xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c (revision 27f0df03)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 
12 #include <linux/debugfs.h>
13 #include <linux/dma-buf.h>
14 #include <linux/of_irq.h>
15 #include <linux/pm_opp.h>
16 
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_file.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_vblank.h>
21 #include <drm/drm_writeback.h>
22 
23 #include "msm_drv.h"
24 #include "msm_mmu.h"
25 #include "msm_gem.h"
26 #include "disp/msm_disp_snapshot.h"
27 
28 #include "dpu_core_irq.h"
29 #include "dpu_crtc.h"
30 #include "dpu_encoder.h"
31 #include "dpu_formats.h"
32 #include "dpu_hw_vbif.h"
33 #include "dpu_kms.h"
34 #include "dpu_plane.h"
35 #include "dpu_vbif.h"
36 #include "dpu_writeback.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "dpu_trace.h"
40 
41 /*
42  * To enable overall DRM driver logging
43  * # echo 0x2 > /sys/module/drm/parameters/debug
44  *
45  * To enable DRM driver h/w logging
46  * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
47  *
48  * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_)
49  */
50 #define DPU_DEBUGFS_DIR "msm_dpu"
51 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask"
52 
53 static int dpu_kms_hw_init(struct msm_kms *kms);
54 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms);
55 
56 #ifdef CONFIG_DEBUG_FS
57 static int _dpu_danger_signal_status(struct seq_file *s,
58 		bool danger_status)
59 {
60 	struct dpu_kms *kms = (struct dpu_kms *)s->private;
61 	struct dpu_danger_safe_status status;
62 	int i;
63 
64 	if (!kms->hw_mdp) {
65 		DPU_ERROR("invalid arg(s)\n");
66 		return 0;
67 	}
68 
69 	memset(&status, 0, sizeof(struct dpu_danger_safe_status));
70 
71 	pm_runtime_get_sync(&kms->pdev->dev);
72 	if (danger_status) {
73 		seq_puts(s, "\nDanger signal status:\n");
74 		if (kms->hw_mdp->ops.get_danger_status)
75 			kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
76 					&status);
77 	} else {
78 		seq_puts(s, "\nSafe signal status:\n");
79 		if (kms->hw_mdp->ops.get_safe_status)
80 			kms->hw_mdp->ops.get_safe_status(kms->hw_mdp,
81 					&status);
82 	}
83 	pm_runtime_put_sync(&kms->pdev->dev);
84 
85 	seq_printf(s, "MDP     :  0x%x\n", status.mdp);
86 
87 	for (i = SSPP_VIG0; i < SSPP_MAX; i++)
88 		seq_printf(s, "SSPP%d   :  0x%x  \n", i - SSPP_VIG0,
89 				status.sspp[i]);
90 	seq_puts(s, "\n");
91 
92 	return 0;
93 }
94 
95 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v)
96 {
97 	return _dpu_danger_signal_status(s, true);
98 }
99 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats);
100 
101 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v)
102 {
103 	return _dpu_danger_signal_status(s, false);
104 }
105 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats);
106 
107 static ssize_t _dpu_plane_danger_read(struct file *file,
108 			char __user *buff, size_t count, loff_t *ppos)
109 {
110 	struct dpu_kms *kms = file->private_data;
111 	int len;
112 	char buf[40];
113 
114 	len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl);
115 
116 	return simple_read_from_buffer(buff, count, ppos, buf, len);
117 }
118 
119 static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable)
120 {
121 	struct drm_plane *plane;
122 
123 	drm_for_each_plane(plane, kms->dev) {
124 		if (plane->fb && plane->state) {
125 			dpu_plane_danger_signal_ctrl(plane, enable);
126 			DPU_DEBUG("plane:%d img:%dx%d ",
127 				plane->base.id, plane->fb->width,
128 				plane->fb->height);
129 			DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n",
130 				plane->state->src_x >> 16,
131 				plane->state->src_y >> 16,
132 				plane->state->src_w >> 16,
133 				plane->state->src_h >> 16,
134 				plane->state->crtc_x, plane->state->crtc_y,
135 				plane->state->crtc_w, plane->state->crtc_h);
136 		} else {
137 			DPU_DEBUG("Inactive plane:%d\n", plane->base.id);
138 		}
139 	}
140 }
141 
142 static ssize_t _dpu_plane_danger_write(struct file *file,
143 		    const char __user *user_buf, size_t count, loff_t *ppos)
144 {
145 	struct dpu_kms *kms = file->private_data;
146 	int disable_panic;
147 	int ret;
148 
149 	ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic);
150 	if (ret)
151 		return ret;
152 
153 	if (disable_panic) {
154 		/* Disable panic signal for all active pipes */
155 		DPU_DEBUG("Disabling danger:\n");
156 		_dpu_plane_set_danger_state(kms, false);
157 		kms->has_danger_ctrl = false;
