1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 10 #include <linux/debugfs.h> 11 #include <linux/dma-buf.h> 12 #include <linux/of_irq.h> 13 #include <linux/pm_opp.h> 14 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_file.h> 17 18 #include "msm_drv.h" 19 #include "msm_mmu.h" 20 #include "msm_gem.h" 21 22 #include "dpu_kms.h" 23 #include "dpu_core_irq.h" 24 #include "dpu_formats.h" 25 #include "dpu_hw_vbif.h" 26 #include "dpu_vbif.h" 27 #include "dpu_encoder.h" 28 #include "dpu_plane.h" 29 #include "dpu_crtc.h" 30 31 #define CREATE_TRACE_POINTS 32 #include "dpu_trace.h" 33 34 /* 35 * To enable overall DRM driver logging 36 * # echo 0x2 > /sys/module/drm/parameters/debug 37 * 38 * To enable DRM driver h/w logging 39 * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask 40 * 41 * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_) 42 */ 43 #define DPU_DEBUGFS_DIR "msm_dpu" 44 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask" 45 46 static int dpu_kms_hw_init(struct msm_kms *kms); 47 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms); 48 49 #ifdef CONFIG_DEBUG_FS 50 static int _dpu_danger_signal_status(struct seq_file *s, 51 bool danger_status) 52 { 53 struct dpu_kms *kms = (struct dpu_kms *)s->private; 54 struct dpu_danger_safe_status status; 55 int i; 56 57 if (!kms->hw_mdp) { 58 DPU_ERROR("invalid arg(s)\n"); 59 return 0; 60 } 61 62 memset(&status, 0, sizeof(struct dpu_danger_safe_status)); 63 64 pm_runtime_get_sync(&kms->pdev->dev); 65 if (danger_status) { 66 seq_puts(s, "\nDanger signal status:\n"); 67 if (kms->hw_mdp->ops.get_danger_status) 68 kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, 69 &status); 70 } else { 71 seq_puts(s, "\nSafe signal status:\n"); 72 if (kms->hw_mdp->ops.get_danger_status) 73 kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, 74 &status); 75 } 76 pm_runtime_put_sync(&kms->pdev->dev); 77 78 seq_printf(s, "MDP : 0x%x\n", status.mdp); 79 80 for (i = SSPP_VIG0; i < SSPP_MAX; i++) 81 seq_printf(s, "SSPP%d : 0x%x \t", i - SSPP_VIG0, 82 status.sspp[i]); 83 seq_puts(s, "\n"); 84 85 return 0; 86 } 87 88 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \ 89 static int __prefix ## _open(struct inode *inode, struct file *file) \ 90 { \ 91 return single_open(file, __prefix ## _show, inode->i_private); \ 92 } \ 93 static const struct file_operations __prefix ## _fops = { \ 94 .owner = THIS_MODULE, \ 95 .open = __prefix ## _open, \ 96 .release = single_release, \ 97 .read = seq_read, \ 98 .llseek = seq_lseek, \ 99 } 100 101 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v) 102 { 103 return _dpu_danger_signal_status(s, true); 104 } 105 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_debugfs_danger_stats); 106 107 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v) 108 { 109 return _dpu_danger_signal_status(s, false); 110 } 111 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_debugfs_safe_stats); 112 113 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms, 114 struct dentry *parent) 115 { 116 struct dentry *entry = debugfs_create_dir("danger", parent); 117 118 debugfs_create_file("danger_status", 0600, entry, 119 dpu_kms, &dpu_debugfs_danger_stats_fops); 120 debugfs_create_file("safe_status", 0600, entry, 121 dpu_kms, &dpu_debugfs_safe_stats_fops); 122 } 123 124 static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data) 125 { 126 struct dpu_debugfs_regset32 *regset = s->private; 127 struct dpu_kms *dpu_kms = regset->dpu_kms; 128 void __iomem *base; 129 uint32_t i, addr; 130 131 if (!dpu_kms->mmio) 132 return 0; 133 134 base = dpu_kms->mmio + regset->offset; 135 136 /* insert padding spaces, if needed */ 137 if (regset->offset & 0xF) { 138 seq_printf(s, "[%x]", regset->offset & ~0xF); 139 for (i = 0; i < (regset->offset & 0xF); i += 4) 140 seq_puts(s, " "); 141 } 142 143 pm_runtime_get_sync(&dpu_kms->pdev->dev); 144 145 /* main register output */ 146 for (i = 0; i < regset->blk_len; i += 4) { 147 addr = regset->offset + i; 148 if ((addr & 0xF) == 0x0) 149 seq_printf(s, i ? "\n[%x]" : "[%x]", addr); 150 seq_printf(s, " %08x", readl_relaxed(base + i)); 151 } 152 seq_puts(s, "\n"); 153 pm_runtime_put_sync(&dpu_kms->pdev->dev); 154 155 return 0; 156 } 157 158 static int dpu_debugfs_open_regset32(struct inode *inode, 159 struct file *file) 160 { 161 return single_open(file, _dpu_debugfs_show_regset32, inode->i_private); 162 } 163 164 static const struct file_operations dpu_fops_regset32 = { 165 .open = dpu_debugfs_open_regset32, 166 .read = seq_read, 167 .llseek = seq_lseek, 168 .release = single_release, 169 }; 170 171 void dpu_debugfs_setup_regset32(struct dpu_debugfs_regset32 *regset, 172 uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms) 173 { 174 if (regset) { 175 regset->offset = offset; 176 regset->blk_len = length; 177 regset->dpu_kms = dpu_kms; 178 } 179 } 180 181 void dpu_debugfs_create_regset32(const char *name, umode_t mode, 182 void *parent, struct dpu_debugfs_regset32 *regset) 183 { 184 if (!name || !regset || !regset->dpu_kms || !regset->blk_len) 185 return; 186 187 /* make sure offset is a multiple of 4 */ 188 regset->offset = round_down(regset->offset, 4); 189 190 debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32); 191 } 192 193 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor) 194 { 195 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 196 void *p = dpu_hw_util_get_log_mask_ptr(); 197 struct dentry *entry; 198 199 if (!p) 200 return -EINVAL; 201 202 entry = debugfs_create_dir("debug", minor->debugfs_root); 203 204 debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p); 205 206 dpu_debugfs_danger_init(dpu_kms, entry); 207 dpu_debugfs_vbif_init(dpu_kms, entry); 208 dpu_debugfs_core_irq_init(dpu_kms, entry); 209 210 return dpu_core_perf_debugfs_init(dpu_kms, entry); 211 } 212 #endif 213 214 /* Global/shared object state funcs */ 215 216 /* 217 * This is a helper that returns the private state currently in operation. 218 * Note that this would return the "old_state" if called in the atomic check 219 * path, and the "new_state" after the atomic swap has been done. 220 */ 221 struct dpu_global_state * 222 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms) 223 { 224 return to_dpu_global_state(dpu_kms->global_state.state); 225 } 226 227 /* 228 * This acquires the modeset lock set aside for global state, creates 229 * a new duplicated private object state. 230 */ 231 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s) 232 { 233 struct msm_drm_private *priv = s->dev->dev_private; 234 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 235 struct drm_private_state *priv_state; 236 int ret; 237 238 ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx); 239 if (ret) 240 return ERR_PTR(ret); 241 242 priv_state = drm_atomic_get_private_obj_state(s, 243 &dpu_kms->global_state); 244 if (IS_ERR(priv_state)) 245 return ERR_CAST(priv_state); 246 247 return to_dpu_global_state(priv_state); 248 } 249 250 static struct drm_private_state * 251 dpu_kms_global_duplicate_state(struct drm_private_obj *obj) 252 { 253 struct dpu_global_state *state; 254 255 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 256 if (!state) 257 return NULL; 258 259 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 260 261 return &state->base; 262 } 263 264 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj, 265 struct drm_private_state *state) 266 { 267 struct dpu_global_state *dpu_state = to_dpu_global_state(state); 268 269 kfree(dpu_state); 270 } 271 272 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = { 273 .atomic_duplicate_state = dpu_kms_global_duplicate_state, 274 .atomic_destroy_state = dpu_kms_global_destroy_state, 275 }; 276 277 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms) 278 { 279 struct dpu_global_state *state; 280 281 drm_modeset_lock_init(&dpu_kms->global_state_lock); 282 283 state = kzalloc(sizeof(*state), GFP_KERNEL); 284 if (!state) 285 return -ENOMEM; 