1 /* 2 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 and 6 * only version 2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include "mdp5_kms.h" 15 #include "mdp5_ctl.h" 16 17 /* 18 * CTL - MDP Control Pool Manager 19 * 20 * Controls are shared between all display interfaces. 21 * 22 * They are intended to be used for data path configuration. 23 * The top level register programming describes the complete data path for 24 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...) 25 * 26 * Hardware capabilities determine the number of concurrent data paths 27 * 28 * In certain use cases (high-resolution dual pipe), one single CTL can be 29 * shared across multiple CRTCs. 30 */ 31 32 #define CTL_STAT_BUSY 0x1 33 #define CTL_STAT_BOOKED 0x2 34 35 struct mdp5_ctl { 36 struct mdp5_ctl_manager *ctlm; 37 38 u32 id; 39 40 /* CTL status bitmask */ 41 u32 status; 42 43 bool encoder_enabled; 44 45 /* pending flush_mask bits */ 46 u32 flush_mask; 47 48 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */ 49 spinlock_t hw_lock; 50 u32 reg_offset; 51 52 /* when do CTL registers need to be flushed? (mask of trigger bits) */ 53 u32 pending_ctl_trigger; 54 55 bool cursor_on; 56 57 /* True if the current CTL has FLUSH bits pending for single FLUSH. */ 58 bool flush_pending; 59 60 struct mdp5_ctl *pair; /* Paired CTL to be flushed together */ 61 }; 62 63 struct mdp5_ctl_manager { 64 struct drm_device *dev; 65 66 /* number of CTL / Layer Mixers in this hw config: */ 67 u32 nlm; 68 u32 nctl; 69 70 /* to filter out non-present bits in the current hardware config */ 71 u32 flush_hw_mask; 72 73 /* status for single FLUSH */ 74 bool single_flush_supported; 75 u32 single_flush_pending_mask; 76 77 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */ 78 spinlock_t pool_lock; 79 struct mdp5_ctl ctls[MAX_CTL]; 80 }; 81 82 static inline 83 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr) 84 { 85 struct msm_drm_private *priv = ctl_mgr->dev->dev_private; 86 87 return to_mdp5_kms(to_mdp_kms(priv->kms)); 88 } 89 90 static inline 91 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data) 92 { 93 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 94 95 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ 96 mdp5_write(mdp5_kms, reg, data); 97 } 98 99 static inline 100 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg) 101 { 102 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 103 104 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */ 105 return mdp5_read(mdp5_kms, reg); 106 } 107 108 static void set_display_intf(struct mdp5_kms *mdp5_kms, 109 struct mdp5_interface *intf) 110 { 111 unsigned long flags; 112 u32 intf_sel; 113 114 spin_lock_irqsave(&mdp5_kms->resource_lock, flags); 115 intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL); 116 117 switch (intf->num) { 118 case 0: 119 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK; 120 intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type); 121 break; 122 case 1: 123 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK; 124 intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type); 125 break; 126 case 2: 127 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK; 128 intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type); 129 break; 130 case 3: 131 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK; 132 intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type); 133 break; 134 default: 135 BUG(); 136 break; 137 } 138 139 mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel); 140 spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags); 141 } 142 143 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) 144 { 145 unsigned long flags; 146 struct mdp5_interface *intf = pipeline->intf; 147 u32 ctl_op = 0; 148 149 if (!mdp5_cfg_intf_is_virtual(intf->type)) 150 ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num); 151 152 switch (intf->type) { 153 case INTF_DSI: 154 if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND) 155 ctl_op |= MDP5_CTL_OP_CMD_MODE; 156 break; 157 158 case INTF_WB: 159 if (intf->mode == MDP5_INTF_WB_MODE_LINE) 160 ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE); 161 break; 162 163 default: 164 break; 165 } 166 167 if (pipeline->r_mixer) 168 ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE | 169 MDP5_CTL_OP_PACK_3D(1); 170 171 spin_lock_irqsave(&ctl->hw_lock, flags); 172 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op); 173 spin_unlock_irqrestore(&ctl->hw_lock, flags); 174 } 175 176 