158 	} else {
159 		/* Enable panic signal for all active pipes */
160 		DPU_DEBUG("Enabling danger:\n");
161 		kms->has_danger_ctrl = true;
162 		_dpu_plane_set_danger_state(kms, true);
163 	}
164 
165 	return count;
166 }
167 
168 static const struct file_operations dpu_plane_danger_enable = {
169 	.open = simple_open,
170 	.read = _dpu_plane_danger_read,
171 	.write = _dpu_plane_danger_write,
172 };
173 
174 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms,
175 		struct dentry *parent)
176 {
177 	struct dentry *entry = debugfs_create_dir("danger", parent);
178 
179 	debugfs_create_file("danger_status", 0600, entry,
180 			dpu_kms, &dpu_debugfs_danger_stats_fops);
181 	debugfs_create_file("safe_status", 0600, entry,
182 			dpu_kms, &dpu_debugfs_safe_stats_fops);
183 	debugfs_create_file("disable_danger", 0600, entry,
184 			dpu_kms, &dpu_plane_danger_enable);
185 
186 }
187 
188 /*
189  * Companion structure for dpu_debugfs_create_regset32.
190  */
191 struct dpu_debugfs_regset32 {
192 	uint32_t offset;
193 	uint32_t blk_len;
194 	struct dpu_kms *dpu_kms;
195 };
196 
197 static int dpu_regset32_show(struct seq_file *s, void *data)
198 {
199 	struct dpu_debugfs_regset32 *regset = s->private;
200 	struct dpu_kms *dpu_kms = regset->dpu_kms;
201 	void __iomem *base;
202 	uint32_t i, addr;
203 
204 	if (!dpu_kms->mmio)
205 		return 0;
206 
207 	base = dpu_kms->mmio + regset->offset;
208 
209 	/* insert padding spaces, if needed */
210 	if (regset->offset & 0xF) {
211 		seq_printf(s, "[%x]", regset->offset & ~0xF);
212 		for (i = 0; i < (regset->offset & 0xF); i += 4)
213 			seq_puts(s, "         ");
214 	}
215 
216 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
217 
218 	/* main register output */
219 	for (i = 0; i < regset->blk_len; i += 4) {
220 		addr = regset->offset + i;
221 		if ((addr & 0xF) == 0x0)
222 			seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
223 		seq_printf(s, " %08x", readl_relaxed(base + i));
224 	}
225 	seq_puts(s, "\n");
226 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
227 
228 	return 0;
229 }
230 DEFINE_SHOW_ATTRIBUTE(dpu_regset32);
231 
232 void dpu_debugfs_create_regset32(const char *name, umode_t mode,
233 		void *parent,
234 		uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms)
235 {
236 	struct dpu_debugfs_regset32 *regset;
237 
238 	if (WARN_ON(!name || !dpu_kms || !length))
239 		return;
240 
241 	regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL);
242 	if (!regset)
243 		return;
244 
245 	/* make sure offset is a multiple of 4 */
246 	regset->offset = round_down(offset, 4);
247 	regset->blk_len = length;
248 	regset->dpu_kms = dpu_kms;
249 
250 	debugfs_create_file(name, mode, parent, regset, &dpu_regset32_fops);
251 }
252 
253 static void dpu_debugfs_sspp_init(struct dpu_kms *dpu_kms, struct dentry *debugfs_root)
254 {
255 	struct dentry *entry = debugfs_create_dir("sspp", debugfs_root);
256 	int i;
257 
258 	if (IS_ERR(entry))
259 		return;
260 
261 	for (i = SSPP_NONE; i < SSPP_MAX; i++) {
262 		struct dpu_hw_sspp *hw = dpu_rm_get_sspp(&dpu_kms->rm, i);
263 
264 		if (!hw)
265 			continue;
266 
267 		_dpu_hw_sspp_init_debugfs(hw, dpu_kms, entry);
268 	}
269 }
270 
271 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor)
272 {
273 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
274 	void *p = dpu_hw_util_get_log_mask_ptr();
275 	struct dentry *entry;
276 	struct drm_device *dev;
277 	struct msm_drm_private *priv;
278 	int i;
279 
280 	if (!p)
281 		return -EINVAL;
282 
283 	/* Only create a set of debugfs for the primary node, ignore render nodes */
284 	if (minor->type != DRM_MINOR_PRIMARY)
285 		return 0;
286 
287 	dev = dpu_kms->dev;
288 	priv = dev->dev_private;
289 
290 	entry = debugfs_create_dir("debug", minor->debugfs_root);
291 
292 	debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p);
293 
294 	dpu_debugfs_danger_init(dpu_kms, entry);
295 	dpu_debugfs_vbif_init(dpu_kms, entry);
296 	dpu_debugfs_core_irq_init(dpu_kms, entry);
297 	dpu_debugfs_sspp_init(dpu_kms, entry);
298 
299 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
300 		if (priv->dp[i])
301 			msm_dp_debugfs_init(priv->dp[i], minor);
302 	}
303 
304 	return dpu_core_perf_debugfs_init(dpu_kms, entry);
305 }
306 #endif
307 
308 /* Global/shared object state funcs */
309 
310 /*
311  * This is a helper that returns the private state currently in operation.
