1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 12 #include <linux/debugfs.h> 13 #include <linux/dma-buf.h> 14 #include <linux/of_irq.h> 15 #include <linux/pm_opp.h> 16 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_file.h> 19 #include <drm/drm_vblank.h> 20 #include <drm/drm_writeback.h> 21 22 #include "msm_drv.h" 23 #include "msm_mmu.h" 24 #include "msm_gem.h" 25 #include "disp/msm_disp_snapshot.h" 26 27 #include "dpu_core_irq.h" 28 #include "dpu_crtc.h" 29 #include "dpu_encoder.h" 30 #include "dpu_formats.h" 31 #include "dpu_hw_vbif.h" 32 #include "dpu_kms.h" 33 #include "dpu_plane.h" 34 #include "dpu_vbif.h" 35 #include "dpu_writeback.h" 36 37 #define CREATE_TRACE_POINTS 38 #include "dpu_trace.h" 39 40 /* 41 * To enable overall DRM driver logging 42 * # echo 0x2 > /sys/module/drm/parameters/debug 43 * 44 * To enable DRM driver h/w logging 45 * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask 46 * 47 * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_) 48 */ 49 #define DPU_DEBUGFS_DIR "msm_dpu" 50 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask" 51 52 static int dpu_kms_hw_init(struct msm_kms *kms); 53 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms); 54 55 #ifdef CONFIG_DEBUG_FS 56 static int _dpu_danger_signal_status(struct seq_file *s, 57 bool danger_status) 58 { 59 struct dpu_kms *kms = (struct dpu_kms *)s->private; 60 struct dpu_danger_safe_status status; 61 int i; 62 63 if (!kms->hw_mdp) { 64 DPU_ERROR("invalid arg(s)\n"); 65 return 0; 66 } 67 68 memset(&status, 0, sizeof(struct dpu_danger_safe_status)); 69 70 pm_runtime_get_sync(&kms->pdev->dev); 71 if (danger_status) { 72 seq_puts(s, "\nDanger signal status:\n"); 73 if (kms->hw_mdp->ops.get_danger_status) 74 kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, 75 &status); 76 } else { 77 seq_puts(s, "\nSafe signal status:\n"); 78 if (kms->hw_mdp->ops.get_safe_status) 79 kms->hw_mdp->ops.get_safe_status(kms->hw_mdp, 80 &status); 81 } 82 pm_runtime_put_sync(&kms->pdev->dev); 83 84 seq_printf(s, "MDP : 0x%x\n", status.mdp); 85 86 for (i = SSPP_VIG0; i < SSPP_MAX; i++) 87 seq_printf(s, "SSPP%d : 0x%x \n", i - SSPP_VIG0, 88 status.sspp[i]); 89 seq_puts(s, "\n"); 90 91 return 0; 92 } 93 94 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v) 95 { 96 return _dpu_danger_signal_status(s, true); 97 } 98 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats); 99 100 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v) 101 { 102 return _dpu_danger_signal_status(s, false); 103 } 104 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats); 105 106 static ssize_t _dpu_plane_danger_read(struct file *file, 107 char __user *buff, size_t count, loff_t *ppos) 108 { 109 struct dpu_kms *kms = file->private_data; 110 int len; 111 char buf[40]; 112 113 len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl); 114 115 return simple_read_from_buffer(buff, count, ppos, buf, len); 116 } 117 118 static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable) 119 { 120 struct drm_plane *plane; 121 122 drm_for_each_plane(plane, kms->dev) { 123 if (plane->fb && plane->state) { 124 dpu_plane_danger_signal_ctrl(plane, enable); 125 DPU_DEBUG("plane:%d img:%dx%d ", 126 plane->base.id, plane->fb->width, 127 plane->fb->height); 128 DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n", 129 plane->state->src_x >> 16, 130 plane->state->src_y >> 16, 131 plane->state->src_w >> 16, 132 plane->state->src_h >> 16, 133 plane->state->crtc_x, plane->state->crtc_y, 134 plane->state->crtc_w, plane->state->crtc_h); 135 } else { 136 DPU_DEBUG("Inactive plane:%d\n", plane->base.id); 137 } 138 } 139 } 140 141 static ssize_t _dpu_plane_danger_write(struct file *file, 142 const char __user *user_buf, size_t count, loff_t *ppos) 143 { 144 struct dpu_kms *kms = file->private_data; 145 int disable_panic; 146 int ret; 147 148 ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic); 149 if (ret) 150 return ret; 151 152 if (disable_panic) { 153 /* Disable panic signal for all active pipes */ 154 DPU_DEBUG("Disabling danger:\n"); 155 _dpu_plane_set_danger_state(kms, false); 156 kms->has_danger_ctrl = false; 157 } else { 158 /* Enable panic signal for all active pipes */ 159 DPU_DEBUG("Enabling danger:\n"); 160 kms->has_danger_ctrl = true; 161 _dpu_plane_set_danger_state(kms, true); 162 } 163 164 return count; 165 } 166 167 static const struct file_operations dpu_plane_danger_enable = { 168 .open = simple_open, 169 .read = _dpu_plane_danger_read, 170 .write = _dpu_plane_danger_write, 171 }; 172 173 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms, 174 struct dentry *parent) 175 { 176 struct dentry *entry = debugfs_create_dir("danger", parent); 177 178 debugfs_create_file("danger_status", 0600, entry, 179 dpu_kms, &dpu_debugfs_danger_stats_fops); 180 debugfs_create_file("safe_status", 0600, entry, 181 dpu_kms, &dpu_debugfs_safe_stats_fops); 182 debugfs_create_file("disable_danger", 0600, entry, 183 dpu_kms, &dpu_plane_danger_enable); 184 185 } 186 187 /* 188 * Companion structure for dpu_debugfs_create_regset32. 