1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 12 #include <linux/debugfs.h> 13 #include <linux/dma-buf.h> 14 #include <linux/of_irq.h> 15 #include <linux/pm_opp.h> 16 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_file.h> 19 #include <drm/drm_vblank.h> 20 #include <drm/drm_writeback.h> 21 22 #include "msm_drv.h" 23 #include "msm_mmu.h" 24 #include "msm_gem.h" 25 #include "disp/msm_disp_snapshot.h" 26 27 #include "dpu_core_irq.h" 28 #include "dpu_crtc.h" 29 #include "dpu_encoder.h" 30 #include "dpu_formats.h" 31 #include "dpu_hw_vbif.h" 32 #include "dpu_kms.h" 33 #include "dpu_plane.h" 34 #include "dpu_vbif.h" 35 #include "dpu_writeback.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "dpu_trace.h" 39 40 /* 41 * To enable overall DRM driver logging 42 * # echo 0x2 > /sys/module/drm/parameters/debug 43 * 44 * To enable DRM driver h/w logging 45 * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask 46 * 47 * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_) 48 */ 49 #define DPU_DEBUGFS_DIR "msm_dpu" 50 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask" 51 52 #define MIN_IB_BW 400000000ULL /* Min ib vote 400MB */ 53 54 static int dpu_kms_hw_init(struct msm_kms *kms); 55 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms); 56 57 #ifdef CONFIG_DEBUG_FS 58 static int _dpu_danger_signal_status(struct seq_file *s, 59 bool danger_status) 60 { 61 struct dpu_kms *kms = (struct dpu_kms *)s->private; 62 struct dpu_danger_safe_status status; 63 int i; 64 65 if (!kms->hw_mdp) { 66 DPU_ERROR("invalid arg(s)\n"); 67 return 0; 68 } 69 70 memset(&status, 0, sizeof(struct dpu_danger_safe_status)); 71 72 pm_runtime_get_sync(&kms->pdev->dev); 73 if (danger_status) { 74 seq_puts(s, "\nDanger signal status:\n"); 75 if (kms->hw_mdp->ops.get_danger_status) 76 kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, 77 &status); 78 } else { 79 seq_puts(s, "\nSafe signal status:\n"); 80 if (kms->hw_mdp->ops.get_safe_status) 81 kms->hw_mdp->ops.get_safe_status(kms->hw_mdp, 82 &status); 83 } 84 pm_runtime_put_sync(&kms->pdev->dev); 85 86 seq_printf(s, "MDP : 0x%x\n", status.mdp); 87 88 for (i = SSPP_VIG0; i < SSPP_MAX; i++) 89 seq_printf(s, "SSPP%d : 0x%x \n", i - SSPP_VIG0, 90 status.sspp[i]); 91 seq_puts(s, "\n"); 92 93 return 0; 94 } 95 96 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v) 97 { 98 return _dpu_danger_signal_status(s, true); 99 } 100 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats); 101 102 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v) 103 { 104 return _dpu_danger_signal_status(s, false); 105 } 106 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats); 107 108 static ssize_t _dpu_plane_danger_read(struct file *file, 109 char __user *buff, size_t count, loff_t *ppos) 110 { 111 struct dpu_kms *kms = file->private_data; 112 int len; 113 char buf[40]; 114 115 len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl); 116 117 return simple_read_from_buffer(buff, count, ppos, buf, len); 118 } 119 120 static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable) 121 { 122 struct drm_plane *plane; 123 124 drm_for_each_plane(plane, kms->dev) { 125 if (plane->fb && plane->state) { 126 dpu_plane_danger_signal_ctrl(plane, enable); 127 DPU_DEBUG("plane:%d img:%dx%d ", 128 plane->base.id, plane->fb->width, 129 plane->fb->height); 130 DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n", 131 plane->state->src_x >> 16, 132 plane->state->src_y >> 16, 133 plane->state->src_w >> 16, 134 plane->state->src_h >> 16, 135 plane->state->crtc_x, plane->state->crtc_y, 136 plane->state->crtc_w, plane->state->crtc_h); 137 } else { 138 DPU_DEBUG("Inactive plane:%d\n", plane->base.id); 139 } 140 } 141 } 142 143 static ssize_t _dpu_plane_danger_write(struct file *file, 144 const char __user *user_buf, size_t count, loff_t *ppos) 145 { 146 struct dpu_kms *kms = file->private_data; 147 int disable_panic; 148 int ret; 149 150 ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic); 151 if (ret) 152 return ret; 153 154 if (disable_panic) { 155 /* Disable panic signal for all active pipes */ 156 DPU_DEBUG("Disabling danger:\n"); 157 _dpu_plane_set_danger_state(kms, false); 158 kms->has_danger_ctrl = false; 159 } else { 160 /* Enable panic signal for all active pipes */ 161 DPU_DEBUG("Enabling danger:\n"); 162 kms->has_danger_ctrl = true; 163 _dpu_plane_set_danger_state(kms, true); 164 } 165 166 return count; 167 } 168 169 static const struct file_operations dpu_plane_danger_enable = { 170 .open = simple_open, 171 .read = _dpu_plane_danger_read, 172 .write = _dpu_plane_danger_write, 173 }; 174 175 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms, 176 struct dentry *parent) 177 { 178 struct dentry *entry = debugfs_create_dir("danger", parent); 179 180 debugfs_create_file("danger_status", 0600, entry, 181 dpu_kms, &dpu_debugfs_danger_stats_fops); 182 debugfs_create_file("safe_status", 0600, entry, 183 dpu_kms, &dpu_debugfs_safe_stats_fops); 184 debugfs_create_file("disable_danger", 0600, entry, 185 dpu_kms, &dpu_plane_danger_enable); 186 187 } 188 189 /* 190 * Companion structure for dpu_debugfs_create_regset32. 