286 287 drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state, 288 &state->base, 289 &dpu_kms_global_state_funcs); 290 return 0; 291 } 292 293 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 294 { 295 return dpu_crtc_vblank(crtc, true); 296 } 297 298 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) 299 { 300 dpu_crtc_vblank(crtc, false); 301 } 302 303 static void dpu_kms_enable_commit(struct msm_kms *kms) 304 { 305 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 306 pm_runtime_get_sync(&dpu_kms->pdev->dev); 307 } 308 309 static void dpu_kms_disable_commit(struct msm_kms *kms) 310 { 311 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 312 pm_runtime_put_sync(&dpu_kms->pdev->dev); 313 } 314 315 static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc) 316 { 317 struct drm_encoder *encoder; 318 319 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 320 ktime_t vsync_time; 321 322 if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0) 323 return vsync_time; 324 } 325 326 return ktime_get(); 327 } 328 329 static void dpu_kms_prepare_commit(struct msm_kms *kms, 330 struct drm_atomic_state *state) 331 { 332 struct drm_crtc *crtc; 333 struct drm_crtc_state *crtc_state; 334 struct drm_encoder *encoder; 335 int i; 336 337 if (!kms) 338 return; 339 340 /* Call prepare_commit for all affected encoders */ 341 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 342 drm_for_each_encoder_mask(encoder, crtc->dev, 343 crtc_state->encoder_mask) { 344 dpu_encoder_prepare_commit(encoder); 345 } 346 } 347 } 348 349 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask) 350 { 351 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 352 struct drm_crtc *crtc; 353 354 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) { 355 if (!crtc->state->active) 356 continue; 357 358 trace_dpu_kms_commit(DRMID(crtc)); 359 dpu_crtc_commit_kickoff(crtc); 360 } 361 } 362 363 /* 364 * Override the encoder enable since we need to setup the inline rotator and do 365 * some crtc magic before enabling any bridge that might be present. 366 */ 367 void dpu_kms_encoder_enable(struct drm_encoder *encoder) 368 { 369 const struct drm_encoder_helper_funcs *funcs = encoder->helper_private; 370 struct drm_device *dev = encoder->dev; 371 struct drm_crtc *crtc; 372 373 /* Forward this enable call to the commit hook */ 374 if (funcs && funcs->commit) 375 funcs->commit(encoder); 376 377 drm_for_each_crtc(crtc, dev) { 378 if (!(crtc->state->encoder_mask & drm_encoder_mask(encoder))) 379 continue; 380 381 trace_dpu_kms_enc_enable(DRMID(crtc)); 382 } 383 } 384 385 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask) 386 { 387 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 388 struct drm_crtc *crtc; 389 390 DPU_ATRACE_BEGIN("kms_complete_commit"); 391 392 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 393 dpu_crtc_complete_commit(crtc); 394 395 DPU_ATRACE_END("kms_complete_commit"); 396 } 397 398 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms, 399 struct drm_crtc *crtc) 400 { 401 struct drm_encoder *encoder; 402 struct drm_device *dev; 403 int ret; 404 405 if (!kms || !crtc || !crtc->state) { 406 DPU_ERROR("invalid params\n"); 407 return; 408 } 409 410 dev = crtc->dev; 411 412 if (!crtc->state->enable) { 413 DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id); 414 return; 415 } 416 417 if (!crtc->state->active) { 418 DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id); 419 return; 420 } 421 422 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 423 if (encoder->crtc != crtc) 424 continue; 425 /* 426 * Wait for post-flush if necessary to delay before 427 * plane_cleanup. For example, wait for vsync in case of video 428 * mode panels. This may be a no-op for command mode panels. 