189 */ 190 struct dpu_debugfs_regset32 { 191 uint32_t offset; 192 uint32_t blk_len; 193 struct dpu_kms *dpu_kms; 194 }; 195 196 static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data) 197 { 198 struct dpu_debugfs_regset32 *regset = s->private; 199 struct dpu_kms *dpu_kms = regset->dpu_kms; 200 void __iomem *base; 201 uint32_t i, addr; 202 203 if (!dpu_kms->mmio) 204 return 0; 205 206 base = dpu_kms->mmio + regset->offset; 207 208 /* insert padding spaces, if needed */ 209 if (regset->offset & 0xF) { 210 seq_printf(s, "[%x]", regset->offset & ~0xF); 211 for (i = 0; i < (regset->offset & 0xF); i += 4) 212 seq_puts(s, " "); 213 } 214 215 pm_runtime_get_sync(&dpu_kms->pdev->dev); 216 217 /* main register output */ 218 for (i = 0; i < regset->blk_len; i += 4) { 219 addr = regset->offset + i; 220 if ((addr & 0xF) == 0x0) 221 seq_printf(s, i ? "\n[%x]" : "[%x]", addr); 222 seq_printf(s, " %08x", readl_relaxed(base + i)); 223 } 224 seq_puts(s, "\n"); 225 pm_runtime_put_sync(&dpu_kms->pdev->dev); 226 227 return 0; 228 } 229 230 static int dpu_debugfs_open_regset32(struct inode *inode, 231 struct file *file) 232 { 233 return single_open(file, _dpu_debugfs_show_regset32, inode->i_private); 234 } 235 236 static const struct file_operations dpu_fops_regset32 = { 237 .open = dpu_debugfs_open_regset32, 238 .read = seq_read, 239 .llseek = seq_lseek, 240 .release = single_release, 241 }; 242 243 void dpu_debugfs_create_regset32(const char *name, umode_t mode, 244 void *parent, 245 uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms) 246 { 247 struct dpu_debugfs_regset32 *regset; 248 249 if (WARN_ON(!name || !dpu_kms || !length)) 250 return; 251 252 regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL); 253 if (!regset) 254 return; 255 256 /* make sure offset is a multiple of 4 */ 257 regset->offset = round_down(offset, 4); 258 regset->blk_len = length; 259 regset->dpu_kms = dpu_kms; 260 261 debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32); 262 } 263 264 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor) 265 { 266 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 267 void *p = dpu_hw_util_get_log_mask_ptr(); 268 struct dentry *entry; 269 struct drm_device *dev; 270 struct msm_drm_private *priv; 271 int i; 272 273 if (!p) 274 return -EINVAL; 275 276 /* Only create a set of debugfs for the primary node, ignore render nodes */ 277 if (minor->type != DRM_MINOR_PRIMARY) 278 return 0; 279 280 dev = dpu_kms->dev; 281 priv = dev->dev_private; 282 283 entry = debugfs_create_dir("debug", minor->debugfs_root); 284 285 debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p); 286 287 dpu_debugfs_danger_init(dpu_kms, entry); 288 dpu_debugfs_vbif_init(dpu_kms, entry); 289 dpu_debugfs_core_irq_init(dpu_kms, entry); 290 dpu_debugfs_sspp_init(dpu_kms, entry); 291 292 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) { 293 if (priv->dp[i]) 294 msm_dp_debugfs_init(priv->dp[i], minor); 295 } 296 297 return dpu_core_perf_debugfs_init(dpu_kms, entry); 298 } 299 #endif 300 301 /* Global/shared object state funcs */ 302 303 /* 304 * This is a helper that returns the private state currently in operation. 305 * Note that this would return the "old_state" if called in the atomic check 306 * path, and the "new_state" after the atomic swap has been done. 307 */ 308 struct dpu_global_state * 309 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms) 310 { 311 return to_dpu_global_state(dpu_kms->global_state.state); 312 } 313 314 /* 315 * This acquires the modeset lock set aside for global state, creates 316 * a new duplicated private object state. 317 */ 318 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s) 319 { 320 struct msm_drm_private *priv = s->dev->dev_private; 321 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 322 struct drm_private_state *priv_state; 323 int ret; 324 325 ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx); 326 if (ret) 327 return ERR_PTR(ret); 328 329 priv_state = drm_atomic_get_private_obj_state(s, 330 &dpu_kms->global_state); 331 if (IS_ERR(priv_state)) 332 return ERR_CAST(priv_state); 333 334 return to_dpu_global_state(priv_state); 335 } 336 337 static struct drm_private_state * 338 dpu_kms_global_duplicate_state(struct drm_private_obj *obj) 339 { 340 struct dpu_global_state *state; 341 342 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 343 if (!state) 344 return NULL; 345 346 