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline) 177 { 178 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm); 179 struct mdp5_interface *intf = pipeline->intf; 180 181 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */ 182 if (!mdp5_cfg_intf_is_virtual(intf->type)) 183 set_display_intf(mdp5_kms, intf); 184 185 set_ctl_op(ctl, pipeline); 186 187 return 0; 188 } 189 190 static bool start_signal_needed(struct mdp5_ctl *ctl, 191 struct mdp5_pipeline *pipeline) 192 { 193 struct mdp5_interface *intf = pipeline->intf; 194 195 if (!ctl->encoder_enabled) 196 return false; 197 198 switch (intf->type) { 199 case INTF_WB: 200 return true; 201 case INTF_DSI: 202 return intf->mode == MDP5_INTF_DSI_MODE_COMMAND; 203 default: 204 return false; 205 } 206 } 207 208 /* 209 * send_start_signal() - Overlay Processor Start Signal 210 * 211 * For a given control operation (display pipeline), a START signal needs to be 212 * executed in order to kick off operation and activate all layers. 213 * e.g.: DSI command mode, Writeback 214 */ 215 static void send_start_signal(struct mdp5_ctl *ctl) 216 { 217 unsigned long flags; 218 219 spin_lock_irqsave(&ctl->hw_lock, flags); 220 ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1); 221 spin_unlock_irqrestore(&ctl->hw_lock, flags); 222 } 223 224 /** 225 * mdp5_ctl_set_encoder_state() - set the encoder state 226 * 227 * @enable: true, when encoder is ready for data streaming; false, otherwise. 228 * 229 * Note: 230 * This encoder state is needed to trigger START signal (data path kickoff). 231 */ 232 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, 233 struct mdp5_pipeline *pipeline, 234 bool enabled) 235 { 236 struct mdp5_interface *intf = pipeline->intf; 237 238 if (WARN_ON(!ctl)) 239 return -EINVAL; 240 241 ctl->encoder_enabled = enabled; 242 DBG("intf_%d: %s", intf->num, enabled ? "on" : "off"); 243 244 if (start_signal_needed(ctl, pipeline)) { 245 send_start_signal(ctl); 246 } 247 248 return 0; 249 } 250 251 /* 252 * Note: 253 * CTL registers need to be flushed after calling this function 254 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask) 255 */ 256 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 257 int cursor_id, bool enable) 258 { 259 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 260 unsigned long flags; 261 u32 blend_cfg; 262 struct mdp5_hw_mixer *mixer = pipeline->mixer; 263 264 if (unlikely(WARN_ON(!mixer))) { 265 dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM", 266 ctl->id); 267 return -EINVAL; 268 } 269 270 if (pipeline->r_mixer) { 271 dev_err(ctl_mgr->dev->dev, "unsupported configuration"); 272 return -EINVAL; 273 } 274 275 spin_lock_irqsave(&ctl->hw_lock, flags); 276 277 blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm)); 278 279 if (enable) 280 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; 281 else 282 blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT; 283 284 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); 285 ctl->cursor_on = enable; 286 287 spin_unlock_irqrestore(&ctl->hw_lock, flags); 288 289 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id); 290 291 return 0; 292 } 293 294 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe, 295 enum mdp_mixer_stage_id stage) 296 { 297 switch (pipe) { 298 case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage); 299 case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage); 300 case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage); 301 case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage); 302 case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage); 303 case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage); 304 case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage); 305 case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage); 306 case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage); 307 case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage); 308 case SSPP_CURSOR0: 309 case SSPP_CURSOR1: 310 default: return 0; 311 } 312 } 313 314 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe, 315 enum mdp_mixer_stage_id stage) 316 { 317 if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1)) 318 return 0; 319 320 switch (pipe) { 321 case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3; 322 case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3; 323 case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3; 324 case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3; 325 case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3; 326 