429 */ 430 trace_dpu_kms_wait_for_commit_done(DRMID(crtc)); 431 ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE); 432 if (ret && ret != -EWOULDBLOCK) { 433 DPU_ERROR("wait for commit done returned %d\n", ret); 434 break; 435 } 436 } 437 } 438 439 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask) 440 { 441 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 442 struct drm_crtc *crtc; 443 444 for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) 445 dpu_kms_wait_for_commit_done(kms, crtc); 446 } 447 448 static int _dpu_kms_initialize_dsi(struct drm_device *dev, 449 struct msm_drm_private *priv, 450 struct dpu_kms *dpu_kms) 451 { 452 struct drm_encoder *encoder = NULL; 453 int i, rc = 0; 454 455 if (!(priv->dsi[0] || priv->dsi[1])) 456 return rc; 457 458 /*TODO: Support two independent DSI connectors */ 459 encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI); 460 if (IS_ERR(encoder)) { 461 DPU_ERROR("encoder init failed for dsi display\n"); 462 return PTR_ERR(encoder); 463 } 464 465 priv->encoders[priv->num_encoders++] = encoder; 466 467 for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { 468 if (!priv->dsi[i]) 469 continue; 470 471 rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder); 472 if (rc) { 473 DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", 474 i, rc); 475 break; 476 } 477 } 478 479 return rc; 480 } 481 482 /** 483 * _dpu_kms_setup_displays - create encoders, bridges and connectors 484 * for underlying displays 485 * @dev: Pointer to drm device structure 486 * @priv: Pointer to private drm device data 487 * @dpu_kms: Pointer to dpu kms structure 488 * Returns: Zero on success 489 */ 490 static int _dpu_kms_setup_displays(struct drm_device *dev, 491 struct msm_drm_private *priv, 492 struct dpu_kms *dpu_kms) 493 { 494 /** 495 * Extend this function to initialize other 496 * types of displays 497 */ 498 499 return _dpu_kms_initialize_dsi(dev, priv, dpu_kms); 500 } 501 502 static void _dpu_kms_drm_obj_destroy(struct dpu_kms *dpu_kms) 503 { 504 struct msm_drm_private *priv; 505 int i; 506 507 priv = dpu_kms->dev->dev_private; 508 509 for (i = 0; i < priv->num_crtcs; i++) 510 priv->crtcs[i]->funcs->destroy(priv->crtcs[i]); 511 priv->num_crtcs = 0; 512 513 for (i = 0; i < priv->num_planes; i++) 514 priv->planes[i]->funcs->destroy(priv->planes[i]); 515 priv->num_planes = 0; 516 517 for (i = 0; i < priv->num_connectors; i++) 518 priv->connectors[i]->funcs->destroy(priv->connectors[i]); 519 priv->num_connectors = 0; 520 521 for (i = 0; i < priv->num_encoders; i++) 522 priv->encoders[i]->funcs->destroy(priv->encoders[i]); 523 priv->num_encoders = 0; 524 } 525 526 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms) 527 { 528 struct drm_device *dev; 529 struct drm_plane *primary_planes[MAX_PLANES], *plane; 530 struct drm_plane *cursor_planes[MAX_PLANES] = { NULL }; 531 struct drm_crtc *crtc; 532 533 struct msm_drm_private *priv; 534 struct dpu_mdss_cfg *catalog; 535 536 int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret; 537 int max_crtc_count; 538 dev = dpu_kms->dev; 539 priv = dev->dev_private; 540 catalog = dpu_kms->catalog; 541 542 /* 543 * Create encoder and query display drivers to create 544 * bridges and connectors 545 */ 546 ret = _dpu_kms_setup_displays(dev, priv, dpu_kms); 547 if (ret) 548 goto fail; 549 550 max_crtc_count = min(catalog->mixer_count, priv->num_encoders); 551 552 /* Create the planes, keeping track of one primary/cursor per crtc */ 553 for (i = 0; i < catalog->sspp_count; i++) { 554 enum drm_plane_type type; 555 556 if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)) 557 && cursor_planes_idx < max_crtc_count) 558 type = DRM_PLANE_TYPE_CURSOR; 559 else if (primary_planes_idx < max_crtc_count) 560 type = DRM_PLANE_TYPE_PRIMARY; 561 else 562 type = DRM_PLANE_TYPE_OVERLAY; 563 564 DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n", 565 type, catalog->sspp[i].features, 566 catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)); 567 568 plane = dpu_plane_init(dev, catalog->sspp[i].id, type, 569 (1UL << max_crtc_count) - 1, 0); 570 if (IS_ERR(plane)) { 571 DPU_ERROR("dpu_plane_init failed\n"); 572 ret = PTR_ERR(plane); 573 goto fail; 574 } 575 priv->planes[priv->num_planes++] = plane; 576 577 if (type == DRM_PLANE_TYPE_CURSOR) 578 cursor_planes[cursor_planes_idx++] = plane; 579 else if (type == DRM_PLANE_TYPE_PRIMARY) 580 primary_planes[primary_planes_idx++] = plane; 581 } 582 583 max_crtc_count = min(max_crtc_count, primary_planes_idx); 584 585 /* Create one CRTC per encoder */ 586 for (i = 0; i < max_crtc_count; i++) { 587 crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]); 588 if (IS_ERR(crtc)) { 589 ret = PTR_ERR(crtc); 590 goto fail; 591 } 592 priv->crtcs[priv->num_crtcs++] = crtc; 593 } 594 595 /* All CRTCs are compatible with all encoders */ 596 for (i = 0; i < priv->num_encoders; i++) 597 priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1; 598 599 return 0; 600 fail: 601 _dpu_kms_drm_obj_destroy(dpu_kms); 602 return ret; 603 } 604 605 static long dpu_kms_round_pixclk(struct msm_kms *kms, unsigned long rate, 606 struct drm_encoder *encoder) 607 { 608 return rate; 609 } 610 611 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms) 612 { 613 int i; 614 615 if (dpu_kms->hw_intr) 616 dpu_hw_intr_destroy(dpu_kms->hw_intr); 617 dpu_kms->hw_intr = NULL; 618 619 /* safe to call these more than once during shutdown */ 620 _dpu_kms_mmu_destroy(dpu_kms); 621 622 if (dpu_kms->catalog) { 623 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 624 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 625 626 if ((vbif_idx < VBIF_MAX) && dpu_kms->hw_vbif[vbif_idx]) 627 dpu_hw_vbif_destroy(dpu_kms->hw_vbif[vbif_idx]); 628 } 629 } 630 631 if (dpu_kms->rm_init) 632 dpu_rm_destroy(&dpu_kms->rm); 633 dpu_kms->rm_init = false; 634 635 if (dpu_kms->catalog) 636 dpu_hw_catalog_deinit(dpu_kms->catalog); 637 dpu_kms->catalog = NULL; 638 639 if (dpu_kms->vbif[VBIF_NRT]) 640 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]); 641 dpu_kms->vbif[VBIF_NRT] = NULL; 642 643 if (dpu_kms->vbif[VBIF_RT]) 644 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]); 645 dpu_kms->vbif[VBIF_RT] = NULL; 646 647 if (dpu_kms->hw_mdp) 648 dpu_hw_mdp_destroy(dpu_kms->hw_mdp); 649 dpu_kms->hw_mdp = NULL; 650 651 if (dpu_kms->mmio) 652 devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio); 653 dpu_kms->mmio = NULL; 654 } 655 656 static void dpu_kms_destroy(struct msm_kms *kms) 657 { 658 struct dpu_kms *dpu_kms; 659 660 if (!kms) { 661 DPU_ERROR("invalid kms\n"); 662 return; 663 } 664 665 dpu_kms = to_dpu_kms(kms); 666 667 _dpu_kms_hw_destroy(dpu_kms); 668 } 669 670 static void _dpu_kms_set_encoder_mode(struct msm_kms *kms, 671 struct drm_encoder *encoder, 672 bool cmd_mode) 673 { 674 struct msm_display_info info; 675 struct msm_drm_private *priv = encoder->dev->dev_private; 676 int i, rc = 0; 677 678 memset(&info, 0, sizeof(info)); 679 680 info.intf_type = encoder->encoder_type; 681 info.capabilities = cmd_mode ? MSM_DISPLAY_CAP_CMD_MODE : 682 MSM_DISPLAY_CAP_VID_MODE; 683 684 /* TODO: No support for DSI swap */ 685 for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { 686 if (priv->dsi[i]) { 687 info.h_tile_instance[info.num_of_h_tiles] = i; 688 info.num_of_h_tiles++; 689 } 690 } 691 692 rc = dpu_encoder_setup(encoder->dev, encoder, &info); 693 if (rc) 694 DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", 695 encoder->base.id, rc); 696 } 697 698 static irqreturn_t dpu_irq(struct msm_kms *kms) 699 { 700 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 701 702 return dpu_core_irq(dpu_kms); 703 } 704 705 static void dpu_irq_preinstall(struct msm_kms *kms) 706 { 707 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 708 709 dpu_core_irq_preinstall(dpu_kms); 710 } 711 712 static void dpu_irq_uninstall(struct msm_kms *kms) 713 { 714 struct dpu_kms *dpu_kms = to_dpu_kms(kms); 715 716 dpu_core_irq_uninstall(dpu_kms); 717 } 718 719 static const struct msm_kms_funcs kms_funcs = { 720 .hw_init = dpu_kms_hw_init, 721 .irq_preinstall = dpu_irq_preinstall, 722 .irq_uninstall = dpu_irq_uninstall, 723 .irq = dpu_irq, 