312  * Note that this would return the "old_state" if called in the atomic check
313  * path, and the "new_state" after the atomic swap has been done.
314  */
315 struct dpu_global_state *
316 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms)
317 {
318 	return to_dpu_global_state(dpu_kms->global_state.state);
319 }
320 
321 /*
322  * This acquires the modeset lock set aside for global state, creates
323  * a new duplicated private object state.
324  */
325 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s)
326 {
327 	struct msm_drm_private *priv = s->dev->dev_private;
328 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
329 	struct drm_private_state *priv_state;
330 	int ret;
331 
332 	ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx);
333 	if (ret)
334 		return ERR_PTR(ret);
335 
336 	priv_state = drm_atomic_get_private_obj_state(s,
337 						&dpu_kms->global_state);
338 	if (IS_ERR(priv_state))
339 		return ERR_CAST(priv_state);
340 
341 	return to_dpu_global_state(priv_state);
342 }
343 
344 static struct drm_private_state *
345 dpu_kms_global_duplicate_state(struct drm_private_obj *obj)
346 {
347 	struct dpu_global_state *state;
348 
349 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
350 	if (!state)
351 		return NULL;
352 
353 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
354 
355 	return &state->base;
356 }
357 
358 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj,
359 				      struct drm_private_state *state)
360 {
361 	struct dpu_global_state *dpu_state = to_dpu_global_state(state);
362 
363 	kfree(dpu_state);
364 }
365 
366 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = {
367 	.atomic_duplicate_state = dpu_kms_global_duplicate_state,
368 	.atomic_destroy_state = dpu_kms_global_destroy_state,
369 };
370 
371 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms)
372 {
373 	struct dpu_global_state *state;
374 
375 	drm_modeset_lock_init(&dpu_kms->global_state_lock);
376 
377 	state = kzalloc(sizeof(*state), GFP_KERNEL);
378 	if (!state)
379 		return -ENOMEM;
380 
381 	drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state,
382 				    &state->base,
383 				    &dpu_kms_global_state_funcs);
384 	return 0;
385 }
386 
387 static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms)
388 {
389 	struct icc_path *path0;
390 	struct icc_path *path1;
391 	struct drm_device *dev = dpu_kms->dev;
392 	struct device *dpu_dev = dev->dev;
393 
394 	path0 = msm_icc_get(dpu_dev, "mdp0-mem");
395 	path1 = msm_icc_get(dpu_dev, "mdp1-mem");
396 
397 	if (IS_ERR_OR_NULL(path0))
398 		return PTR_ERR_OR_ZERO(path0);
399 
400 	dpu_kms->path[0] = path0;
401 	dpu_kms->num_paths = 1;
402 
403 	if (!IS_ERR_OR_NULL(path1)) {
404 		dpu_kms->path[1] = path1;
405 		dpu_kms->num_paths++;
406 	}
407 	return 0;
408 }
409 
410 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
411 {
412 	return dpu_crtc_vblank(crtc, true);
413 }
414 
415 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
416 {
417 	dpu_crtc_vblank(crtc, false);
418 }
419 
420 static void dpu_kms_enable_commit(struct msm_kms *kms)
421 {
422 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
423 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
424 }
425 
426 static void dpu_kms_disable_commit(struct msm_kms *kms)
427 {
428 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
429 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
430 }
431 
432 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask)
433 {
434 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
435 	struct drm_crtc *crtc;
436 
437 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) {
438 		if (!crtc->state->active)
439 			continue;
440 
441 		trace_dpu_kms_commit(DRMID(crtc));
442 		dpu_crtc_commit_kickoff(crtc);
443 	}