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 347 348 return &state->base; 349 } 350 351 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj, 352 struct drm_private_state *state) 353 { 354 struct dpu_global_state *dpu_state = to_dpu_global_state(state); 355 356 kfree(dpu_state); 357 } 358 359 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = { 360 .atomic_duplicate_state = dpu_kms_global_duplicate_state, 361 .atomic_destroy_state = dpu_kms_global_destroy_state, 362 }; 363 364 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms) 365 { 366 struct dpu_global_state *state; 367 368 drm_modeset_lock_init(&dpu_kms->global_state_lock); 369 370 state = kzalloc(sizeof(*state), GFP_KERNEL); 371 if (!state) 372 return -ENOMEM; 373 374 drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state, 375 &state->base, 376 &dpu_kms_global_state_funcs); 377 return 0; 378 } 379 380 static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms) 381 { 382 struct icc_path *path0; 383 struct icc_path *path1; 384 struct drm_device *dev = dpu_kms->dev; 385 struct device *dpu_dev = dev->dev; 386 struct device *mdss_dev = dpu_dev->parent; 387 388 /* Interconnects are a part of MDSS device tree binding, not the 389 * MDP/DPU device. */ 390 path0 = of_icc_get(mdss_dev, "mdp0-mem"); 391 path1 = of_icc_get(mdss_dev, "mdp1-mem"); 392 393 if (IS_ERR_OR_NULL(path0)) 394 return PTR_ERR_OR_ZERO(path0); 395 396 dpu_kms->path[0] = path0; 397 dpu_kms->num_paths = 1; 398 399 if (!IS_ERR_OR_NULL(path1)) { 400 dpu_kms->path[1] = path1; 401 dpu_kms->num_paths++; 402 } 403 return 0; 404 } 405 406 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 407 { 408 return dpu_crtc_vblank(crtc, true); 409 } 410 411 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 412 { 413 dpu_crtc_vblank(crtc, false); 414 } 415 416 static void dpu_kms_enable_commit(struct msm_kms *kms) 417 { 418 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 419 pm_runtime_get_sync(&dpu_kms->pdev->dev); 420 } 421 422 static void dpu_kms_disable_commit(struct msm_kms *kms) 423 { 424 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 425 pm_runtime_put_sync(&dpu_kms->pdev->dev); 426 } 427 428 static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc) 429 { 430 struct drm_encoder *encoder; 431 432 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 433 ktime_t vsync_time; 434 435 if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0) 436 return vsync_time; 437 } 438 439 return ktime_get(); 440 } 441 442 static void dpu_kms_prepare_commit(struct msm_kms *kms, 443 struct drm_atomic_state *state) 444 { 445 struct drm_crtc *crtc; 446 struct drm_crtc_state *crtc_state; 447 struct drm_encoder *encoder; 448 int i; 449 450 if (!kms) 451 return; 452 453 /* Call prepare_commit for all affected encoders */ 454 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 455 drm_for_each_encoder_mask(encoder, crtc->dev, 456 crtc_state->encoder_mask) { 457 dpu_encoder_prepare_commit(encoder); 458 } 459 } 460 } 461 462 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask) 463 { 464 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 465 struct drm_crtc *crtc; 466 467 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) { 468 if (!crtc->state->active) 469 continue; 470 471 trace_dpu_kms_commit(DRMID(crtc)); 472 dpu_crtc_commit_kickoff(crtc); 473 } 474 } 475 476 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask) 477 { 478 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 479 struct drm_crtc *crtc; 480 481 DPU_ATRACE_BEGIN("kms_complete_commit"); 482 483 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 484 dpu_crtc_complete_commit(crtc); 485 486 DPU_ATRACE_END("kms_complete_commit"); 487 } 488 489 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms, 490 struct drm_crtc *crtc) 491 { 492 struct drm_encoder *encoder; 493 struct drm_device *dev; 494 int ret; 495 496 if (!kms || !crtc || !crtc->state) { 497 DPU_ERROR("invalid params\n"); 498 return; 499 } 500 501 dev = crtc->dev; 502 503 if (!crtc->state->enable) { 504 DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id); 505 return; 506 } 507 508 if (!crtc->state->active) { 509 DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id); 510 return; 511 } 512 513 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 514 if (encoder->crtc != crtc) 515 continue; 516 /* 517 * Wait for post-flush if necessary to delay before 518 * plane_cleanup. For example, wait for vsync in case of video 519 * mode panels. This may be a no-op for command mode panels. 