724 .enable_commit = dpu_kms_enable_commit, 725 .disable_commit = dpu_kms_disable_commit, 726 .vsync_time = dpu_kms_vsync_time, 727 .prepare_commit = dpu_kms_prepare_commit, 728 .flush_commit = dpu_kms_flush_commit, 729 .wait_flush = dpu_kms_wait_flush, 730 .complete_commit = dpu_kms_complete_commit, 731 .enable_vblank = dpu_kms_enable_vblank, 732 .disable_vblank = dpu_kms_disable_vblank, 733 .check_modified_format = dpu_format_check_modified_format, 734 .get_format = dpu_get_msm_format, 735 .round_pixclk = dpu_kms_round_pixclk, 736 .destroy = dpu_kms_destroy, 737 .set_encoder_mode = _dpu_kms_set_encoder_mode, 738 #ifdef CONFIG_DEBUG_FS 739 .debugfs_init = dpu_kms_debugfs_init, 740 #endif 741 }; 742 743 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms) 744 { 745 struct msm_mmu *mmu; 746 747 if (!dpu_kms->base.aspace) 748 return; 749 750 mmu = dpu_kms->base.aspace->mmu; 751 752 mmu->funcs->detach(mmu); 753 msm_gem_address_space_put(dpu_kms->base.aspace); 754 755 dpu_kms->base.aspace = NULL; 756 } 757 758 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms) 759 { 760 struct iommu_domain *domain; 761 struct msm_gem_address_space *aspace; 762 struct msm_mmu *mmu; 763 764 domain = iommu_domain_alloc(&platform_bus_type); 765 if (!domain) 766 return 0; 767 768 mmu = msm_iommu_new(dpu_kms->dev->dev, domain); 769 aspace = msm_gem_address_space_create(mmu, "dpu1", 770 0x1000, 0x100000000 - 0x1000); 771 772 if (IS_ERR(aspace)) { 773 mmu->funcs->destroy(mmu); 774 return PTR_ERR(aspace); 775 } 776 777 dpu_kms->base.aspace = aspace; 778 return 0; 779 } 780 781 static struct dss_clk *_dpu_kms_get_clk(struct dpu_kms *dpu_kms, 782 char *clock_name) 783 { 784 struct dss_module_power *mp = &dpu_kms->mp; 785 int i; 786 787 for (i = 0; i < mp->num_clk; i++) { 788 if (!strcmp(mp->clk_config[i].clk_name, clock_name)) 789 return &mp->clk_config[i]; 790 } 791 792 return NULL; 793 } 794 795 u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name) 796 { 797 struct dss_clk *clk; 798 799 clk = _dpu_kms_get_clk(dpu_kms, clock_name); 800 if (!clk) 801 return -EINVAL; 802 803 return clk_get_rate(clk->clk); 804 } 805 806 static int dpu_kms_hw_init(struct msm_kms *kms) 807 { 808 struct dpu_kms *dpu_kms; 809 struct drm_device *dev; 810 int i, rc = -EINVAL; 811 812 if (!kms) { 813 DPU_ERROR("invalid kms\n"); 814 return rc; 815 } 816 817 dpu_kms = to_dpu_kms(kms); 818 dev = dpu_kms->dev; 819 820 rc = dpu_kms_global_obj_init(dpu_kms); 821 if (rc) 822 return rc; 823 824 atomic_set(&dpu_kms->bandwidth_ref, 0); 825 826 dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp", "mdp"); 827 if (IS_ERR(dpu_kms->mmio)) { 828 rc = PTR_ERR(dpu_kms->mmio); 829 DPU_ERROR("mdp register memory map failed: %d\n", rc); 830 dpu_kms->mmio = NULL; 831 goto error; 832 } 833 DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); 834 835 dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif", "vbif"); 836 if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { 837 rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]); 838 DPU_ERROR("vbif register memory map failed: %d\n", rc); 839 dpu_kms->vbif[VBIF_RT] = NULL; 840 goto error; 841 } 842 dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt", "vbif_nrt"); 843 if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { 844 dpu_kms->vbif[VBIF_NRT] = NULL; 845 DPU_DEBUG("VBIF NRT is not defined"); 846 } 847 848 dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma", "regdma"); 849 if (IS_ERR(dpu_kms->reg_dma)) { 850 dpu_kms->reg_dma = NULL; 851 DPU_DEBUG("REG_DMA is not defined"); 852 } 853 854 pm_runtime_get_sync(&dpu_kms->pdev->dev); 855 856 dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0); 857 858 pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev); 859 860 dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev); 861 if (IS_ERR_OR_NULL(dpu_kms->catalog)) { 862 rc = PTR_ERR(dpu_kms->catalog); 863 if (!dpu_kms->catalog) 864 rc = -EINVAL; 865 DPU_ERROR("catalog init