191 */ 192 struct dpu_debugfs_regset32 { 193 uint32_t offset; 194 uint32_t blk_len; 195 struct dpu_kms *dpu_kms; 196 }; 197 198 static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data) 199 { 200 struct dpu_debugfs_regset32 *regset = s->private; 201 struct dpu_kms *dpu_kms = regset->dpu_kms; 202 void __iomem *base; 203 uint32_t i, addr; 204 205 if (!dpu_kms->mmio) 206 return 0; 207 208 base = dpu_kms->mmio + regset->offset; 209 210 /* insert padding spaces, if needed */ 211 if (regset->offset & 0xF) { 212 seq_printf(s, "[%x]", regset->offset & ~0xF); 213 for (i = 0; i < (regset->offset & 0xF); i += 4) 214 seq_puts(s, " "); 215 } 216 217 pm_runtime_get_sync(&dpu_kms->pdev->dev); 218 219 /* main register output */ 220 for (i = 0; i < regset->blk_len; i += 4) { 221 addr = regset->offset + i; 222 if ((addr & 0xF) == 0x0) 223 seq_printf(s, i ? "\n[%x]" : "[%x]", addr); 224 seq_printf(s, " %08x", readl_relaxed(base + i)); 225 } 226 seq_puts(s, "\n"); 227 pm_runtime_put_sync(&dpu_kms->pdev->dev); 228 229 return 0; 230 } 231 232 static int dpu_debugfs_open_regset32(struct inode *inode, 233 struct file *file) 234 { 235 return single_open(file, _dpu_debugfs_show_regset32, inode->i_private); 236 } 237 238 static const struct file_operations dpu_fops_regset32 = { 239 .open = dpu_debugfs_open_regset32, 240 .read = seq_read, 241 .llseek = seq_lseek, 242 .release = single_release, 243 }; 244 245 void dpu_debugfs_create_regset32(const char *name, umode_t mode, 246 void *parent, 247 uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms) 248 { 249 struct dpu_debugfs_regset32 *regset; 250 251 if (WARN_ON(!name || !dpu_kms || !length)) 252 return; 253 254 regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL); 255 if (!regset) 256 return; 257 258 /* make sure offset is a multiple of 4 */ 259 regset->offset = round_down(offset, 4); 260 regset->blk_len = length; 261 regset->dpu_kms = dpu_kms; 262 263 debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32); 264 } 265 266 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor) 267 { 268 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 269 void *p = dpu_hw_util_get_log_mask_ptr(); 270 struct dentry *entry; 271 struct drm_device *dev; 272 struct msm_drm_private *priv; 273 int i; 274 275 if (!p) 276 return -EINVAL; 277 278 /* Only create a set of debugfs for the primary node, ignore render nodes */ 279 if (minor->type != DRM_MINOR_PRIMARY) 280 return 0; 281 282 dev = dpu_kms->dev; 283 priv = dev->dev_private; 284 285 entry = debugfs_create_dir("debug", minor->debugfs_root); 286 287 debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p); 288 289 dpu_debugfs_danger_init(dpu_kms, entry); 290 dpu_debugfs_vbif_init(dpu_kms, entry); 291 dpu_debugfs_core_irq_init(dpu_kms, entry); 292 dpu_debugfs_sspp_init(dpu_kms, entry); 293 294 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) { 295 if (priv->dp[i]) 296 msm_dp_debugfs_init(priv->dp[i], minor); 297 } 298 299 return dpu_core_perf_debugfs_init(dpu_kms, entry); 300 } 301 #endif 302 303 /* Global/shared object state funcs */ 304 305 /* 306 * This is a helper that returns the private state currently in operation. 307 * Note that this would return the "old_state" if called in the atomic check 308 * path, and the "new_state" after the atomic swap has been done. 309 */ 310 struct dpu_global_state * 311 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms) 312 { 313 return to_dpu_global_state(dpu_kms->global_state.state); 314 } 315 316 /* 317 * This acquires the modeset lock set aside for global state, creates 318 * a new duplicated private object state. 319 */ 320 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s) 321 { 322 struct msm_drm_private *priv = s->dev->dev_private; 323 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 324 struct drm_private_state *priv_state; 325 int ret; 326 327 ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx); 328 if (ret) 329 return ERR_PTR(ret); 330 331 priv_state = drm_atomic_get_private_obj_state(s, 332 &dpu_kms->global_state); 333 if (IS_ERR(priv_state)) 334 return ERR_CAST(priv_state); 335 336 return to_dpu_global_state(priv_state); 337 } 338 339 static struct drm_private_state * 340 dpu_kms_global_duplicate_state(struct drm_private_obj *obj) 341 { 342 struct dpu_global_state *state; 343 344 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 345 if (!state) 346 return NULL; 347 348 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 