1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved. 4 */ 5 6 #include "mdp5_kms.h" 7 #include "mdp5_ctl.h" 8 9 /* 10 * CTL - MDP Control Pool Manager 11 * 12 * Controls are shared between all display interfaces. 13 * 14 * They are intended to be used for data path configuration. 15 * The top level register programming describes the complete data path for 16 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...) 17 * 18 * Hardware capabilities determine the number of concurrent data paths 19 * 20 * In certain use cases (high-resolution dual pipe), one single CTL can be 21 * shared across multiple CRTCs. 22 */ 23 24 #define CTL_STAT_BUSY 0x1 25 #define CTL_STAT_BOOKED 0x2 26 27 struct mdp5_ctl { 28 struct mdp5_ctl_manager *ctlm; 29 30 u32 id; 31 32 /* CTL status bitmask */ 33 u32 status; 34 35 bool encoder_enabled; 36 37 /* pending flush_mask bits */ 38 u32 flush_mask; 39 40 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */ 41 spinlock_t hw_lock; 42 u32 reg_offset; 43 44 /* when do CTL registers need to be flushed? (mask of trigger bits) */ 45 u32 pending_ctl_trigger; 46 47 bool cursor_on; 48 49 /* True if the current CTL has FLUSH bits pending for single FLUSH. */ 50 bool flush_pending; 51 52 struct mdp5_ctl *pair; /* Paired CTL to be flushed together */ 53 }; 54 55 struct mdp5_ctl_manager { 56 struct drm_device *dev; 57 58 /* number of CTL / Layer Mixers in this hw config: */ 59 u32 nlm; 60 u32 nctl; 61 62 /* to filter out non-present bits in the current hardware config */ 63 u32 flush_hw_mask; 64 65 /* status for single FLUSH */ 66 bool single_flush_supported; 67 u32 single_flush_pending_mask; 68 69 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */ 70 spinlock_t pool_lock; 71 struct mdp5_ctl ctls[MAX_CTL]; 72 }; 73 74 static inline 75 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr) 76 { 77 struct msm_drm_private *priv = ctl_mgr->dev->dev_private; 78 79 return to_mdp5_kms(to_mdp_kms(priv->kms)); 80 } 81 82 static inline 83 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data) 84 { 85 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 86 87 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ 88 mdp5_write(mdp5_kms, reg, data); 89 } 90 91 static inline 92 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg) 93 { 94 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 95 96 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ 97 return mdp5_read(mdp5_kms, reg); 98 } 99 100 static void set_display_intf(struct mdp5_kms *mdp5_kms, 101 struct mdp5_interface *intf) 102 { 103 unsigned long flags; 104 u32 intf_sel; 105 106 spin_lock_irqsave(&mdp5_kms->resource_lock, flags); 107 intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL); 108 109 switch (intf->num) { 110 case 0: 111 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK; 112 intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type); 113 break; 114 case 1: 115 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK; 116 intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type); 117 break; 118 case 2: 119 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK; 120 intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type); 121 break; 122 case 3: 123 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK; 124 intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type); 125 break; 126 default: 127 BUG(); 128 break; 129 } 130 131 mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel); 132 spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); 133 } 134 135 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) 136 { 137 unsigned long flags; 138 struct mdp5_interface *intf = pipeline->intf; 139 u32 ctl_op = 0; 140 141 if (!mdp5_cfg_intf_is_virtual(intf->type)) 142 ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num); 143 144 switch (intf->type) { 145 case INTF_DSI: 146 if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND) 147 ctl_op |= MDP5_CTL_OP_CMD_MODE; 148 break; 149 150 case INTF_WB: 151 if (intf->mode == MDP5_INTF_WB_MODE_LINE) 152 ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE); 153 break; 154 155 default: 156 break; 157 } 158 159 if (pipeline->r_mixer) 160 ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE | 161 MDP5_CTL_OP_PACK_3D(1); 162 163 spin_lock_irqsave(&ctl->hw_lock, flags); 164 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op); 165 spin_unlock_irqrestore(&ctl->hw_lock, flags); 166 } 167 168 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) 169 { 170 