failed: %d\n", rc); 866 dpu_kms->catalog = NULL; 867 goto power_error; 868 } 869 870 /* 871 * Now we need to read the HW catalog and initialize resources such as 872 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc 873 */ 874 rc = _dpu_kms_mmu_init(dpu_kms); 875 if (rc) { 876 DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc); 877 goto power_error; 878 } 879 880 rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio); 881 if (rc) { 882 DPU_ERROR("rm init failed: %d\n", rc); 883 goto power_error; 884 } 885 886 dpu_kms->rm_init = true; 887 888 dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio, 889 dpu_kms->catalog); 890 if (IS_ERR(dpu_kms->hw_mdp)) { 891 rc = PTR_ERR(dpu_kms->hw_mdp); 892 DPU_ERROR("failed to get hw_mdp: %d\n", rc); 893 dpu_kms->hw_mdp = NULL; 894 goto power_error; 895 } 896 897 for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { 898 u32 vbif_idx = dpu_kms->catalog->vbif[i].id; 899 900 dpu_kms->hw_vbif[i] = dpu_hw_vbif_init(vbif_idx, 901 dpu_kms->vbif[vbif_idx], dpu_kms->catalog); 902 if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) { 903 rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]); 904 if (!dpu_kms->hw_vbif[vbif_idx]) 905 rc = -EINVAL; 906 DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc); 907 dpu_kms->hw_vbif[vbif_idx] = NULL; 908 goto power_error; 909 } 910 } 911 912 rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog, 913 _dpu_kms_get_clk(dpu_kms, "core")); 914 if (rc) { 915 DPU_ERROR("failed to init perf %d\n", rc); 916 goto perf_err; 917 } 918 919 dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog); 920 if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) { 921 rc = PTR_ERR(dpu_kms->hw_intr); 922 DPU_ERROR("hw_intr init failed: %d\n", rc); 923 dpu_kms->hw_intr = NULL; 924 goto hw_intr_init_err; 925 } 926 927 dev->mode_config.min_width = 0; 928 dev->mode_config.min_height = 0; 929 930 /* 931 * max crtc width is equal to the max mixer width * 2 and max height is 932 * is 4K 933 */ 934 dev->mode_config.max_width = 935 dpu_kms->catalog->caps->max_mixer_width * 2; 936 dev->mode_config.max_height = 4096; 937 938 /* 939 * Support format modifiers for compression etc. 940 */ 941 dev->mode_config.allow_fb_modifiers = true; 942 943 /* 944 * _dpu_kms_drm_obj_init should create the DRM related objects 945 * i.e. CRTCs, planes, encoders, connectors and so forth 946 */ 947 rc = _dpu_kms_drm_obj_init(dpu_kms); 948 if (rc) { 949 DPU_ERROR("modeset init failed: %d\n", rc); 950 goto drm_obj_init_err; 951 } 952 953 dpu_vbif_init_memtypes(dpu_kms); 954 955 pm_runtime_put_sync(&dpu_kms->pdev->dev); 956 957 return 0; 958 959 drm_obj_init_err: 960 dpu_core_perf_destroy(&dpu_kms->perf); 961 hw_intr_init_err: 962 perf_err: 963 power_error: 964 pm_runtime_put_sync(&dpu_kms->pdev->dev); 965 error: 966 _dpu_kms_hw_destroy(dpu_kms); 967 968 return rc; 969 } 970 971 struct msm_kms *dpu_kms_init(struct drm_device *dev) 972 { 973 struct msm_drm_private *priv; 974 struct dpu_kms *dpu_kms; 975 int irq; 976 977 if (!dev) { 978 DPU_ERROR("drm device node invalid\n"); 979 return ERR_PTR(-EINVAL); 980 } 981 982 priv = dev->dev_private; 983 dpu_kms = to_dpu_kms(priv->kms); 984 985 irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0); 986 if (irq < 0) { 987 DPU_ERROR("failed to get irq: %d\n", irq); 988 return ERR_PTR(irq); 989 } 990 dpu_kms->base.irq = irq; 991 992 return &dpu_kms->base; 993 } 994 995 static int dpu_bind(struct device *dev, struct device *master, void *data) 996 { 997 struct drm_device *ddev = dev_get_drvdata(master); 998 struct platform_device *pdev = to_platform_device(dev); 999 struct msm_drm_private *priv = ddev->dev_private; 1000 struct dpu_kms *dpu_kms; 1001 struct dss_module_power *mp; 1002 int ret = 0; 1003 1004 dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL); 1005 if (!dpu_kms) 1006 return -ENOMEM; 1007 1008 dpu_kms->opp_table = dev_pm_opp_set_clkname(dev, "core"); 1009 if (IS_ERR(dpu_kms->opp_table)) 1010 return