349 350 return &state->base; 351 } 352 353 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj, 354 struct drm_private_state *state) 355 { 356 struct dpu_global_state *dpu_state = to_dpu_global_state(state); 357 358 kfree(dpu_state); 359 } 360 361 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = { 362 .atomic_duplicate_state = dpu_kms_global_duplicate_state, 363 .atomic_destroy_state = dpu_kms_global_destroy_state, 364 }; 365 366 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms) 367 { 368 struct dpu_global_state *state; 369 370 drm_modeset_lock_init(&dpu_kms->global_state_lock); 371 372 state = kzalloc(sizeof(*state), GFP_KERNEL); 373 if (!state) 374 return -ENOMEM; 375 376 drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state, 377 &state->base, 378 &dpu_kms_global_state_funcs); 379 return 0; 380 } 381 382 static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms) 383 { 384 struct icc_path *path0; 385 struct icc_path *path1; 386 struct drm_device *dev = dpu_kms->dev; 387 struct device *dpu_dev = dev->dev; 388 struct device *mdss_dev = dpu_dev->parent; 389 390 /* Interconnects are a part of MDSS device tree binding, not the 391 * MDP/DPU device. */ 392 path0 = of_icc_get(mdss_dev, "mdp0-mem"); 393 path1 = of_icc_get(mdss_dev, "mdp1-mem"); 394 395 if (IS_ERR_OR_NULL(path0)) 396 return PTR_ERR_OR_ZERO(path0); 397 398 dpu_kms->path[0] = path0; 399 dpu_kms->num_paths = 1; 400 401 if (!IS_ERR_OR_NULL(path1)) { 402 dpu_kms->path[1] = path1; 403 dpu_kms->num_paths++; 404 } 405 return 0; 406 } 407 408 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 409 { 410 return dpu_crtc_vblank(crtc, true); 411 } 412 413 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 414 { 415 dpu_crtc_vblank(crtc, false); 416 } 417 418 static void dpu_kms_enable_commit(struct msm_kms *kms) 419 { 420 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 421 pm_runtime_get_sync(&dpu_kms->pdev->dev); 422 } 423 424 static void dpu_kms_disable_commit(struct msm_kms *kms) 425 { 426 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 427 pm_runtime_put_sync(&dpu_kms->pdev->dev); 428 } 429 430 static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc) 431 { 432 struct drm_encoder *encoder; 433 434 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 435 ktime_t vsync_time; 436 437 if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0) 438 return vsync_time; 439 } 440 441 return ktime_get(); 442 } 443 444 static void dpu_kms_prepare_commit(struct msm_kms *kms, 445 struct drm_atomic_state *state) 446 { 447 struct drm_crtc *crtc; 448 struct drm_crtc_state *crtc_state; 449 struct drm_encoder *encoder; 450 int i; 451 452 if (!kms) 453 return; 454 455 /* Call prepare_commit for all affected encoders */ 456 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 457 drm_for_each_encoder_mask(encoder, crtc->dev, 458 crtc_state->encoder_mask) { 459 dpu_encoder_prepare_commit(encoder); 460 } 461 } 462 } 463 464 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask) 465 { 466 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 467 struct drm_crtc *crtc; 468 469 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) { 470 if (!crtc->state->active) 471 continue; 472 473 trace_dpu_kms_commit(DRMID(crtc)); 474 dpu_crtc_commit_kickoff(crtc); 475 } 476 } 477 478 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask) 479 { 480 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 481 struct drm_crtc *crtc; 482 483 DPU_ATRACE_BEGIN("kms_complete_commit"); 484 485 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 486 dpu_crtc_complete_commit(crtc); 487 488 DPU_ATRACE_END("kms_complete_commit"); 489 } 490 491 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms, 492 struct drm_crtc *crtc) 493 { 494 struct drm_encoder *encoder; 495 struct drm_device *dev; 496 int ret; 497 498 if (!kms || !crtc || !crtc->state) { 499 DPU_ERROR("invalid params\n"); 500 return; 501 } 502 503 dev = crtc->dev; 504 505 if (!crtc->state->enable) { 506 DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id); 507 return; 508 } 509 510 if (!crtc->state->active) { 511 DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id); 512 return; 513 } 514 515 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 516 if (encoder->crtc != crtc) 517 continue; 518 /* 519 * Wait for post-flush if necessary to delay before 520 * plane_cleanup. For example, wait for vsync in case of video 521 * mode panels. This may be a no-op for command mode panels. 