444 }
445 
446 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask)
447 {
448 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
449 	struct drm_crtc *crtc;
450 
451 	DPU_ATRACE_BEGIN("kms_complete_commit");
452 
453 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
454 		dpu_crtc_complete_commit(crtc);
455 
456 	DPU_ATRACE_END("kms_complete_commit");
457 }
458 
459 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms,
460 		struct drm_crtc *crtc)
461 {
462 	struct drm_encoder *encoder;
463 	struct drm_device *dev;
464 	int ret;
465 
466 	if (!kms || !crtc || !crtc->state) {
467 		DPU_ERROR("invalid params\n");
468 		return;
469 	}
470 
471 	dev = crtc->dev;
472 
473 	if (!crtc->state->enable) {
474 		DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
475 		return;
476 	}
477 
478 	if (!drm_atomic_crtc_effectively_active(crtc->state)) {
479 		DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id);
480 		return;
481 	}
482 
483 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
484 		if (encoder->crtc != crtc)
485 			continue;
486 		/*
487 		 * Wait for post-flush if necessary to delay before
488 		 * plane_cleanup. For example, wait for vsync in case of video
489 		 * mode panels. This may be a no-op for command mode panels.
490 		 */
491 		trace_dpu_kms_wait_for_commit_done(DRMID(crtc));
492 		ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
493 		if (ret && ret != -EWOULDBLOCK) {
494 			DPU_ERROR("wait for commit done returned %d\n", ret);
495 			break;
496 		}
497 	}
498 }
499 
500 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask)
501 {
502 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
503 	struct drm_crtc *crtc;
504 
505 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
506 		dpu_kms_wait_for_commit_done(kms, crtc);
507 }
508 
509 static int _dpu_kms_initialize_dsi(struct drm_device *dev,
510 				    struct msm_drm_private *priv,
511 				    struct dpu_kms *dpu_kms)
512 {
513 	struct drm_encoder *encoder = NULL;
514 	struct msm_display_info info;
515 	int i, rc = 0;
516 
517 	if (!(priv->dsi[0] || priv->dsi[1]))
518 		return rc;
519 
520 	/*
521 	 * We support following confiurations:
522 	 * - Single DSI host (dsi0 or dsi1)
523 	 * - Two independent DSI hosts
524 	 * - Bonded DSI0 and DSI1 hosts
525 	 *
526 	 * TODO: Support swapping DSI0 and DSI1 in the bonded setup.
527 	 */
528 	for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
529 		int other = (i + 1) % 2;
530 
531 		if (!priv->dsi[i])
532 			continue;
533 
534 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) &&
535 		    !msm_dsi_is_master_dsi(priv->dsi[i]))
536 			continue;
537 
538 		memset(&info, 0, sizeof(info));
539 		info.intf_type = INTF_DSI;
540 
541 		info.h_tile_instance[info.num_of_h_tiles++] = i;
542 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]))
543 			info.h_tile_instance[info.num_of_h_tiles++] = other;
544 
545 		info.is_cmd_mode = msm_dsi_is_cmd_mode(priv->dsi[i]);
546 
547 		info.dsc = msm_dsi_get_dsc_config(priv->dsi[i]);
548 
549 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI, &info);
550 		if (IS_ERR(encoder)) {
551 			DPU_ERROR("encoder init failed for dsi display\n");
552 			return PTR_ERR(encoder);
553 		}
554 
555 		rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
556 		if (rc) {
557 			DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
558 				i, rc);
559 			break;
560 		}
561 
562 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) {
563 			rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder);
564 			if (rc) {
565 				DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
566 					other, rc);
567 				break;
568 			}
569 		}
570 	}
571 
572 	return rc;
573 }
574 
575 static int _dpu_kms_initialize_displayport(struct drm_device *dev,