520 */ 521 trace_dpu_kms_wait_for_commit_done(DRMID(crtc)); 522 ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE); 523 if (ret && ret != -EWOULDBLOCK) { 524 DPU_ERROR("wait for commit done returned %d\n", ret); 525 break; 526 } 527 } 528 } 529 530 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask) 531 { 532 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 533 struct drm_crtc *crtc; 534 535 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 536 dpu_kms_wait_for_commit_done(kms, crtc); 537 } 538 539 static int _dpu_kms_initialize_dsi(struct drm_device *dev, 540 struct msm_drm_private *priv, 541 struct dpu_kms *dpu_kms) 542 { 543 struct drm_encoder *encoder = NULL; 544 struct msm_display_info info; 545 int i, rc = 0; 546 547 if (!(priv->dsi[0] || priv->dsi[1])) 548 return rc; 549 550 /* 551 * We support following confiurations: 552 * - Single DSI host (dsi0 or dsi1) 553 * - Two independent DSI hosts 554 * - Bonded DSI0 and DSI1 hosts 555 * 556 * TODO: Support swapping DSI0 and DSI1 in the bonded setup. 557 */ 558 for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { 559 int other = (i + 1) % 2; 560 561 if (!priv->dsi[i]) 562 continue; 563 564 if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && 565 !msm_dsi_is_master_dsi(priv->dsi[i])) 566 continue; 567 568 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI); 569 if (IS_ERR(encoder)) { 570 DPU_ERROR("encoder init failed for dsi display\n"); 571 return PTR_ERR(encoder); 572 } 573 574 memset(&info, 0, sizeof(info)); 575 info.intf_type = encoder->encoder_type; 576 577 rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder); 578 if (rc) { 579 DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", 580 i, rc); 581 break; 582 } 583 584 info.h_tile_instance[info.num_of_h_tiles++] = i; 585 info.capabilities = msm_dsi_is_cmd_mode(priv->dsi[i]) ? 586 MSM_DISPLAY_CAP_CMD_MODE : 587 MSM_DISPLAY_CAP_VID_MODE; 588 589 info.dsc = msm_dsi_get_dsc_config(priv->dsi[i]); 590 591 if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) { 592 rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder); 593 if (rc) { 594 DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", 595 other, rc); 596 break; 597 } 598 599 info.h_tile_instance[info.num_of_h_tiles++] = other; 600 } 601 602 rc = dpu_encoder_setup(dev, encoder, &info); 603 if (rc) 604 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 605 encoder->base.id, rc); 606 } 607 608 return rc; 609 } 610 611 static int _dpu_kms_initialize_displayport(struct drm_device *dev, 612 struct msm_drm_private *priv, 613 struct dpu_kms *dpu_kms) 614 { 615 struct drm_encoder *encoder = NULL; 616 struct msm_display_info info; 617 int rc; 618 int i; 619 620 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) { 621 if (!priv->dp[i]) 622 continue; 623 624 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS); 625 if (IS_ERR(encoder)) { 626 DPU_ERROR("encoder init failed for dsi display\n"); 627 return PTR_ERR(encoder); 628 } 629 630 memset(&info, 0, sizeof(info)); 631 rc = msm_dp_modeset_init(priv->dp[i], dev, encoder); 632 if (rc) { 633 DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc); 634 drm_encoder_cleanup(encoder); 635 return rc; 636 } 637 638 info.num_of_h_tiles = 1; 639 info.h_tile_instance[0] = i; 640 info.capabilities = MSM_DISPLAY_CAP_VID_MODE; 641 info.intf_type = encoder->encoder_type; 642 rc = dpu_encoder_setup(dev, encoder, &info); 643 if (rc) { 644 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 645 encoder->base.id, rc); 646 return rc; 647 } 648 } 649 650 return 0; 651 } 652 653 static int _dpu_kms_initialize_writeback(struct drm_device *dev, 654 struct msm_drm_private *priv, struct dpu_kms *dpu_kms, 655 const u32 *wb_formats, int n_formats) 656 { 657 struct drm_encoder *encoder = NULL; 658 struct msm_display_info info; 659 int rc; 660 661 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL); 662 if (IS_ERR(encoder)) { 663 DPU_ERROR("encoder init failed for dsi display\n"); 664 return PTR_ERR(encoder); 665 } 666 667 memset(&info, 0, sizeof(info)); 668 669 rc = dpu_writeback_init(dev, encoder, wb_formats, 670 n_formats); 671 if (rc) { 672 DPU_ERROR("dpu_writeback_init, rc = %d\n", rc); 673 drm_encoder_cleanup(encoder); 674 return rc; 675 } 676 677 info.num_of_h_tiles = 1; 678 /* use only WB idx 2 instance for DPU */ 679 info.h_tile_instance[0] = WB_2; 680 info.intf_type = encoder->encoder_type; 681 682 rc = dpu_encoder_setup(dev, encoder, &info); 683 if (rc) { 684 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 685 encoder->base.id, rc); 686 return rc; 687 } 688 689 return 0; 690 } 691 692 /** 693 * _dpu_kms_setup_displays - create encoders, bridges and connectors 694 * for underlying displays 695 * @dev: Pointer to drm device structure 696 * @priv: Pointer to private drm device data 697 * @dpu_kms: Pointer to dpu kms structure 698 * Returns: Zero on success 699 */ 700 static int _dpu_kms_setup_displays(struct drm_device *dev, 701 struct msm_drm_private *priv, 