case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3; 327 case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3; 328 case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3; 329 case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3; 330 case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3; 331 case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage); 332 case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage); 333 default: return 0; 334 } 335 } 336 337 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl) 338 { 339 unsigned long flags; 340 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 341 int i; 342 343 spin_lock_irqsave(&ctl->hw_lock, flags); 344 345 for (i = 0; i < ctl_mgr->nlm; i++) { 346 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0); 347 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0); 348 } 349 350 spin_unlock_irqrestore(&ctl->hw_lock, flags); 351 } 352 353 #define PIPE_LEFT 0 354 #define PIPE_RIGHT 1 355 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 356 enum mdp5_pipe stage[][MAX_PIPE_STAGE], 357 enum mdp5_pipe r_stage[][MAX_PIPE_STAGE], 358 u32 stage_cnt, u32 ctl_blend_op_flags) 359 { 360 struct mdp5_hw_mixer *mixer = pipeline->mixer; 361 struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer; 362 unsigned long flags; 363 u32 blend_cfg = 0, blend_ext_cfg = 0; 364 u32 r_blend_cfg = 0, r_blend_ext_cfg = 0; 365 int i, start_stage; 366 367 mdp5_ctl_reset_blend_regs(ctl); 368 369 if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) { 370 start_stage = STAGE0; 371 blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; 372 if (r_mixer) 373 r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR; 374 } else { 375 start_stage = STAGE_BASE; 376 } 377 378 for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) { 379 blend_cfg |= 380 mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) | 381 mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i); 382 blend_ext_cfg |= 383 mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) | 384 mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i); 385 if (r_mixer) { 386 r_blend_cfg |= 387 mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) | 388 mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i); 389 r_blend_ext_cfg |= 390 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) | 391 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i); 392 } 393 } 394 395 spin_lock_irqsave(&ctl->hw_lock, flags); 396 if (ctl->cursor_on) 397 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT; 398 399 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg); 400 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm), 401 blend_ext_cfg); 402 if (r_mixer) { 403 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm), 404 r_blend_cfg); 405 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm), 406 r_blend_ext_cfg); 407 } 408 spin_unlock_irqrestore(&ctl->hw_lock, flags); 409 410 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm); 411 if (r_mixer) 412 ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm); 413 414 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm, 415 blend_cfg, blend_ext_cfg); 416 if (r_mixer) 417 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", 418 r_mixer->lm, r_blend_cfg, r_blend_ext_cfg); 419 420 return 0; 421 } 422 423 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf) 424 { 425 if (intf->type == INTF_WB) 426 return MDP5_CTL_FLUSH_WB; 427 428 switch (intf->num) { 429 case 0: return MDP5_CTL_FLUSH_TIMING_0; 430 case 1: return MDP5_CTL_FLUSH_TIMING_1; 431 case 2: return MDP5_CTL_FLUSH_TIMING_2; 432 case 3: return MDP5_CTL_FLUSH_TIMING_3; 433 default: return 0; 434 } 435 } 436 437 u32 mdp_ctl_flush_mask_cursor(int cursor_id) 438 { 439 switch (cursor_id) { 440 case 0: return MDP5_CTL_FLUSH_CURSOR_0; 441 case 1: return MDP5_CTL_FLUSH_CURSOR_1; 442 default: return 0; 443 } 444 } 445 446 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe) 447 { 448 switch (pipe) { 449 case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0; 450 case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1; 451 case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2; 452 case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0; 453 case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1; 454 case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2; 455 case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0; 456 case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1; 457 