576 					    struct msm_drm_private *priv,
577 					    struct dpu_kms *dpu_kms)
578 {
579 	struct drm_encoder *encoder = NULL;
580 	struct msm_display_info info;
581 	int rc;
582 	int i;
583 
584 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
585 		if (!priv->dp[i])
586 			continue;
587 
588 		memset(&info, 0, sizeof(info));
589 		info.num_of_h_tiles = 1;
590 		info.h_tile_instance[0] = i;
591 		info.intf_type = INTF_DP;
592 
593 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info);
594 		if (IS_ERR(encoder)) {
595 			DPU_ERROR("encoder init failed for dsi display\n");
596 			return PTR_ERR(encoder);
597 		}
598 
599 		rc = msm_dp_modeset_init(priv->dp[i], dev, encoder);
600 		if (rc) {
601 			DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
602 			drm_encoder_cleanup(encoder);
603 			return rc;
604 		}
605 	}
606 
607 	return 0;
608 }
609 
610 static int _dpu_kms_initialize_hdmi(struct drm_device *dev,
611 				    struct msm_drm_private *priv,
612 				    struct dpu_kms *dpu_kms)
613 {
614 	struct drm_encoder *encoder = NULL;
615 	struct msm_display_info info;
616 	int rc;
617 
618 	if (!priv->hdmi)
619 		return 0;
620 
621 	memset(&info, 0, sizeof(info));
622 	info.num_of_h_tiles = 1;
623 	info.h_tile_instance[0] = 0;
624 	info.intf_type = INTF_HDMI;
625 
626 	encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info);
627 	if (IS_ERR(encoder)) {
628 		DPU_ERROR("encoder init failed for HDMI display\n");
629 		return PTR_ERR(encoder);
630 	}
631 
632 	rc = msm_hdmi_modeset_init(priv->hdmi, dev, encoder);
633 	if (rc) {
634 		DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
635 		drm_encoder_cleanup(encoder);
636 		return rc;
637 	}
638 
639 	return 0;
640 }
641 
642 static int _dpu_kms_initialize_writeback(struct drm_device *dev,
643 		struct msm_drm_private *priv, struct dpu_kms *dpu_kms,
644 		const u32 *wb_formats, int n_formats)
645 {
646 	struct drm_encoder *encoder = NULL;
647 	struct msm_display_info info;
648 	int rc;
649 
650 	memset(&info, 0, sizeof(info));
651 
652 	info.num_of_h_tiles = 1;
653 	/* use only WB idx 2 instance for DPU */
654 	info.h_tile_instance[0] = WB_2;
655 	info.intf_type = INTF_WB;
656 
657 	encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL, &info);
658 	if (IS_ERR(encoder)) {
659 		DPU_ERROR("encoder init failed for dsi display\n");
660 		return PTR_ERR(encoder);
661 	}
662 
663 	rc = dpu_writeback_init(dev, encoder, wb_formats,
664 			n_formats);
665 	if (rc) {
666 		DPU_ERROR("dpu_writeback_init, rc = %d\n", rc);
667 		drm_encoder_cleanup(encoder);
668 		return rc;
669 	}
670 
671 	return 0;
672 }
673 
674 /**
675  * _dpu_kms_setup_displays - create encoders, bridges and connectors
676  *                           for underlying displays
677  * @dev:        Pointer to drm device structure
678  * @priv:       Pointer to private drm device data
679  * @dpu_kms:    Pointer to dpu kms structure
680  * Returns:     Zero on success
681  */
682 static int _dpu_kms_setup_displays(struct drm_device *dev,
683 				    struct msm_drm_private *priv,
684 				    struct dpu_kms *dpu_kms)
685 {
686 	int rc = 0;
687 	int i;
688 
689 	rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms);
690 	if (rc) {
691 		DPU_ERROR("initialize_dsi failed, rc = %d\n", rc);
692 		return rc;
693 	}
694 
695 	rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms);
696 	if (rc) {
697 		DPU_ERROR("initialize_DP failed, rc = %d\n", rc);
698 		return rc;
699 	}
700 
701 	rc = _dpu_kms_initialize_hdmi(dev, priv, dpu_kms);
702 	if (rc) {
703 		DPU_ERROR("initialize HDMI failed, rc = %d\n", rc);
704 		return rc;
705 	}
706 
707 	/* Since WB isn't a driver check the catalog before initializing */
708 	if (dpu_kms->catalog->wb_count) {