702 struct dpu_kms *dpu_kms) 703 { 704 int rc = 0; 705 int i; 706 707 rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms); 708 if (rc) { 709 DPU_ERROR("initialize_dsi failed, rc = %d\n", rc); 710 return rc; 711 } 712 713 rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms); 714 if (rc) { 715 DPU_ERROR("initialize_DP failed, rc = %d\n", rc); 716 return rc; 717 } 718 719 /* Since WB isn't a driver check the catalog before initializing */ 720 if (dpu_kms->catalog->wb_count) { 721 for (i = 0; i < dpu_kms->catalog->wb_count; i++) { 722 if (dpu_kms->catalog->wb[i].id == WB_2) { 723 rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms, 724 dpu_kms->catalog->wb[i].format_list, 725 dpu_kms->catalog->wb[i].num_formats); 726 if (rc) { 727 DPU_ERROR("initialize_WB failed, rc = %d\n", rc); 728 return rc; 729 } 730 } 731 } 732 } 733 734 return rc; 735 } 736 737 #define MAX_PLANES 20 738 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms) 739 { 740 struct drm_device *dev; 741 struct drm_plane *primary_planes[MAX_PLANES], *plane; 742 struct drm_plane *cursor_planes[MAX_PLANES] = { NULL }; 743 struct drm_crtc *crtc; 744 struct drm_encoder *encoder; 745 unsigned int num_encoders; 746 747 struct msm_drm_private *priv; 748 struct dpu_mdss_cfg *catalog; 749 750 int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret; 751 int max_crtc_count; 752 dev = dpu_kms->dev; 753 priv = dev->dev_private; 754 catalog = dpu_kms->catalog; 755 756 /* 757 * Create encoder and query display drivers to create 758 * bridges and connectors 759 */ 760 ret = _dpu_kms_setup_displays(dev, priv, dpu_kms); 761 if (ret) 762 return ret; 763 764 num_encoders = 0; 765 drm_for_each_encoder(encoder, dev) 766 num_encoders++; 767 768 max_crtc_count = min(catalog->mixer_count, num_encoders); 769 770 /* Create the planes, keeping track of one primary/cursor per crtc */ 771 for (i = 0; i < catalog->sspp_count; i++) { 772 enum drm_plane_type type; 773 774 if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)) 775 && cursor_planes_idx < max_crtc_count) 776 type = DRM_PLANE_TYPE_CURSOR; 777 else if (primary_planes_idx < max_crtc_count) 778 type = DRM_PLANE_TYPE_PRIMARY; 779 else 780 type = DRM_PLANE_TYPE_OVERLAY; 781 782 DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n", 783 type, catalog->sspp[i].features, 784 catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)); 785 786 plane = dpu_plane_init(dev, catalog->sspp[i].id, type, 787 (1UL << max_crtc_count) - 1, 0); 788 if (IS_ERR(plane)) { 789 DPU_ERROR("dpu_plane_init failed\n"); 790 ret = PTR_ERR(plane); 791 return ret; 792 } 793 794 if (type == DRM_PLANE_TYPE_CURSOR) 795 cursor_planes[cursor_planes_idx++] = plane; 796 else if (type == DRM_PLANE_TYPE_PRIMARY) 797 primary_planes[primary_planes_idx++] = plane; 798 } 799 800 max_crtc_count = min(max_crtc_count, primary_planes_idx); 801 802 /* Create one CRTC per encoder */ 803 for (i = 0; i < max_crtc_count; i++) { 804 crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]); 805 if (IS_ERR(crtc)) { 806 ret = PTR_ERR(crtc); 807 return ret; 808 } 809 priv->crtcs[priv->num_crtcs++] = crtc; 810 } 811 812 /* All CRTCs are compatible with all encoders */ 813 drm_for_each_encoder(encoder, dev) 814 encoder->possible_crtcs = (1 << priv->num_crtcs) - 1; 815 816 return 0; 817 } 818 819 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms) 820 { 821 int i; 822 823 if (dpu_kms->hw_intr) 824 dpu_hw_intr_destroy(dpu_kms->hw_intr); 825 dpu_kms->hw_intr = NULL; 826 827 /* safe to call these more than once during shutdown */ 828 _dpu_kms_mmu_destroy(dpu_kms); 829 830 if (dpu_kms->catalog) { 831 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 832 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 833 834 if ((vbif_idx < VBIF_MAX) && dpu_kms->hw_vbif[vbif_idx]) { 835 dpu_hw_vbif_destroy(dpu_kms->hw_vbif[vbif_idx]); 836 dpu_kms->hw_vbif[vbif_idx] = NULL; 837 } 838 } 839 } 840 841 if (dpu_kms->rm_init) 842 dpu_rm_destroy(&dpu_kms->rm); 843 dpu_kms->rm_init = false; 844 845 if (dpu_kms->catalog) 846 dpu_hw_catalog_deinit(dpu_kms->catalog); 847 dpu_kms->catalog = NULL; 848 849 if (dpu_kms->vbif[VBIF_NRT]) 850 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]); 851 dpu_kms->vbif[VBIF_NRT] = NULL; 852 853 if (dpu_kms->vbif[VBIF_RT]) 854 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]); 855 dpu_kms->vbif[VBIF_RT] = NULL; 856 857 if (dpu_kms->hw_mdp) 858 dpu_hw_mdp_destroy(dpu_kms->hw_mdp); 859 dpu_kms->hw_mdp = NULL; 860 861 if (dpu_kms->mmio) 862 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio); 863 dpu_kms->mmio = NULL; 864 } 865 866 static void dpu_kms_destroy(struct msm_kms *kms) 867 { 868 struct dpu_kms *dpu_kms; 869 870 if (!kms) { 871 DPU_ERROR("invalid kms\n"); 872 return; 