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 171 struct mdp5_interface *intf = pipeline->intf; 172 173 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */ 174 if (!mdp5_cfg_intf_is_virtual(intf->type)) 175 set_display_intf(mdp5_kms, intf); 176 177 set_ctl_op(ctl, pipeline); 178 179 return 0; 180 } 181 182 static bool start_signal_needed(struct mdp5_ctl *ctl, 183 struct mdp5_pipeline *pipeline) 184 { 185 struct mdp5_interface *intf = pipeline->intf; 186 187 if (!ctl->encoder_enabled) 188 return false; 189 190 switch (intf->type) { 191 case INTF_WB: 192 return true; 193 case INTF_DSI: 194 return intf->mode == MDP5_INTF_DSI_MODE_COMMAND; 195 default: 196 return false; 197 } 198 } 199 200 /* 201 * send_start_signal() - Overlay Processor Start Signal 202 * 203 * For a given control operation (display pipeline), a START signal needs to be 204 * executed in order to kick off operation and activate all layers. 205 * e.g.: DSI command mode, Writeback 206 */ 207 static void send_start_signal(struct mdp5_ctl *ctl) 208 { 209 unsigned long flags; 210 211 spin_lock_irqsave(&ctl->hw_lock, flags); 212 ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1); 213 spin_unlock_irqrestore(&ctl->hw_lock, flags); 214 } 215 216 /** 217 * mdp5_ctl_set_encoder_state() - set the encoder state 218 * 219 * @enable: true, when encoder is ready for data streaming; false, otherwise. 220 * 221 * Note: 222 * This encoder state is needed to trigger START signal (data path kickoff). 223 */ 224 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, 225 struct mdp5_pipeline *pipeline, 226 bool enabled) 227 { 228 struct mdp5_interface *intf = pipeline->intf; 229 230 if (WARN_ON(!ctl)) 231 return -EINVAL; 232 233 ctl->encoder_enabled = enabled; 234 DBG("intf_%d: %s", intf->num, enabled ? "on" : "off"); 235 236 if (start_signal_needed(ctl, pipeline)) { 237 send_start_signal(ctl); 238 } 239 240 return 0; 241 } 242 243 /* 244 * Note: 245 * CTL registers need to be flushed after calling this function 246 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask) 247 */ 248 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 249 int cursor_id, bool enable) 250 { 251 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 252 unsigned long flags; 253 u32 blend_cfg; 254 struct mdp5_hw_mixer *mixer = pipeline->mixer; 255 256 if (WARN_ON(!mixer)) { 257 DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM", 258 ctl->id); 259 return -EINVAL; 260 } 261 262 if (pipeline->r_mixer) { 263 DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration"); 264 return -EINVAL; 265 } 266 267 spin_lock_irqsave(&ctl->hw_lock, flags); 268 269 blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm)); 270 271 if (enable) 272 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; 273 else 274 blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT; 275 276 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); 277 ctl->cursor_on = enable; 278 279 spin_unlock_irqrestore(&ctl->hw_lock, flags); 280 281 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id); 282 283 return 0; 284 } 285 286 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe, 287 enum mdp_mixer_stage_id stage) 288 { 289 switch (pipe) { 290 case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage); 291 case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage); 292 case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage); 293 case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage); 294 case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage); 295 case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage); 296 case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage); 297 case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage); 298 case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage); 299 case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage); 300 case SSPP_CURSOR0: 301 case SSPP_CURSOR1: 302 default: return 0; 303 } 304 } 305 306 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe, 307 enum mdp_mixer_stage_id stage) 308 { 309 if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1)) 310 return 0; 311 312 switch (pipe) { 313 case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3; 314 case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3; 315 case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3; 316 case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3; 317 case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3; 318 case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3; 