522 */ 523 trace_dpu_kms_wait_for_commit_done(DRMID(crtc)); 524 ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE); 525 if (ret && ret != -EWOULDBLOCK) { 526 DPU_ERROR("wait for commit done returned %d\n", ret); 527 break; 528 } 529 } 530 } 531 532 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask) 533 { 534 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 535 struct drm_crtc *crtc; 536 537 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 538 dpu_kms_wait_for_commit_done(kms, crtc); 539 } 540 541 static int _dpu_kms_initialize_dsi(struct drm_device *dev, 542 struct msm_drm_private *priv, 543 struct dpu_kms *dpu_kms) 544 { 545 struct drm_encoder *encoder = NULL; 546 struct msm_display_info info; 547 int i, rc = 0; 548 549 if (!(priv->dsi[0] || priv->dsi[1])) 550 return rc; 551 552 /* 553 * We support following confiurations: 554 * - Single DSI host (dsi0 or dsi1) 555 * - Two independent DSI hosts 556 * - Bonded DSI0 and DSI1 hosts 557 * 558 * TODO: Support swapping DSI0 and DSI1 in the bonded setup. 559 */ 560 for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { 561 int other = (i + 1) % 2; 562 563 if (!priv->dsi[i]) 564 continue; 565 566 if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && 567 !msm_dsi_is_master_dsi(priv->dsi[i])) 568 continue; 569 570 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI); 571 if (IS_ERR(encoder)) { 572 DPU_ERROR("encoder init failed for dsi display\n"); 573 return PTR_ERR(encoder); 574 } 575 576 memset(&info, 0, sizeof(info)); 577 info.intf_type = encoder->encoder_type; 578 579 rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder); 580 if (rc) { 581 DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", 582 i, rc); 583 break; 584 } 585 586 info.h_tile_instance[info.num_of_h_tiles++] = i; 587 info.capabilities = msm_dsi_is_cmd_mode(priv->dsi[i]) ? 588 MSM_DISPLAY_CAP_CMD_MODE : 589 MSM_DISPLAY_CAP_VID_MODE; 590 591 info.dsc = msm_dsi_get_dsc_config(priv->dsi[i]); 592 593 if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) { 594 rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder); 595 if (rc) { 596 DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", 597 other, rc); 598 break; 599 } 600 601 info.h_tile_instance[info.num_of_h_tiles++] = other; 602 } 603 604 rc = dpu_encoder_setup(dev, encoder, &info); 605 if (rc) 606 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 607 encoder->base.id, rc); 608 } 609 610 return rc; 611 } 612 613 static int _dpu_kms_initialize_displayport(struct drm_device *dev, 614 struct msm_drm_private *priv, 615 struct dpu_kms *dpu_kms) 616 { 617 struct drm_encoder *encoder = NULL; 618 struct msm_display_info info; 619 int rc; 620 int i; 621 622 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) { 623 if (!priv->dp[i]) 624 continue; 625 626 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS); 627 if (IS_ERR(encoder)) { 628 DPU_ERROR("encoder init failed for dsi display\n"); 629 return PTR_ERR(encoder); 630 } 631 632 memset(&info, 0, sizeof(info)); 633 rc = msm_dp_modeset_init(priv->dp[i], dev, encoder); 634 if (rc) { 635 DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc); 636 drm_encoder_cleanup(encoder); 637 return rc; 638 } 639 640 info.num_of_h_tiles = 1; 641 info.h_tile_instance[0] = i; 642 info.capabilities = MSM_DISPLAY_CAP_VID_MODE; 643 info.intf_type = encoder->encoder_type; 644 rc = dpu_encoder_setup(dev, encoder, &info); 645 if (rc) { 646 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 647 encoder->base.id, rc); 648 return rc; 649 } 650 } 651 652 return 0; 653 } 654 655 static int _dpu_kms_initialize_writeback(struct drm_device *dev, 656 struct msm_drm_private *priv, struct dpu_kms *dpu_kms, 657 const u32 *wb_formats, int n_formats) 658 { 659 struct drm_encoder *encoder = NULL; 660 struct msm_display_info info; 661 int rc; 662 663 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL); 664 if (IS_ERR(encoder)) { 665 DPU_ERROR("encoder init failed for dsi display\n"); 666 return PTR_ERR(encoder); 667 } 668 669 memset(&info, 0, sizeof(info)); 670 671 rc = dpu_writeback_init(dev, encoder, wb_formats, 672 n_formats); 673 if (rc) { 674 DPU_ERROR("dpu_writeback_init, rc = %d\n", rc); 675 drm_encoder_cleanup(encoder); 676 return rc; 677 } 678 679 info.num_of_h_tiles = 1; 680 /* use only WB idx 2 instance for DPU */ 681 info.h_tile_instance[0] = WB_2; 682 info.intf_type = encoder->encoder_type; 683 684 rc = dpu_encoder_setup(dev, encoder, &info); 685 if (rc) { 686 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 687 encoder->base.id, rc); 688 return rc; 689 } 690 691 return 0; 692 } 693 694 /** 695 * _dpu_kms_setup_displays - create encoders, bridges and connectors 696 * for underlying displays 697 * @dev: Pointer to drm device structure 698 * @priv: Pointer to private drm device data 699 * @dpu_kms: Pointer to dpu kms structure 700 * Returns: Zero on success 701 */ 702 static int _dpu_kms_setup_displays(struct drm_device *dev, 703 struct msm_drm_private *priv, 704 struct dpu_kms *dpu_kms) 705 { 706 int rc = 0; 707 int i; 708 709 rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms); 710 if (rc) { 711 DPU_ERROR("initialize_dsi failed, rc = %d\n", rc); 712 return rc; 713 } 714 715 rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms); 716 if (rc) { 717 DPU_ERROR("initialize_DP failed, rc = %d\n", rc); 718 return rc; 719 } 720 721 /* Since WB isn't a driver check the catalog before initializing */ 722 if (dpu_kms->catalog->wb_count) { 723 for (i = 0; i < dpu_kms->catalog->wb_count; i++) { 724 if (dpu_kms->catalog->wb[i].id == WB_2) { 725 rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms, 726 dpu_kms->catalog->wb[i].format_list, 727 dpu_kms->catalog->wb[i].num_formats); 728 if (rc) { 729 DPU_ERROR("initialize_WB failed, rc = %d\n", rc); 730 return rc; 731 } 732 } 733 } 734 } 735 736 return rc; 737 } 738 739 #define MAX_PLANES 20 740 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms) 741 { 742 struct drm_device *dev; 743 struct drm_plane *primary_planes[MAX_PLANES], *plane; 744 struct drm_plane *cursor_planes[MAX_PLANES] = { NULL }; 745 struct drm_crtc *crtc; 746 struct drm_encoder *encoder; 747 unsigned int num_encoders; 748 749 struct msm_drm_private *priv; 750 struct dpu_mdss_cfg *catalog; 751 752 int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret; 753 int max_crtc_count; 754 dev = dpu_kms->dev; 755 priv = dev->dev_private; 756 catalog = dpu_kms->catalog; 757 758 /* 759 * Create encoder and query display drivers to create 760 * bridges and connectors 761 */ 762 ret = _dpu_kms_setup_displays(dev, priv, dpu_kms); 763 if (ret) 764 return ret; 765 766 num_encoders = 0; 767 drm_for_each_encoder(encoder, dev) 768 num_encoders++; 769 770 max_crtc_count = min(catalog->mixer_count, num_encoders); 771 772 /* Create the planes, keeping track of one primary/cursor per crtc */ 773 for (i = 0; i < catalog->sspp_count; i++) { 774 enum drm_plane_type type; 775 776 if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)) 777 && cursor_planes_idx < max_crtc_count) 778 type = DRM_PLANE_TYPE_CURSOR; 779 else if (primary_planes_idx < max_crtc_count) 780 type = DRM_PLANE_TYPE_PRIMARY; 781 else 782 type = DRM_PLANE_TYPE_OVERLAY; 783 784 DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n", 785 type, catalog->sspp[i].features, 786 catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)); 787 788 plane = dpu_plane_init(dev, catalog->sspp[i].id, type, 789 (1UL << max_crtc_count) - 1, 0); 790 if (IS_ERR(plane)) { 791 DPU_ERROR("dpu_plane_init failed\n"); 792 ret = PTR_ERR(plane); 793 return ret; 794 } 795 796 if (type == DRM_PLANE_TYPE_CURSOR) 797 cursor_planes[cursor_planes_idx++] = plane; 798 else if (type == DRM_PLANE_TYPE_PRIMARY) 799 primary_planes[primary_planes_idx++] = plane; 800 } 801 802 max_crtc_count = min(max_crtc_count, primary_planes_idx); 803 804 /* Create one CRTC per encoder */ 805 for (i = 0; i < max_crtc_count; i++) { 806 crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]); 807 if (IS_ERR(crtc)) { 808 ret = PTR_ERR(crtc); 809 return ret; 810 } 811 priv->crtcs[priv->num_crtcs++] = crtc; 812 } 813 814 /* All CRTCs are compatible with all encoders */ 815 drm_for_each_encoder(encoder, dev) 816 encoder->possible_crtcs = (1 << priv->num_crtcs) - 1; 817 818 return 0; 819 } 820 821 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms) 822 { 823 int i; 824 825 if (dpu_kms->hw_intr) 826 dpu_hw_intr_destroy(dpu_kms->hw_intr); 827 dpu_kms->hw_intr = NULL; 828 829 /* safe to call these more than once during shutdown */ 830 _dpu_kms_mmu_destroy(dpu_kms); 831 832 if (dpu_kms->catalog) { 833 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 834 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 835 836 if ((vbif_idx < VBIF_MAX) && dpu_kms->hw_vbif[vbif_idx]) { 837 dpu_hw_vbif_destroy(dpu_kms->hw_vbif[vbif_idx]); 838 dpu_kms->hw_vbif[vbif_idx] = NULL; 839 } 840 } 841 } 842 843 if (dpu_kms->rm_init) 844 dpu_rm_destroy(&dpu_kms->rm); 845 dpu_kms->rm_init = false; 846 847 if (dpu_kms->catalog) 848 dpu_hw_catalog_deinit(dpu_kms->catalog); 849 dpu_kms->catalog = NULL; 850 851 if (dpu_kms->vbif[VBIF_NRT]) 852 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]); 853 dpu_kms->vbif[VBIF_NRT] = NULL; 854 855 if (dpu_kms->vbif[VBIF_RT]) 856 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]); 857 dpu_kms->vbif[VBIF_RT] = NULL; 858 859 if (dpu_kms->hw_mdp) 860 dpu_hw_mdp_destroy(dpu_kms->hw_mdp); 861 dpu_kms->hw_mdp = NULL; 862 863 if (dpu_kms->mmio) 864 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio); 865 dpu_kms->mmio = NULL; 866 } 867 868 static void dpu_kms_destroy(struct msm_kms *kms) 869 { 870 struct dpu_kms *dpu_kms; 871 872 if (!kms) { 873 DPU_ERROR("invalid kms\n"); 874 return; 875 } 876 877 dpu_kms = to_dpu_kms(kms); 878 879 _dpu_kms_hw_destroy(dpu_kms); 880 881 msm_kms_destroy(&dpu_kms->base); 882 