873 } 874 875 dpu_kms = to_dpu_kms(kms); 876 877 _dpu_kms_hw_destroy(dpu_kms); 878 879 msm_kms_destroy(&dpu_kms->base); 880 881 if (dpu_kms->rpm_enabled) 882 pm_runtime_disable(&dpu_kms->pdev->dev); 883 } 884 885 static int dpu_irq_postinstall(struct msm_kms *kms) 886 { 887 struct msm_drm_private *priv; 888 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 889 int i; 890 891 if (!dpu_kms || !dpu_kms->dev) 892 return -EINVAL; 893 894 priv = dpu_kms->dev->dev_private; 895 if (!priv) 896 return -EINVAL; 897 898 for (i = 0; i < ARRAY_SIZE(priv->dp); i++) 899 msm_dp_irq_postinstall(priv->dp[i]); 900 901 return 0; 902 } 903 904 static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms) 905 { 906 int i; 907 struct dpu_kms *dpu_kms; 908 struct dpu_mdss_cfg *cat; 909 struct dpu_hw_mdp *top; 910 911 dpu_kms = to_dpu_kms(kms); 912 913 cat = dpu_kms->catalog; 914 top = dpu_kms->hw_mdp; 915 916 pm_runtime_get_sync(&dpu_kms->pdev->dev); 917 918 /* dump CTL sub-blocks HW regs info */ 919 for (i = 0; i < cat->ctl_count; i++) 920 msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len, 921 dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i); 922 923 /* dump DSPP sub-blocks HW regs info */ 924 for (i = 0; i < cat->dspp_count; i++) 925 msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len, 926 dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i); 927 928 /* dump INTF sub-blocks HW regs info */ 929 for (i = 0; i < cat->intf_count; i++) 930 msm_disp_snapshot_add_block(disp_state, cat->intf[i].len, 931 dpu_kms->mmio + cat->intf[i].base, "intf_%d", i); 932 933 /* dump PP sub-blocks HW regs info */ 934 for (i = 0; i < cat->pingpong_count; i++) 935 msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len, 936 dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i); 937 938 /* dump SSPP sub-blocks HW regs info */ 939 for (i = 0; i < cat->sspp_count; i++) 940 msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len, 941 dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i); 942 943 /* dump LM sub-blocks HW regs info */ 944 for (i = 0; i < cat->mixer_count; i++) 945 msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len, 946 dpu_kms->mmio + cat->mixer[i].base, "lm_%d", i); 947 948 /* dump WB sub-blocks HW regs info */ 949 for (i = 0; i < cat->wb_count; i++) 950 msm_disp_snapshot_add_block(disp_state, cat->wb[i].len, 951 dpu_kms->mmio + cat->wb[i].base, "wb_%d", i); 952 953 msm_disp_snapshot_add_block(disp_state, top->hw.length, 954 dpu_kms->mmio + top->hw.blk_off, "top"); 955 956 pm_runtime_put_sync(&dpu_kms->pdev->dev); 957 } 958 959 static const struct msm_kms_funcs kms_funcs = { 960 .hw_init = dpu_kms_hw_init, 961 .irq_preinstall = dpu_core_irq_preinstall, 962 .irq_postinstall = dpu_irq_postinstall, 963 .irq_uninstall = dpu_core_irq_uninstall, 964 .irq = dpu_core_irq, 965 .enable_commit = dpu_kms_enable_commit, 966 .disable_commit = dpu_kms_disable_commit, 967 .vsync_time = dpu_kms_vsync_time, 968 .prepare_commit = dpu_kms_prepare_commit, 969 .flush_commit = dpu_kms_flush_commit, 970 .wait_flush = dpu_kms_wait_flush, 971 .complete_commit = dpu_kms_complete_commit, 972 .enable_vblank = dpu_kms_enable_vblank, 973 .disable_vblank = dpu_kms_disable_vblank, 974 .check_modified_format = dpu_format_check_modified_format, 975 .get_format = dpu_get_msm_format, 976 .destroy = dpu_kms_destroy, 977 .snapshot = dpu_kms_mdp_snapshot, 978 #ifdef CONFIG_DEBUG_FS 979 .debugfs_init = dpu_kms_debugfs_init, 980 #endif 981 }; 982 983 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms) 984 { 985 struct msm_mmu *mmu; 986 987 if (!dpu_kms->base.aspace) 988 return; 989 990 mmu = dpu_kms->base.aspace->mmu; 991 992 mmu->funcs->detach(mmu); 993 msm_gem_address_space_put(dpu_kms->base.aspace); 994 995 dpu_kms->base.aspace = NULL; 996 } 997 998 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms) 999 { 1000 struct iommu_domain *domain; 1001 struct msm_gem_address_space *aspace; 1002 struct msm_mmu *mmu; 1003 struct device *dpu_dev = dpu_kms->dev->dev; 1004 struct device *mdss_dev = dpu_dev->parent; 1005 1006 domain = iommu_domain_alloc(&platform_bus_type); 1007 if (!domain) 1008 return 0; 1009 1010 /* IOMMUs are a part of MDSS device tree binding, not the 1011 * MDP/DPU device. */ 1012 mmu = msm_iommu_new(mdss_dev, domain); 1013 if (IS_ERR(mmu)) { 1014 iommu_domain_free(domain); 1015 return PTR_ERR(mmu); 1016 } 1017 aspace = msm_gem_address_space_create(mmu, "dpu1", 1018 0x1000, 0x100000000 - 0x1000); 1019 1020 if (IS_ERR(aspace)) { 1021 mmu->funcs->destroy(mmu); 1022 return PTR_ERR(aspace); 1023 } 1024 1025 dpu_kms->base.aspace = aspace; 1026 return 0; 1027 } 1028 1029 u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name) 1030 { 1031 struct clk *clk; 1032 1033 clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name); 1034 if (!clk) 1035 return -EINVAL; 1036 1037 return clk_get_rate(clk); 1038 } 1039 1040 static int dpu_kms_hw_init(struct msm_kms *kms) 1041 { 1042 struct dpu_kms *dpu_kms; 1043 struct drm_device *dev; 1044 int i, rc = -EINVAL; 1045 1046 if (!kms) { 1047 DPU_ERROR("invalid kms\n"); 1048 return rc; 1049 } 1050 1051 dpu_kms = to_dpu_kms(kms); 1052 dev = dpu_kms->dev; 1053 1054 rc = dpu_kms_global_obj_init(dpu_kms); 1055 if (rc) 1056 return rc; 1057 1058 atomic_set(&dpu_kms->bandwidth_ref, 0); 1059 1060 dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp"); 1061 if (IS_ERR(dpu_kms->mmio)) { 1062 rc = PTR_ERR(dpu_kms->mmio); 1063 DPU_ERROR("mdp register memory map failed: %d\n", rc); 1064 dpu_kms->mmio = NULL; 1065 goto error; 1066 } 1067 DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); 1068 1069 dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif"); 1070 if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { 1071 rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]); 1072 DPU_ERROR("vbif register memory map failed: %d\n", rc); 1073 dpu_kms->vbif[VBIF_RT] = NULL; 1074 goto error; 1075 } 1076 dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt"); 1077 if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { 1078 dpu_kms->vbif[VBIF_NRT] = NULL; 1079 DPU_DEBUG("VBIF NRT is not defined"); 1080 } 1081 1082 dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma"); 1083 if (IS_ERR(dpu_kms->reg_dma)) { 1084 dpu_kms->reg_dma = NULL; 1085 DPU_DEBUG("REG_DMA is not defined"); 1086 } 1087 1088 dpu_kms_parse_data_bus_icc_path(dpu_kms); 1089 1090 rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev); 1091 if (rc < 0) 1092 goto error; 1093 1094 dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0); 1095 1096 pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev); 1097 1098 dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev); 1099 if (IS_ERR_OR_NULL(dpu_kms->catalog)) { 1100 rc = PTR_ERR(dpu_kms->catalog); 1101 if (!dpu_kms->catalog) 1102 rc = -EINVAL; 1103 DPU_ERROR("catalog init failed: %d\n", rc); 1104 dpu_kms->catalog = NULL; 1105 goto power_error; 1106 } 1107 1108 /* 1109 * Now we need to read the HW catalog and initialize resources such as 1110 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc 1111 */ 1112 rc = _dpu_kms_mmu_init(dpu_kms); 1113 if (rc) { 1114 DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc); 1115 goto power_error; 1116 } 1117 1118 rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio); 1119 if (rc) { 1120 DPU_ERROR("rm init failed: %d\n", rc); 1121 goto power_error; 1122 } 1123 1124 dpu_kms->rm_init = true; 1125 1126 dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio, 1127 dpu_kms->catalog); 1128 if (IS_ERR(dpu_kms->hw_mdp)) { 1129 rc = PTR_ERR(dpu_kms->hw_mdp); 1130 DPU_ERROR("failed to get hw_mdp: %d\n", rc); 1131 dpu_kms->hw_mdp = NULL; 1132 goto power_error; 1133 } 1134 1135 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 1136 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 1137 1138 dpu_kms->hw_vbif[i] = dpu_hw_vbif_init(vbif_idx, 1139 dpu_kms->vbif[vbif_idx], dpu_kms->catalog); 1140 if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) { 1141 rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]); 1142 if (!dpu_kms->hw_vbif[vbif_idx]) 1143 rc = -EINVAL; 1144 DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc); 1145 dpu_kms->hw_vbif[vbif_idx] = NULL; 1146 goto power_error; 1147 } 1148 } 1149 1150 rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog, 1151 msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, "core")); 1152 if (rc) { 1153 DPU_ERROR("failed to init perf %d\n", rc); 1154 goto perf_err; 1155 } 1156 1157 dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog); 1158 if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) { 1159 rc = PTR_ERR(dpu_kms->hw_intr); 1160 DPU_ERROR("hw_intr init failed: %d\n", rc); 1161 dpu_kms->hw_intr = NULL; 1162 goto hw_intr_init_err; 1163 } 1164 1165 dev->mode_config.min_width = 0; 1166 dev->mode_config.min_height = 0; 1167 1168 /* 1169 * max crtc width is equal to the max mixer width * 2 and max height is 1170 * is 4K 1171 */ 1172 dev->mode_config.max_width = 1173 dpu_kms->catalog->caps->max_mixer_width * 2; 1174 dev->mode_config.max_height = 4096; 1175 1176 dev->max_vblank_count = 0xffffffff; 1177 /* Disable vblank irqs aggressively for power-saving */ 1178 dev->vblank_disable_immediate = true; 1179 1180 /* 1181 * _dpu_kms_drm_obj_init should create the DRM related objects 1182 * i.e. CRTCs, planes, encoders, connectors and so forth 1183 */ 1184 rc = _dpu_kms_drm_obj_init(dpu_kms); 1185 if (rc) { 1186 DPU_ERROR("modeset init failed: %d\n", rc); 1187 goto drm_obj_init_err; 