709 		for (i = 0; i < dpu_kms->catalog->wb_count; i++) {
710 			if (dpu_kms->catalog->wb[i].id == WB_2) {
711 				rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms,
712 						dpu_kms->catalog->wb[i].format_list,
713 						dpu_kms->catalog->wb[i].num_formats);
714 				if (rc) {
715 					DPU_ERROR("initialize_WB failed, rc = %d\n", rc);
716 					return rc;
717 				}
718 			}
719 		}
720 	}
721 
722 	return rc;
723 }
724 
725 #define MAX_PLANES 20
726 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms)
727 {
728 	struct drm_device *dev;
729 	struct drm_plane *primary_planes[MAX_PLANES], *plane;
730 	struct drm_plane *cursor_planes[MAX_PLANES] = { NULL };
731 	struct drm_crtc *crtc;
732 	struct drm_encoder *encoder;
733 	unsigned int num_encoders;
734 
735 	struct msm_drm_private *priv;
736 	const struct dpu_mdss_cfg *catalog;
737 
738 	int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret;
739 	int max_crtc_count;
740 	dev = dpu_kms->dev;
741 	priv = dev->dev_private;
742 	catalog = dpu_kms->catalog;
743 
744 	/*
745 	 * Create encoder and query display drivers to create
746 	 * bridges and connectors
747 	 */
748 	ret = _dpu_kms_setup_displays(dev, priv, dpu_kms);
749 	if (ret)
750 		return ret;
751 
752 	num_encoders = 0;
753 	drm_for_each_encoder(encoder, dev)
754 		num_encoders++;
755 
756 	max_crtc_count = min(catalog->mixer_count, num_encoders);
757 
758 	/* Create the planes, keeping track of one primary/cursor per crtc */
759 	for (i = 0; i < catalog->sspp_count; i++) {
760 		enum drm_plane_type type;
761 
762 		if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR))
763 			&& cursor_planes_idx < max_crtc_count)
764 			type = DRM_PLANE_TYPE_CURSOR;
765 		else if (primary_planes_idx < max_crtc_count)
766 			type = DRM_PLANE_TYPE_PRIMARY;
767 		else
768 			type = DRM_PLANE_TYPE_OVERLAY;
769 
770 		DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n",
771 			  type, catalog->sspp[i].features,
772 			  catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR));
773 
774 		plane = dpu_plane_init(dev, catalog->sspp[i].id, type,
775 				       (1UL << max_crtc_count) - 1);
776 		if (IS_ERR(plane)) {
777 			DPU_ERROR("dpu_plane_init failed\n");
778 			ret = PTR_ERR(plane);
779 			return ret;
780 		}
781 
782 		if (type == DRM_PLANE_TYPE_CURSOR)
783 			cursor_planes[cursor_planes_idx++] = plane;
784 		else if (type == DRM_PLANE_TYPE_PRIMARY)
785 			primary_planes[primary_planes_idx++] = plane;
786 	}
787 
788 	max_crtc_count = min(max_crtc_count, primary_planes_idx);
789 
790 	/* Create one CRTC per encoder */
791 	for (i = 0; i < max_crtc_count; i++) {
792 		crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]);
793 		if (IS_ERR(crtc)) {
794 			ret = PTR_ERR(crtc);
795 			return ret;
796 		}
797 		priv->crtcs[priv->num_crtcs++] = crtc;
798 	}
799 
800 	/* All CRTCs are compatible with all encoders */
801 	drm_for_each_encoder(encoder, dev)
802 		encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
803 
804 	return 0;
805 }
806 
807 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms)
808 {
809 	int i;
810 
811 	if (dpu_kms->hw_intr)
812 		dpu_hw_intr_destroy(dpu_kms->hw_intr);
813 	dpu_kms->hw_intr = NULL;
814 
815 	/* safe to call these more than once during shutdown */
816 	_dpu_kms_mmu_destroy(dpu_kms);
817 
818 	if (dpu_kms->catalog) {
819 		for (i = 0; i < ARRAY_SIZE(dpu_kms->hw_vbif); i++) {
820 			if (dpu_kms->hw_vbif[i]) {
821 				dpu_hw_vbif_destroy(dpu_kms->hw_vbif[i]);
822 				dpu_kms->hw_vbif[i] = NULL;
823 			}
824 		}
825 	}
826 
827 	if (dpu_kms->rm_init)
828 		dpu_rm_destroy(&dpu_kms->rm);
829 	dpu_kms->rm_init = false;
830 
831 	dpu_kms->catalog = NULL;
832 
833 	if (dpu_kms->vbif[VBIF_NRT])
834 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]);
835 	dpu_kms->vbif[VBIF_NRT] = NULL;