883 if (dpu_kms->rpm_enabled) 884 pm_runtime_disable(&dpu_kms->pdev->dev); 885 } 886 887 static int dpu_irq_postinstall(struct msm_kms *kms) 888 { 889 struct msm_drm_private *priv; 890 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 891 int i; 892 893 if (!dpu_kms || !dpu_kms->dev) 894 return -EINVAL; 895 896 priv = dpu_kms->dev->dev_private; 897 if (!priv) 898 return -EINVAL; 899 900 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) 901 msm_dp_irq_postinstall(priv->dp[i]); 902 903 return 0; 904 } 905 906 static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms) 907 { 908 int i; 909 struct dpu_kms *dpu_kms; 910 struct dpu_mdss_cfg *cat; 911 struct dpu_hw_mdp *top; 912 913 dpu_kms = to_dpu_kms(kms); 914 915 cat = dpu_kms->catalog; 916 top = dpu_kms->hw_mdp; 917 918 pm_runtime_get_sync(&dpu_kms->pdev->dev); 919 920 /* dump CTL sub-blocks HW regs info */ 921 for (i = 0; i < cat->ctl_count; i++) 922 msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len, 923 dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i); 924 925 /* dump DSPP sub-blocks HW regs info */ 926 for (i = 0; i < cat->dspp_count; i++) 927 msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len, 928 dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i); 929 930 /* dump INTF sub-blocks HW regs info */ 931 for (i = 0; i < cat->intf_count; i++) 932 msm_disp_snapshot_add_block(disp_state, cat->intf[i].len, 933 dpu_kms->mmio + cat->intf[i].base, "intf_%d", i); 934 935 /* dump PP sub-blocks HW regs info */ 936 for (i = 0; i < cat->pingpong_count; i++) 937 msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len, 938 dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i); 939 940 /* dump SSPP sub-blocks HW regs info */ 941 for (i = 0; i < cat->sspp_count; i++) 942 msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len, 943 dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i); 944 945 /* dump LM sub-blocks HW regs info */ 946 for (i = 0; i < cat->mixer_count; i++) 947 msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len, 948 dpu_kms->mmio + cat->mixer[i].base, "lm_%d", i); 949 950 /* dump WB sub-blocks HW regs info */ 951 for (i = 0; i < cat->wb_count; i++) 952 msm_disp_snapshot_add_block(disp_state, cat->wb[i].len, 953 dpu_kms->mmio + cat->wb[i].base, "wb_%d", i); 954 955 msm_disp_snapshot_add_block(disp_state, top->hw.length, 956 dpu_kms->mmio + top->hw.blk_off, "top"); 957 958 pm_runtime_put_sync(&dpu_kms->pdev->dev); 959 } 960 961 static const struct msm_kms_funcs kms_funcs = { 962 .hw_init = dpu_kms_hw_init, 963 .irq_preinstall = dpu_core_irq_preinstall, 964 .irq_postinstall = dpu_irq_postinstall, 965 .irq_uninstall = dpu_core_irq_uninstall, 966 .irq = dpu_core_irq, 967 .enable_commit = dpu_kms_enable_commit, 968 .disable_commit = dpu_kms_disable_commit, 969 .vsync_time = dpu_kms_vsync_time, 970 .prepare_commit = dpu_kms_prepare_commit, 971 .flush_commit = dpu_kms_flush_commit, 972 .wait_flush = dpu_kms_wait_flush, 973 .complete_commit = dpu_kms_complete_commit, 974 .enable_vblank = dpu_kms_enable_vblank, 975 .disable_vblank = dpu_kms_disable_vblank, 976 .check_modified_format = dpu_format_check_modified_format, 977 .get_format = dpu_get_msm_format, 978 .destroy = dpu_kms_destroy, 979 .snapshot = dpu_kms_mdp_snapshot, 980 #ifdef CONFIG_DEBUG_FS 981 .debugfs_init = dpu_kms_debugfs_init, 982 #endif 983 }; 984 985 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms) 986 { 987 struct msm_mmu *mmu; 988 989 if (!dpu_kms->base.aspace) 990 return; 991 992 mmu = dpu_kms->base.aspace->mmu; 993 994 mmu->funcs->detach(mmu); 995 msm_gem_address_space_put(dpu_kms->base.aspace); 996 997 dpu_kms->base.aspace = NULL; 998 } 999 1000 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms) 1001 { 1002 struct iommu_domain *domain; 1003 struct msm_gem_address_space *aspace; 1004 struct msm_mmu *mmu; 1005 struct device *dpu_dev = dpu_kms->dev->dev; 1006 struct device *mdss_dev = dpu_dev->parent; 1007 1008 domain = iommu_domain_alloc(&platform_bus_type); 1009 if (!domain) 1010 return 0; 1011 1012 /* IOMMUs are a part of MDSS device tree binding, not the 1013 * MDP/DPU device. */ 1014 mmu = msm_iommu_new(mdss_dev, domain); 1015 if (IS_ERR(mmu)) { 1016 iommu_domain_free(domain); 1017 return PTR_ERR(mmu); 1018 } 1019 aspace = msm_gem_address_space_create(mmu, "dpu1", 1020 0x1000, 0x100000000 - 0x1000); 1021 1022 if (IS_ERR(aspace)) { 1023 mmu->funcs->destroy(mmu); 1024 return PTR_ERR(aspace); 1025 } 1026 1027 dpu_kms->base.aspace = aspace; 1028 return 0; 1029 } 1030 1031 u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name) 1032 { 1033 struct clk *clk; 1034 1035 clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name); 1036 if (!clk) 1037 return -EINVAL; 1038 1039 return clk_get_rate(clk); 1040 } 1041 1042 static