_ctrl_disable(msm_host); 2394 2395 if (msm_host->disp_en_gpio) 2396 gpiod_set_value(msm_host->disp_en_gpio, 0); 2397 2398 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2399 2400 cfg_hnd->ops->link_clk_disable(msm_host); 2401 pm_runtime_put(&msm_host->pdev->dev); 2402 2403 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2404 msm_host->supplies); 2405 2406 msm_dsi_sfpb_config(msm_host, false); 2407 2408 DBG("-"); 2409 2410 msm_host->power_on = false; 2411 2412 unlock_ret: 2413 mutex_unlock(&msm_host->dev_mutex); 2414 return 0; 2415 } 2416 2417 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2418 const struct drm_display_mode *mode) 2419 { 2420 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2421 2422 if (msm_host->mode) { 2423 drm_mode_destroy(msm_host->dev, msm_host->mode); 2424 msm_host->mode = NULL; 2425 } 2426 2427 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2428 if (!msm_host->mode) { 2429 pr_err("%s: cannot duplicate mode\n", __func__); 2430 return -ENOMEM; 2431 } 2432 2433 return 0; 2434 } 2435 2436 enum drm_mode_status msm_dsi_host_check_dsc(struct mipi_dsi_host *host, 2437 const struct drm_display_mode *mode) 2438 { 2439 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2440 struct drm_dsc_config *dsc = msm_host->dsc; 2441 int pic_width = mode->hdisplay; 2442 int pic_height = mode->vdisplay; 2443 2444 if (!msm_host->dsc) 2445 return MODE_OK; 2446 2447 if (pic_width % dsc->slice_width) { 2448 pr_err("DSI: pic_width %d has to be multiple of slice %d\n", 2449 pic_width, dsc->slice_width); 2450 return MODE_H_ILLEGAL; 2451 } 2452 2453 if (pic_height % dsc->slice_height) { 2454 pr_err("DSI: pic_height %d has to be multiple of slice %d\n", 2455 pic_height, dsc->slice_height); 2456 return MODE_V_ILLEGAL; 2457 } 2458 2459 return MODE_OK; 2460 } 2461 2462 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2463 { 2464 return to_msm_dsi_host(host)->mode_flags; 2465 } 2466 2467 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) 2468 { 2469 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2470 2471 pm_runtime_get_sync(&msm_host->pdev->dev); 2472 2473 msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, 2474 msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); 2475 2476 pm_runtime_put_sync(&msm_host->pdev->dev); 2477 } 2478 2479 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host) 2480 { 2481 u32 reg; 2482 2483 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2484 2485 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff); 2486 /* draw checkered rectangle pattern */ 2487 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL, 2488 DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN); 2489 /* use 24-bit RGB test pttern */ 2490 dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG, 2491 DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) | 2492 DSI_TPG_VIDEO_CONFIG_RGB); 2493 2494 reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN); 2495 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2496 2497 DBG("Video test pattern setup done\n"); 2498 } 2499 2500 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host) 2501 { 2502 u32 reg; 2503 2504 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2505 2506 /* initial value for test pattern */ 2507 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff); 2508 2509 reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN); 2510 2511 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2512 /* draw checkered rectangle pattern */ 2513 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2, 2514 DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN); 2515 2516 DBG("Cmd test pattern setup done\n"); 2517 } 2518 2519 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host) 2520 { 2521 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2522 bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO); 2523 u32 reg; 2524 2525 if (is_video_mode) 2526 msm_dsi_host_video_test_pattern_setup(msm_host); 2527 else 2528 msm_dsi_host_cmd_test_pattern_setup(msm_host); 2529 2530 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2531 /* enable the test pattern generator */ 2532 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN)); 2533 2534 /* for command mode need to trigger one frame from tpg */ 2535 if (!is_video_mode) 2536 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, 2537 DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER); 2538 } 2539 2540 struct drm_dsc_config *msm_dsi_host_get_dsc_config(struct mipi_dsi_host *host) 2541 { 2542 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2543 2544 return msm_host->dsc; 2545 } 2546