836 
837 	if (dpu_kms->vbif[VBIF_RT])
838 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]);
839 	dpu_kms->vbif[VBIF_RT] = NULL;
840 
841 	if (dpu_kms->hw_mdp)
842 		dpu_hw_mdp_destroy(dpu_kms->hw_mdp);
843 	dpu_kms->hw_mdp = NULL;
844 
845 	if (dpu_kms->mmio)
846 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio);
847 	dpu_kms->mmio = NULL;
848 }
849 
850 static void dpu_kms_destroy(struct msm_kms *kms)
851 {
852 	struct dpu_kms *dpu_kms;
853 
854 	if (!kms) {
855 		DPU_ERROR("invalid kms\n");
856 		return;
857 	}
858 
859 	dpu_kms = to_dpu_kms(kms);
860 
861 	_dpu_kms_hw_destroy(dpu_kms);
862 
863 	msm_kms_destroy(&dpu_kms->base);
864 
865 	if (dpu_kms->rpm_enabled)
866 		pm_runtime_disable(&dpu_kms->pdev->dev);
867 }
868 
869 static int dpu_irq_postinstall(struct msm_kms *kms)
870 {
871 	struct msm_drm_private *priv;
872 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
873 	int i;
874 
875 	if (!dpu_kms || !dpu_kms->dev)
876 		return -EINVAL;
877 
878 	priv = dpu_kms->dev->dev_private;
879 	if (!priv)
880 		return -EINVAL;
881 
882 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++)
883 		msm_dp_irq_postinstall(priv->dp[i]);
884 
885 	return 0;
886 }
887 
888 static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms)
889 {
890 	int i;
891 	struct dpu_kms *dpu_kms;
892 	const struct dpu_mdss_cfg *cat;
893 
894 	dpu_kms = to_dpu_kms(kms);
895 
896 	cat = dpu_kms->catalog;
897 
898 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
899 
900 	/* dump CTL sub-blocks HW regs info */
901 	for (i = 0; i < cat->ctl_count; i++)
902 		msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len,
903 				dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i);
904 
905 	/* dump DSPP sub-blocks HW regs info */
906 	for (i = 0; i < cat->dspp_count; i++)
907 		msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len,
908 				dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i);
909 
910 	/* dump INTF sub-blocks HW regs info */
911 	for (i = 0; i < cat->intf_count; i++)
912 		msm_disp_snapshot_add_block(disp_state, cat->intf[i].len,
913 				dpu_kms->mmio + cat->intf[i].base, "intf_%d", i);
914 
915 	/* dump PP sub-blocks HW regs info */
916 	for (i = 0; i < cat->pingpong_count; i++)
917 		msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len,
918 				dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i);
919 
920 	/* dump SSPP sub-blocks HW regs info */
921 	for (i = 0; i < cat->sspp_count; i++)
922 		msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len,
923 				dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i);
924 
925 	/* dump LM sub-blocks HW regs info */
926 	for (i = 0; i < cat->mixer_count; i++)
927 		msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len,
928 				dpu_kms->mmio + cat->mixer[i].base, "lm_%d", i);
929 
930 	/* dump WB sub-blocks HW regs info */
931 	for (i = 0; i < cat->wb_count; i++)
932 		msm_disp_snapshot_add_block(disp_state, cat->wb[i].len,
933 				dpu_kms->mmio + cat->wb[i].base, "wb_%d", i);
934 
935 	if (cat->mdp[0].features & BIT(DPU_MDP_PERIPH_0_REMOVED)) {
936 		msm_disp_snapshot_add_block(disp_state, MDP_PERIPH_TOP0,
937 				dpu_kms->mmio + cat->mdp[0].base, "top");
938 		msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len - MDP_PERIPH_TOP0_END,
939 				dpu_kms->mmio + cat->mdp[0].base + MDP_PERIPH_TOP0_END, "top_2");
940 	} else {
941 		msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len,
942 				dpu_kms->mmio + cat->mdp[0].base, "top");
943 	}
944 
945 	/* dump DSC sub-blocks HW regs info */
946 	for (i = 0; i < cat->dsc_count; i++)
947 		msm_disp_snapshot_add_block(disp_state, cat->dsc[i].len,
948 				dpu_kms->mmio + cat->dsc[i].base, "dsc_%d", i);
949 
950 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