int dpu_kms_hw_init(struct msm_kms *kms) 1043 { 1044 struct dpu_kms *dpu_kms; 1045 struct drm_device *dev; 1046 int i, rc = -EINVAL; 1047 1048 if (!kms) { 1049 DPU_ERROR("invalid kms\n"); 1050 return rc; 1051 } 1052 1053 dpu_kms = to_dpu_kms(kms); 1054 dev = dpu_kms->dev; 1055 1056 rc = dpu_kms_global_obj_init(dpu_kms); 1057 if (rc) 1058 return rc; 1059 1060 atomic_set(&dpu_kms->bandwidth_ref, 0); 1061 1062 dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp"); 1063 if (IS_ERR(dpu_kms->mmio)) { 1064 rc = PTR_ERR(dpu_kms->mmio); 1065 DPU_ERROR("mdp register memory map failed: %d\n", rc); 1066 dpu_kms->mmio = NULL; 1067 goto error; 1068 } 1069 DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); 1070 1071 dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif"); 1072 if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { 1073 rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]); 1074 DPU_ERROR("vbif register memory map failed: %d\n", rc); 1075 dpu_kms->vbif[VBIF_RT] = NULL; 1076 goto error; 1077 } 1078 dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt"); 1079 if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { 1080 dpu_kms->vbif[VBIF_NRT] = NULL; 1081 DPU_DEBUG("VBIF NRT is not defined"); 1082 } 1083 1084 dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma"); 1085 if (IS_ERR(dpu_kms->reg_dma)) { 1086 dpu_kms->reg_dma = NULL; 1087 DPU_DEBUG("REG_DMA is not defined"); 1088 } 1089 1090 dpu_kms_parse_data_bus_icc_path(dpu_kms); 1091 1092 rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev); 1093 if (rc < 0) 1094 goto error; 1095 1096 dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0); 1097 1098 pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev); 1099 1100 dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev); 1101 if (IS_ERR_OR_NULL(dpu_kms->catalog)) { 1102 rc = PTR_ERR(dpu_kms->catalog); 1103 if (!dpu_kms->catalog) 1104 rc = -EINVAL; 1105 DPU_ERROR("catalog init failed: %d\n", rc); 1106 dpu_kms->catalog = NULL; 1107 goto power_error; 1108 } 1109 1110 /* 1111 * Now we need to read the HW catalog and initialize resources such as 1112 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc 1113 */ 1114 rc = _dpu_kms_mmu_init(dpu_kms); 1115 if (rc) { 1116 DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc); 1117 goto power_error; 1118 } 1119 1120 rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio); 1121 if (rc) { 1122 DPU_ERROR("rm init failed: %d\n", rc); 1123 goto power_error; 1124 } 1125 1126 dpu_kms->rm_init = true; 1127 1128 dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio, 1129 dpu_kms->catalog); 1130 if (IS_ERR(dpu_kms->hw_mdp)) { 1131 rc = PTR_ERR(dpu_kms->hw_mdp); 1132 DPU_ERROR("failed to get hw_mdp: %d\n", rc); 1133 dpu_kms->hw_mdp = NULL; 1134 goto power_error; 1135 } 1136 1137 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 1138 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 1139 1140 dpu_kms->hw_vbif[i] = dpu_hw_vbif_init(vbif_idx, 1141 dpu_kms->vbif[vbif_idx], dpu_kms->catalog); 1142 if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) { 1143 rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]); 1144 if (!dpu_kms->hw_vbif[vbif_idx]) 1145 rc = -EINVAL; 1146 DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc); 1147 dpu_kms->hw_vbif[vbif_idx] = NULL; 1148 goto power_error; 1149 } 1150 } 1151 1152 rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog, 1153 msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, "core")); 1154 if (rc) { 1155 DPU_ERROR("failed to init perf %d\n", rc); 1156 goto perf_err; 1157 } 1158 1159 dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog); 1160 if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) { 1161 rc = PTR_ERR(dpu_kms->hw_intr); 1162 DPU_ERROR("hw_intr init failed: %d\n", rc); 1163 dpu_kms->hw_intr = NULL; 1164 goto hw_intr_init_err; 1165 } 1166 1167 dev->mode_config.min_width = 0; 1168 dev->mode_config.min_height = 0; 1169 1170 /* 1171 * max crtc width is equal to the max mixer width * 2 and max height is 1172 * is 4K 1173 */ 1174 dev->mode_config.max_width = 1175 dpu_kms->catalog->caps->max_mixer_width * 2; 1176 dev->mode_config.max_height = 4096; 1177 1178 dev->max_vblank_count = 0xffffffff; 1179 /* Disable vblank irqs aggressively for power-saving */ 1180 dev->vblank_disable_immediate = true; 1181 1182 /* 1183 * _dpu_kms_drm_obj_init should create the DRM related objects 1184 * i.e. CRTCs, planes, encoders, connectors and so forth 1185 */ 1186 rc = _dpu_kms_drm_obj_init(dpu_kms); 1187 if (rc) { 1188 DPU_ERROR("modeset init failed: %d\n", rc); 1189 goto drm_obj_init_err; 1190 } 1191 1192 dpu_vbif_init_memtypes(dpu_kms); 1193 1194 pm_runtime_put_sync(&dpu_kms->pdev->dev); 1195 1196 return 0; 1197 1198 drm_obj_init_err: 1199 dpu_core_perf_destroy(&dpu_kms->perf); 