case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3; 458 case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3; 459 case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0; 460 case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1; 461 default: return 0; 462 } 463 } 464 465 u32 mdp_ctl_flush_mask_lm(int lm) 466 { 467 switch (lm) { 468 case 0: return MDP5_CTL_FLUSH_LM0; 469 case 1: return MDP5_CTL_FLUSH_LM1; 470 case 2: return MDP5_CTL_FLUSH_LM2; 471 case 3: return MDP5_CTL_FLUSH_LM3; 472 case 4: return MDP5_CTL_FLUSH_LM4; 473 case 5: return MDP5_CTL_FLUSH_LM5; 474 default: return 0; 475 } 476 } 477 478 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline, 479 u32 flush_mask) 480 { 481 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 482 u32 sw_mask = 0; 483 #define BIT_NEEDS_SW_FIX(bit) \ 484 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit)) 485 486 /* for some targets, cursor bit is the same as LM bit */ 487 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0)) 488 sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm); 489 490 return sw_mask; 491 } 492 493 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask, 494 u32 *flush_id) 495 { 496 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 497 498 if (ctl->pair) { 499 DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask); 500 ctl->flush_pending = true; 501 ctl_mgr->single_flush_pending_mask |= (*flush_mask); 502 *flush_mask = 0; 503 504 if (ctl->pair->flush_pending) { 505 *flush_id = min_t(u32, ctl->id, ctl->pair->id); 506 *flush_mask = ctl_mgr->single_flush_pending_mask; 507 508 ctl->flush_pending = false; 509 ctl->pair->flush_pending = false; 510 ctl_mgr->single_flush_pending_mask = 0; 511 512 DBG("Single FLUSH mask %x,ID %d", *flush_mask, 513 *flush_id); 514 } 515 } 516 } 517 518 /** 519 * mdp5_ctl_commit() - Register Flush 520 * 521 * The flush register is used to indicate several registers are all 522 * programmed, and are safe to update to the back copy of the double 523 * buffered registers. 524 * 525 * Some registers FLUSH bits are shared when the hardware does not have 526 * dedicated bits for them; handling these is the job of fix_sw_flush(). 527 * 528 * CTL registers need to be flushed in some circumstances; if that is the 529 * case, some trigger bits will be present in both flush mask and 530 * ctl->pending_ctl_trigger. 531 * 532 * Return H/W flushed bit mask. 533 */ 534 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, 535 struct mdp5_pipeline *pipeline, 536 u32 flush_mask, bool start) 537 { 538 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm; 539 unsigned long flags; 540 u32 flush_id = ctl->id; 541 u32 curr_ctl_flush_mask; 542 543 VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger); 544 545 if (ctl->pending_ctl_trigger & flush_mask) { 546 flush_mask |= MDP5_CTL_FLUSH_CTL; 547 ctl->pending_ctl_trigger = 0; 548 } 549 550 flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask); 551 552 flush_mask &= ctl_mgr->flush_hw_mask; 553 554 curr_ctl_flush_mask = flush_mask; 555 556 fix_for_single_flush(ctl, &flush_mask, &flush_id); 557 558 if (!start) { 559 ctl->flush_mask |= flush_mask; 560 return curr_ctl_flush_mask; 561 } else { 562 flush_mask |= ctl->flush_mask; 563 ctl->flush_mask = 0; 564 } 565 566 if (flush_mask) { 567 spin_lock_irqsave(&ctl->hw_lock, flags); 568 ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask); 569 spin_unlock_irqrestore(&ctl->hw_lock, flags); 570 } 571 572 if (start_signal_needed(ctl, pipeline)) { 573 send_start_signal(ctl); 574 } 575 576 return curr_ctl_flush_mask; 577 } 578 579 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl) 580 { 581 return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id)); 582 } 583 584 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl) 585 { 586 return WARN_ON(!ctl) ? -EINVAL : ctl->id; 587 } 588 589 /* 590 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH 591 */ 592 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable) 593 { 594 struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm; 595 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr); 596 597 /* do nothing silently if hw doesn't support */ 598 if (!ctl_mgr->single_flush_supported) 599 return 0; 600 601 if (!enable) { 602 ctlx->pair = NULL; 603 ctly->pair = NULL; 604 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0); 605 return 0; 606 } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) { 607 dev_err(ctl_mgr->dev->dev, "CTLs already paired\n"); 608 return -EINVAL; 609 } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) { 610 dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n"); 611 return -EINVAL; 612 } 613 614 ctlx->pair = ctly; 615 ctly->pair = ctlx; 616 617 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 618 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN); 619 620 return 0; 621 } 622 623 /* 624 * mdp5_ctl_request() - CTL allocation 625 * 626 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs. 627 * If no CTL is available in preferred category, allocate from the other one. 628 * 629 * @return fail if no CTL is available. 