319 case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3; 320 case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3; 321 case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3; 322 case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3; 323 case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage); 324 case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage); 325 default: return 0; 326 } 327 } 328 329 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl) 330 { 331 unsigned long flags; 332 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 333 int i; 334 335 spin_lock_irqsave(&ctl->hw_lock, flags); 336 337 for (i = 0; i < ctl_mgr->nlm; i++) { 338 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0); 339 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0); 340 } 341 342 spin_unlock_irqrestore(&ctl->hw_lock, flags); 343 } 344 345 #define PIPE_LEFT 0 346 #define PIPE_RIGHT 1 347 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 348 enum mdp5_pipe stage[][MAX_PIPE_STAGE], 349 enum mdp5_pipe r_stage[][MAX_PIPE_STAGE], 350 u32 stage_cnt, u32 ctl_blend_op_flags) 351 { 352 struct mdp5_hw_mixer *mixer = pipeline->mixer; 353 struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer; 354 unsigned long flags; 355 u32 blend_cfg = 0, blend_ext_cfg = 0; 356 u32 r_blend_cfg = 0, r_blend_ext_cfg = 0; 357 int i, start_stage; 358 359 mdp5_ctl_reset_blend_regs(ctl); 360 361 if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) { 362 start_stage = STAGE0; 363 blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; 364 if (r_mixer) 365 r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; 366 } else { 367 start_stage = STAGE_BASE; 368 } 369 370 for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) { 371 blend_cfg |= 372 mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) | 373 mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i); 374 blend_ext_cfg |= 375 mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) | 376 mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i); 377 if (r_mixer) { 378 r_blend_cfg |= 379 mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) | 380 mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i); 381 r_blend_ext_cfg |= 382 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) | 383 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i); 384 } 385 } 386 387 spin_lock_irqsave(&ctl->hw_lock, flags); 388 if (ctl->cursor_on) 389 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; 390 391 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); 392 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm), 393 blend_ext_cfg); 394 if (r_mixer) { 395 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm), 396 r_blend_cfg); 397 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm), 398 r_blend_ext_cfg); 399 } 400 spin_unlock_irqrestore(&ctl->hw_lock, flags); 401 402 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm); 403 if (r_mixer) 404 ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm); 405 406 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm, 407 blend_cfg, blend_ext_cfg); 408 if (r_mixer) 409 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", 410 r_mixer->lm, r_blend_cfg, r_blend_ext_cfg); 411 412 return 0; 413 } 414 415 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf) 416 { 417 if (intf->type == INTF_WB) 418 return MDP5_CTL_FLUSH_WB; 419 420 switch (intf->num) { 421 case 0: return MDP5_CTL_FLUSH_TIMING_0; 422 case 1: return MDP5_CTL_FLUSH_TIMING_1; 423 case 2: return MDP5_CTL_FLUSH_TIMING_2; 424 case 3: return MDP5_CTL_FLUSH_TIMING_3; 425 default: return 0; 426 } 427 } 428 429 u32 mdp_ctl_flush_mask_cursor(int cursor_id) 430 { 431 switch (cursor_id) { 432 case 0: return MDP5_CTL_FLUSH_CURSOR_0; 433 case 1: return MDP5_CTL_FLUSH_CURSOR_1; 434 default: return 0; 435 } 436 } 437 438 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe) 439 { 440 switch (pipe) { 441 case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0; 442 case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1; 443 case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2; 444 case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0; 445 case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1; 446 case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2; 447 case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0; 448 case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1; 449 case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3; 