1188 } 1189 1190 dpu_vbif_init_memtypes(dpu_kms); 1191 1192 pm_runtime_put_sync(&dpu_kms->pdev->dev); 1193 1194 return 0; 1195 1196 drm_obj_init_err: 1197 dpu_core_perf_destroy(&dpu_kms->perf); 1198 hw_intr_init_err: 1199 perf_err: 1200 power_error: 1201 pm_runtime_put_sync(&dpu_kms->pdev->dev); 1202 error: 1203 _dpu_kms_hw_destroy(dpu_kms); 1204 1205 return rc; 1206 } 1207 1208 static int dpu_kms_init(struct drm_device *ddev) 1209 { 1210 struct msm_drm_private *priv = ddev->dev_private; 1211 struct device *dev = ddev->dev; 1212 struct platform_device *pdev = to_platform_device(dev); 1213 struct dpu_kms *dpu_kms; 1214 int irq; 1215 struct dev_pm_opp *opp; 1216 int ret = 0; 1217 unsigned long max_freq = ULONG_MAX; 1218 1219 dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL); 1220 if (!dpu_kms) 1221 return -ENOMEM; 1222 1223 ret = devm_pm_opp_set_clkname(dev, "core"); 1224 if (ret) 1225 return ret; 1226 /* OPP table is optional */ 1227 ret = devm_pm_opp_of_add_table(dev); 1228 if (ret && ret != -ENODEV) { 1229 dev_err(dev, "invalid OPP table in device tree\n"); 1230 return ret; 1231 } 1232 1233 ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks); 1234 if (ret < 0) { 1235 DPU_ERROR("failed to parse clocks, ret=%d\n", ret); 1236 return ret; 1237 } 1238 dpu_kms->num_clocks = ret; 1239 1240 opp = dev_pm_opp_find_freq_floor(dev, &max_freq); 1241 if (!IS_ERR(opp)) 1242 dev_pm_opp_put(opp); 1243 1244 dev_pm_opp_set_rate(dev, max_freq); 1245 1246 ret = msm_kms_init(&dpu_kms->base, &kms_funcs); 1247 if (ret) { 1248 DPU_ERROR("failed to init kms, ret=%d\n", ret); 1249 return ret; 1250 } 1251 dpu_kms->dev = ddev; 1252 dpu_kms->pdev = pdev; 1253 1254 pm_runtime_enable(&pdev->dev); 1255 dpu_kms->rpm_enabled = true; 1256 1257 priv->kms = &dpu_kms->base; 1258 1259 irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0); 1260 if (!irq) { 1261 DPU_ERROR("failed to get irq\n"); 1262 return -EINVAL; 1263 } 1264 dpu_kms->base.irq = irq; 1265 1266 return 0; 1267 } 1268 1269 static int dpu_dev_probe(struct platform_device *pdev) 1270 { 1271 return msm_drv_probe(&pdev->dev, dpu_kms_init); 1272 } 1273 1274 static int dpu_dev_remove(struct platform_device *pdev) 1275 { 1276 component_master_del(&pdev->dev, &msm_drm_ops); 1277 1278 return 0; 1279 } 1280 1281 static int __maybe_unused dpu_runtime_suspend(struct device *dev) 1282 { 1283 int i; 1284 struct platform_device *pdev = to_platform_device(dev); 1285 struct msm_drm_private *priv = platform_get_drvdata(pdev); 1286 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1287 1288 /* Drop the performance state vote */ 1289 dev_pm_opp_set_rate(dev, 0); 1290 clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks); 1291 1292 for (i = 0; i < dpu_kms->num_paths; i++) 1293 icc_set_bw(dpu_kms->path[i], 0, 0); 1294 1295 return 0; 1296 } 1297 1298 static int __maybe_unused dpu_runtime_resume(struct device *dev) 1299 { 1300 int rc = -1; 1301 struct platform_device *pdev = to_platform_device(dev); 1302 struct msm_drm_private *priv = platform_get_drvdata(pdev); 1303 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1304 struct drm_encoder *encoder; 1305 struct drm_device *ddev; 1306 1307 ddev = dpu_kms->dev; 1308 1309 rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks); 1310 if (rc) { 1311 DPU_ERROR("clock enable failed rc:%d\n", rc); 1312 return rc; 1313 } 1314 1315 dpu_vbif_init_memtypes(dpu_kms); 1316 1317 drm_for_each_encoder(encoder, ddev) 1318 dpu_encoder_virt_runtime_resume(encoder); 1319 1320 return rc; 1321 } 1322 1323 static const struct dev_pm_ops dpu_pm_ops = { 1324 SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL) 1325 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1326 pm_runtime_force_resume) 1327 .prepare = msm_pm_prepare, 1328 .complete = msm_pm_complete, 1329 }; 1330 1331 static const struct of_device_id dpu_dt_match[] = { 1332 { .compatible = "qcom,msm8998-dpu", }, 1333 { .compatible = "qcom,qcm2290-dpu", }, 1334 { .compatible = "qcom,sdm845-dpu", }, 1335 { .compatible = "qcom,sc7180-dpu", }, 1336 { .compatible = "qcom,sc7280-dpu", }, 1337 { .compatible = "qcom,sc8180x-dpu", }, 1338 { .compatible = "qcom,sm8150-dpu", }, 1339 { .compatible = "qcom,sm8250-dpu", }, 1340 {} 1341 }; 1342 MODULE_DEVICE_TABLE(of, dpu_dt_match); 1343 1344 static struct platform_driver dpu_driver = { 1345 .probe = dpu_dev_probe, 1346 .remove = dpu_dev_remove, 1347 .shutdown = msm_drv_shutdown, 1348 .driver = { 1349 .name = "msm_dpu", 1350 .of_match_table = dpu_dt_match, 1351 .pm = &dpu_pm_ops, 1352 }, 1353 }; 1354 1355 void __init msm_dpu_register(void) 1356 { 1357 platform_driver_register(&dpu_driver); 1358 } 1359 1360 void __exit msm_dpu_unregister(void) 1361 { 1362 platform_driver_unregister(&dpu_driver); 1363 } 1364