630 */ 631 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr, 632 int intf_num) 633 { 634 struct mdp5_ctl *ctl = NULL; 635 const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED; 636 u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0; 637 unsigned long flags; 638 int c; 639 640 spin_lock_irqsave(&ctl_mgr->pool_lock, flags); 641 642 /* search the preferred */ 643 for (c = 0; c < ctl_mgr->nctl; c++) 644 if ((ctl_mgr->ctls[c].status & checkm) == match) 645 goto found; 646 647 dev_warn(ctl_mgr->dev->dev, 648 "fall back to the other CTL category for INTF %d!\n", intf_num); 649 650 match ^= CTL_STAT_BOOKED; 651 for (c = 0; c < ctl_mgr->nctl; c++) 652 if ((ctl_mgr->ctls[c].status & checkm) == match) 653 goto found; 654 655 dev_err(ctl_mgr->dev->dev, "No more CTL available!"); 656 goto unlock; 657 658 found: 659 ctl = &ctl_mgr->ctls[c]; 660 ctl->status |= CTL_STAT_BUSY; 661 ctl->pending_ctl_trigger = 0; 662 DBG("CTL %d allocated", ctl->id); 663 664 unlock: 665 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 666 return ctl; 667 } 668 669 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr) 670 { 671 unsigned long flags; 672 int c; 673 674 for (c = 0; c < ctl_mgr->nctl; c++) { 675 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; 676 677 spin_lock_irqsave(&ctl->hw_lock, flags); 678 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0); 679 spin_unlock_irqrestore(&ctl->hw_lock, flags); 680 } 681 } 682 683 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr) 684 { 685 kfree(ctl_mgr); 686 } 687 688 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev, 689 void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd) 690 { 691 struct mdp5_ctl_manager *ctl_mgr; 692 const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd); 693 int rev = mdp5_cfg_get_hw_rev(cfg_hnd); 694 unsigned dsi_cnt = 0; 695 const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl; 696 unsigned long flags; 697 int c, ret; 698 699 ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL); 700 if (!ctl_mgr) { 701 dev_err(dev->dev, "failed to allocate CTL manager\n"); 702 ret = -ENOMEM; 703 goto fail; 704 } 705 706 if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) { 707 dev_err(dev->dev, "Increase static pool size to at least %d\n", 708 ctl_cfg->count); 709 ret = -ENOSPC; 710 goto fail; 711 } 712 713 /* initialize the CTL manager: */ 714 ctl_mgr->dev = dev; 715 ctl_mgr->nlm = hw_cfg->lm.count; 716 ctl_mgr->nctl = ctl_cfg->count; 717 ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask; 718 spin_lock_init(&ctl_mgr->pool_lock); 719 720 /* initialize each CTL of the pool: */ 721 spin_lock_irqsave(&ctl_mgr->pool_lock, flags); 722 for (c = 0; c < ctl_mgr->nctl; c++) { 723 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c]; 724 725 if (WARN_ON(!ctl_cfg->base[c])) { 726 dev_err(dev->dev, "CTL_%d: base is null!\n", c); 727 ret = -EINVAL; 728 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 729 goto fail; 730 } 731 ctl->ctlm = ctl_mgr; 732 ctl->id = c; 733 ctl->reg_offset = ctl_cfg->base[c]; 734 ctl->status = 0; 735 spin_lock_init(&ctl->hw_lock); 736 } 737 738 /* 739 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI 740 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when 741 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync. 742 * Single FLUSH is supported from hw rev v3.0. 743 */ 744 for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++) 745 if (hw_cfg->intf.connect[c] == INTF_DSI) 746 dsi_cnt++; 747 if ((rev >= 3) && (dsi_cnt > 1)) { 748 ctl_mgr->single_flush_supported = true; 749 /* Reserve CTL0/1 for INTF1/2 */ 750 ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED; 751 ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED; 752 } 753 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags); 754 DBG("Pool of %d CTLs created.", ctl_mgr->nctl); 755 756 return ctl_mgr; 757 758 fail: 759 if (ctl_mgr) 760 mdp5_ctlm_destroy(ctl_mgr); 761 762 return ERR_PTR(ret); 763 } 764