PTR_ERR(dpu_kms->opp_table); 1011 /* OPP table is optional */ 1012 ret = dev_pm_opp_of_add_table(dev); 1013 if (!ret) { 1014 dpu_kms->has_opp_table = true; 1015 } else if (ret != -ENODEV) { 1016 dev_err(dev, "invalid OPP table in device tree\n"); 1017 dev_pm_opp_put_clkname(dpu_kms->opp_table); 1018 return ret; 1019 } 1020 1021 mp = &dpu_kms->mp; 1022 ret = msm_dss_parse_clock(pdev, mp); 1023 if (ret) { 1024 DPU_ERROR("failed to parse clocks, ret=%d\n", ret); 1025 goto err; 1026 } 1027 1028 platform_set_drvdata(pdev, dpu_kms); 1029 1030 msm_kms_init(&dpu_kms->base, &kms_funcs); 1031 dpu_kms->dev = ddev; 1032 dpu_kms->pdev = pdev; 1033 1034 pm_runtime_enable(&pdev->dev); 1035 dpu_kms->rpm_enabled = true; 1036 1037 priv->kms = &dpu_kms->base; 1038 return ret; 1039 err: 1040 if (dpu_kms->has_opp_table) 1041 dev_pm_opp_of_remove_table(dev); 1042 dev_pm_opp_put_clkname(dpu_kms->opp_table); 1043 return ret; 1044 } 1045 1046 static void dpu_unbind(struct device *dev, struct device *master, void *data) 1047 { 1048 struct platform_device *pdev = to_platform_device(dev); 1049 struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); 1050 struct dss_module_power *mp = &dpu_kms->mp; 1051 1052 msm_dss_put_clk(mp->clk_config, mp->num_clk); 1053 devm_kfree(&pdev->dev, mp->clk_config); 1054 mp->num_clk = 0; 1055 1056 if (dpu_kms->rpm_enabled) 1057 pm_runtime_disable(&pdev->dev); 1058 1059 if (dpu_kms->has_opp_table) 1060 dev_pm_opp_of_remove_table(dev); 1061 dev_pm_opp_put_clkname(dpu_kms->opp_table); 1062 } 1063 1064 static const struct component_ops dpu_ops = { 1065 .bind = dpu_bind, 1066 .unbind = dpu_unbind, 1067 }; 1068 1069 static int dpu_dev_probe(struct platform_device *pdev) 1070 { 1071 return component_add(&pdev->dev, &dpu_ops); 1072 } 1073 1074 static int dpu_dev_remove(struct platform_device *pdev) 1075 { 1076 component_del(&pdev->dev, &dpu_ops); 1077 return 0; 1078 } 1079 1080 static int __maybe_unused dpu_runtime_suspend(struct device *dev) 1081 { 1082 int rc = -1; 1083 struct platform_device *pdev = to_platform_device(dev); 1084 struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); 1085 struct dss_module_power *mp = &dpu_kms->mp; 1086 1087 /* Drop the performance state vote */ 1088 dev_pm_opp_set_rate(dev, 0); 1089 rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, false); 1090 if (rc) 1091 DPU_ERROR("clock disable failed rc:%d\n", rc); 1092 1093 return rc; 1094 } 1095 1096 static int __maybe_unused dpu_runtime_resume(struct device *dev) 1097 { 1098 int rc = -1; 1099 struct platform_device *pdev = to_platform_device(dev); 1100 struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); 1101 struct drm_encoder *encoder; 1102 struct drm_device *ddev; 1103 struct dss_module_power *mp = &dpu_kms->mp; 1104 1105 ddev = dpu_kms->dev; 1106 rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, true); 1107 if (rc) { 1108 DPU_ERROR("clock enable failed rc:%d\n", rc); 1109 return rc; 1110 } 1111 1112 dpu_vbif_init_memtypes(dpu_kms); 1113 1114 drm_for_each_encoder(encoder, ddev) 1115 dpu_encoder_virt_runtime_resume(encoder); 1116 1117 return rc; 1118 } 1119 1120 static const struct dev_pm_ops dpu_pm_ops = { 1121 SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL) 1122 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1123 pm_runtime_force_resume) 1124 }; 1125 1126 static const struct of_device_id dpu_dt_match[] = { 1127 { .compatible = "qcom,sdm845-dpu", }, 1128 { .compatible = "qcom,sc7180-dpu", }, 1129 {} 1130 }; 1131 MODULE_DEVICE_TABLE(of, dpu_dt_match); 1132 1133 static struct platform_driver dpu_driver = { 1134 .probe = dpu_dev_probe, 1135 .remove = dpu_dev_remove, 1136 .driver = { 1137 .name = "msm_dpu", 1138 .of_match_table = dpu_dt_match, 1139 .pm = &dpu_pm_ops, 1140 }, 1141 }; 1142 1143 void __init msm_dpu_register(void) 1144 { 1145 platform_driver_register(&dpu_driver); 1146 } 1147 1148 void __exit msm_dpu_unregister(void) 1149 { 1150 platform_driver_unregister(&dpu_driver); 1151 } 1152