450 case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3; 451 case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0; 452 case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1; 453 default: return 0; 454 } 455 } 456 457 u32 mdp_ctl_flush_mask_lm(int lm) 458 { 459 switch (lm) { 460 case 0: return MDP5_CTL_FLUSH_LM0; 461 case 1: return MDP5_CTL_FLUSH_LM1; 462 case 2: return MDP5_CTL_FLUSH_LM2; 463 case 3: return MDP5_CTL_FLUSH_LM3; 464 case 4: return MDP5_CTL_FLUSH_LM4; 465 case 5: return MDP5_CTL_FLUSH_LM5; 466 default: return 0; 467 } 468 } 469 470 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 471 u32 flush_mask) 472 { 473 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 474 u32 sw_mask = 0; 475 #define BIT_NEEDS_SW_FIX(bit) \ 476 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit)) 477 478 /* for some targets, cursor bit is the same as LM bit */ 479 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0)) 480 sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm); 481 482 return sw_mask; 483 } 484 485 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask, 486 u32 *flush_id) 487 { 488 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 489 490 if (ctl->pair) { 491 DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask); 492 ctl->flush_pending = true; 493 ctl_mgr->single_flush_pending_mask |= (*flush_mask); 494 *flush_mask = 0; 495 496 if (ctl->pair->flush_pending) { 497 *flush_id = min_t(u32, ctl->id, ctl->pair->id); 498 *flush_mask = ctl_mgr->single_flush_pending_mask; 499 500 ctl->flush_pending = false; 501 ctl->pair->flush_pending = false; 502 ctl_mgr->single_flush_pending_mask = 0; 503 504 DBG("Single FLUSH mask %x,ID %d", *flush_mask, 505 *flush_id); 506 } 507 } 508 } 509 510 /** 511 * mdp5_ctl_commit() - Register Flush 512 * 513 * The flush register is used to indicate several registers are all 514 * programmed, and are safe to update to the back copy of the double 515 * buffered registers. 516 * 517 * Some registers FLUSH bits are shared when the hardware does not have 518 * dedicated bits for them; handling these is the job of fix_sw_flush(). 519 * 520 * CTL registers need to be flushed in some circumstances; if that is the 521 * case, some trigger bits will be present in both flush mask and 522 * ctl->pending_ctl_trigger. 523 * 524 * Return H/W flushed bit mask. 525 */ 526 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, 527 struct mdp5_pipeline *pipeline, 528 u32 flush_mask, bool start) 529 { 530 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 531 unsigned long flags; 532 u32 flush_id = ctl->id; 533 u32 curr_ctl_flush_mask; 534 535 VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger); 536 537 if (ctl->pending_ctl_trigger & flush_mask) { 538 flush_mask |= MDP5_CTL_FLUSH_CTL; 539 ctl->pending_ctl_trigger = 0; 540 } 541 542 flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask); 543 544 flush_mask &= ctl_mgr->flush_hw_mask; 545 546 curr_ctl_flush_mask = flush_mask; 547 548 fix_for_single_flush(ctl, &flush_mask, &flush_id); 549 550 if (!start) { 551 ctl->flush_mask |= flush_mask; 552 return curr_ctl_flush_mask; 553 } else { 554 flush_mask |= ctl->flush_mask; 555 ctl->flush_mask = 0; 556 } 557 558 if (flush_mask) { 559 spin_lock_irqsave(&ctl->hw_lock, flags); 560 ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask); 561 spin_unlock_irqrestore(&ctl->hw_lock, flags); 562 } 563 564 if (start_signal_needed(ctl, pipeline)) { 565 send_start_signal(ctl); 566 } 567 568 return curr_ctl_flush_mask; 569 } 570 571 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl) 572 { 573 return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id)); 574 } 575 576 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl) 577 { 578 return WARN_ON(!ctl) ? -EINVAL : ctl->id; 579 } 580 581 /* 582 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH 583 */ 584 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable) 585 { 586 struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm; 587 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr); 588 589 /* do nothing silently if hw doesn't support */ 590 if (!ctl_mgr->single_flush_supported) 591 return 0; 592 593 if (!enable) { 594 ctlx->pair = NULL; 595 ctly->pair = NULL; 596 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0); 597 return 0; 598 } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) { 599 DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n"); 600 return -EINVAL; 601 } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) { 602 DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n"); 603 return -EINVAL; 604 } 605 606 ctlx->pair = ctly; 607 ctly->pair = ctlx; 608 609 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 610 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN); 611 612 return 0; 613 } 614 615 /* 616 * mdp5_ctl_request() - CTL allocation 617 * 618 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs. 619 * If no CTL is available in preferred category, allocate from the other one. 620 * 621 * @return fail if no CTL is available. 