1200 hw_intr_init_err: 1201 perf_err: 1202 power_error: 1203 pm_runtime_put_sync(&dpu_kms->pdev->dev); 1204 error: 1205 _dpu_kms_hw_destroy(dpu_kms); 1206 1207 return rc; 1208 } 1209 1210 static int dpu_kms_init(struct drm_device *ddev) 1211 { 1212 struct msm_drm_private *priv = ddev->dev_private; 1213 struct device *dev = ddev->dev; 1214 struct platform_device *pdev = to_platform_device(dev); 1215 struct dpu_kms *dpu_kms; 1216 int irq; 1217 struct dev_pm_opp *opp; 1218 int ret = 0; 1219 unsigned long max_freq = ULONG_MAX; 1220 1221 dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL); 1222 if (!dpu_kms) 1223 return -ENOMEM; 1224 1225 ret = devm_pm_opp_set_clkname(dev, "core"); 1226 if (ret) 1227 return ret; 1228 /* OPP table is optional */ 1229 ret = devm_pm_opp_of_add_table(dev); 1230 if (ret && ret != -ENODEV) { 1231 dev_err(dev, "invalid OPP table in device tree\n"); 1232 return ret; 1233 } 1234 1235 ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks); 1236 if (ret < 0) { 1237 DPU_ERROR("failed to parse clocks, ret=%d\n", ret); 1238 return ret; 1239 } 1240 dpu_kms->num_clocks = ret; 1241 1242 opp = dev_pm_opp_find_freq_floor(dev, &max_freq); 1243 if (!IS_ERR(opp)) 1244 dev_pm_opp_put(opp); 1245 1246 dev_pm_opp_set_rate(dev, max_freq); 1247 1248 ret = msm_kms_init(&dpu_kms->base, &kms_funcs); 1249 if (ret) { 1250 DPU_ERROR("failed to init kms, ret=%d\n", ret); 1251 return ret; 1252 } 1253 dpu_kms->dev = ddev; 1254 dpu_kms->pdev = pdev; 1255 1256 pm_runtime_enable(&pdev->dev); 1257 dpu_kms->rpm_enabled = true; 1258 1259 priv->kms = &dpu_kms->base; 1260 1261 irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0); 1262 if (!irq) { 1263 DPU_ERROR("failed to get irq\n"); 1264 return -EINVAL; 1265 } 1266 dpu_kms->base.irq = irq; 1267 1268 return 0; 1269 } 1270 1271 static int dpu_dev_probe(struct platform_device *pdev) 1272 { 1273 return msm_drv_probe(&pdev->dev, dpu_kms_init); 1274 } 1275 1276 static int dpu_dev_remove(struct platform_device *pdev) 1277 { 1278 component_master_del(&pdev->dev, &msm_drm_ops); 1279 1280 return 0; 1281 } 1282 1283 static int __maybe_unused dpu_runtime_suspend(struct device *dev) 1284 { 1285 int i; 1286 struct platform_device *pdev = to_platform_device(dev); 1287 struct msm_drm_private *priv = platform_get_drvdata(pdev); 1288 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1289 1290 /* Drop the performance state vote */ 1291 dev_pm_opp_set_rate(dev, 0); 1292 clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks); 1293 1294 for (i = 0; i < dpu_kms->num_paths; i++) 1295 icc_set_bw(dpu_kms->path[i], 0, 0); 1296 1297 return 0; 1298 } 1299 1300 static int __maybe_unused dpu_runtime_resume(struct device *dev) 1301 { 1302 int rc = -1; 1303 struct platform_device *pdev = to_platform_device(dev); 1304 struct msm_drm_private *priv = platform_get_drvdata(pdev); 1305 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1306 struct drm_encoder *encoder; 1307 struct drm_device *ddev; 1308 int i; 1309 1310 ddev = dpu_kms->dev; 1311 1312 WARN_ON(!(dpu_kms->num_paths)); 1313 /* Min vote of BW is required before turning on AXI clk */ 1314 for (i = 0; i < dpu_kms->num_paths; i++) 1315 icc_set_bw(dpu_kms->path[i], 0, Bps_to_icc(MIN_IB_BW)); 1316 1317 rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks); 1318 if (rc) { 1319 DPU_ERROR("clock enable failed rc:%d\n", rc); 1320 return rc; 1321 } 1322 1323 dpu_vbif_init_memtypes(dpu_kms); 1324 1325 drm_for_each_encoder(encoder, ddev) 1326 dpu_encoder_virt_runtime_resume(encoder); 1327 1328 return rc; 1329 } 1330 1331 static const struct dev_pm_ops dpu_pm_ops = { 1332 SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL) 1333 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1334 pm_runtime_force_resume) 1335 .prepare = msm_pm_prepare, 1336 .complete = msm_pm_complete, 1337 }; 1338 1339 static const struct of_device_id dpu_dt_match[] = { 1340 { .compatible = "qcom,msm8998-dpu", }, 1341 { .compatible = "qcom,qcm2290-dpu", }, 1342 { .compatible = "qcom,sdm845-dpu", }, 1343 { .compatible = "qcom,sc7180-dpu", }, 1344 { .compatible = "qcom,sc7280-dpu", }, 1345 { .compatible = "qcom,sc8180x-dpu", }, 1346 { .compatible = "qcom,sm8150-dpu", }, 1347 { .compatible = "qcom,sm8250-dpu", }, 1348 {} 1349 }; 1350 MODULE_DEVICE_TABLE(of, dpu_dt_match); 1351 1352 static struct platform_driver dpu_driver = { 1353 .probe = dpu_dev_probe, 1354 .remove = dpu_dev_remove, 1355 .shutdown = msm_drv_shutdown, 1356 .driver = { 1357 .name = "msm_dpu", 1358 .of_match_table = dpu_dt_match, 1359 .pm = &dpu_pm_ops, 1360 }, 1361 }; 1362 1363 void __init msm_dpu_register(void) 1364 { 1365 platform_driver_register(&dpu_driver); 1366 } 1367 1368 void __exit msm_dpu_unregister(void) 1369 { 1370 platform_driver_unregister(&dpu_driver); 1371 } 1372