622 */ 623 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr, 624 int intf_num) 625 { 626 struct mdp5_ctl *ctl = NULL; 627 const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED; 628 u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0; 629 unsigned long flags; 630 int c; 631 632 spin_lock_irqsave(&ctl_mgr->pool_lock, flags); 633 634 /* search the preferred */ 635 for (c = 0; c < ctl_mgr->nctl; c++) 636 if ((ctl_mgr->ctls[c].status & checkm) == match) 637 goto found; 638 639 dev_warn(ctl_mgr->dev->dev, 640 "fall back to the other CTL category for INTF %d!\n", intf_num); 641 642 match ^= CTL_STAT_BOOKED; 643 for (c = 0; c < ctl_mgr->nctl; c++) 644 if ((ctl_mgr->ctls[c].status & checkm) == match) 645 goto found; 646 647 DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!"); 648 goto unlock; 649 650 found: 651 ctl = &ctl_mgr->ctls[c]; 652 ctl->status |= CTL_STAT_BUSY; 653 ctl->pending_ctl_trigger = 0; 654 DBG("CTL %d allocated", ctl->id); 655 656 unlock: 657 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 658 return ctl; 659 } 660 661 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr) 662 { 663 unsigned long flags; 664 int c; 665 666 for (c = 0; c < ctl_mgr->nctl; c++) { 667 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; 668 669 spin_lock_irqsave(&ctl->hw_lock, flags); 670 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0); 671 spin_unlock_irqrestore(&ctl->hw_lock, flags); 672 } 673 } 674 675 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr) 676 { 677 kfree(ctl_mgr); 678 } 679 680 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, 681 void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd) 682 { 683 struct mdp5_ctl_manager *ctl_mgr; 684 const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd); 685 int rev = mdp5_cfg_get_hw_rev(cfg_hnd); 686 unsigned dsi_cnt = 0; 687 const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl; 688 unsigned long flags; 689 int c, ret; 690 691 ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL); 692 if (!ctl_mgr) { 693 DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n"); 694 ret = -ENOMEM; 695 goto fail; 696 } 697 698 if (WARN_ON(ctl_cfg->count > MAX_CTL)) { 699 DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n", 700 ctl_cfg->count); 701 ret = -ENOSPC; 702 goto fail; 703 } 704 705 /* initialize the CTL manager: */ 706 ctl_mgr->dev = dev; 707 ctl_mgr->nlm = hw_cfg->lm.count; 708 ctl_mgr->nctl = ctl_cfg->count; 709 ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask; 710 spin_lock_init(&ctl_mgr->pool_lock); 711 712 /* initialize each CTL of the pool: */ 713 spin_lock_irqsave(&ctl_mgr->pool_lock, flags); 714 for (c = 0; c < ctl_mgr->nctl; c++) { 715 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; 716 717 if (WARN_ON(!ctl_cfg->base[c])) { 718 DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c); 719 ret = -EINVAL; 720 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 721 goto fail; 722 } 723 ctl->ctlm = ctl_mgr; 724 ctl->id = c; 725 ctl->reg_offset = ctl_cfg->base[c]; 726 ctl->status = 0; 727 spin_lock_init(&ctl->hw_lock); 728 } 729 730 /* 731 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI 732 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when 733 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync. 734 * Single FLUSH is supported from hw rev v3.0. 735 */ 736 for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++) 737 if (hw_cfg->intf.connect[c] == INTF_DSI) 738 dsi_cnt++; 739 if ((rev >= 3) && (dsi_cnt > 1)) { 740 ctl_mgr->single_flush_supported = true; 741 /* Reserve CTL0/1 for INTF1/2 */ 742 ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED; 743 ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED; 744 } 745 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 746 DBG("Pool of %d CTLs created.", ctl_mgr->nctl); 747 748 return ctl_mgr; 749 750 fail: 751 if (ctl_mgr) 752 mdp5_ctlm_destroy(ctl_mgr); 753 754 return ERR_PTR(ret); 755 } 756