951 }
952 
953 static const struct msm_kms_funcs kms_funcs = {
954 	.hw_init         = dpu_kms_hw_init,
955 	.irq_preinstall  = dpu_core_irq_preinstall,
956 	.irq_postinstall = dpu_irq_postinstall,
957 	.irq_uninstall   = dpu_core_irq_uninstall,
958 	.irq             = dpu_core_irq,
959 	.enable_commit   = dpu_kms_enable_commit,
960 	.disable_commit  = dpu_kms_disable_commit,
961 	.flush_commit    = dpu_kms_flush_commit,
962 	.wait_flush      = dpu_kms_wait_flush,
963 	.complete_commit = dpu_kms_complete_commit,
964 	.enable_vblank   = dpu_kms_enable_vblank,
965 	.disable_vblank  = dpu_kms_disable_vblank,
966 	.check_modified_format = dpu_format_check_modified_format,
967 	.get_format      = dpu_get_msm_format,
968 	.destroy         = dpu_kms_destroy,
969 	.snapshot        = dpu_kms_mdp_snapshot,
970 #ifdef CONFIG_DEBUG_FS
971 	.debugfs_init    = dpu_kms_debugfs_init,
972 #endif
973 };
974 
975 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms)
976 {
977 	struct msm_mmu *mmu;
978 
979 	if (!dpu_kms->base.aspace)
980 		return;
981 
982 	mmu = dpu_kms->base.aspace->mmu;
983 
984 	mmu->funcs->detach(mmu);
985 	msm_gem_address_space_put(dpu_kms->base.aspace);
986 
987 	dpu_kms->base.aspace = NULL;
988 }
989 
990 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms)
991 {
992 	struct msm_gem_address_space *aspace;
993 
994 	aspace = msm_kms_init_aspace(dpu_kms->dev);
995 	if (IS_ERR(aspace))
996 		return PTR_ERR(aspace);
997 
998 	dpu_kms->base.aspace = aspace;
999 
1000 	return 0;
1001 }
1002 
1003 unsigned long dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name)
1004 {
1005 	struct clk *clk;
1006 
1007 	clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name);
1008 	if (!clk)
1009 		return 0;
1010 
1011 	return clk_get_rate(clk);
1012 }
1013 
1014 static int dpu_kms_hw_init(struct msm_kms *kms)
1015 {
1016 	struct dpu_kms *dpu_kms;
1017 	struct drm_device *dev;
1018 	int i, rc = -EINVAL;
1019 	u32 core_rev;
1020 
1021 	if (!kms) {
1022 		DPU_ERROR("invalid kms\n");
1023 		return rc;
1024 	}
1025 
1026 	dpu_kms = to_dpu_kms(kms);
1027 	dev = dpu_kms->dev;
1028 
1029 	dev->mode_config.cursor_width = 512;
1030 	dev->mode_config.cursor_height = 512;
1031 
1032 	rc = dpu_kms_global_obj_init(dpu_kms);
1033 	if (rc)
1034 		return rc;
1035 
1036 	atomic_set(&dpu_kms->bandwidth_ref, 0);
1037 
1038 	dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp");
1039 	if (IS_ERR(dpu_kms->mmio)) {
1040 		rc = PTR_ERR(dpu_kms->mmio);
1041 		DPU_ERROR("mdp register memory map failed: %d\n", rc);
1042 		dpu_kms->mmio = NULL;
1043 		goto error;
1044 	}
1045 	DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio);
1046 
1047 	dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif");
1048 	if (IS_ERR(dpu_kms->vbif[VBIF_RT])) {
1049 		rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]);
1050 		DPU_ERROR("vbif register memory map failed: %d\n", rc);
1051 		dpu_kms->vbif[VBIF_RT] = NULL;
1052 		goto error;
1053 	}
1054 	dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt");
1055 	if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) {
1056 		dpu_kms->vbif[VBIF_NRT] = NULL;
1057 		DPU_DEBUG("VBIF NRT is not defined");
1058 	}
1059 
1060 	dpu_kms_parse_data_bus_icc_path(dpu_kms);
1061 
1062 	rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev);
1063 	if (rc < 0)
1064 		goto error;
1065 
1066 	core_rev = readl_relaxed(dpu_kms->mmio + 0x0);
1067 
1068 	pr_info("dpu hardware revision:0x%x\n", core_rev);
1069 
1070 	dpu_kms->catalog = of_device_get_match_data(dev->dev);
1071 	if (!dpu_kms->catalog) {
1072 		DPU_ERROR("device config not known!\n");
1073 		rc = -EINVAL;
1074 		goto power_error;
1075 	}
1076 
1077 	/*
1078 	 * Now we need to read the HW catalog and initialize resources such as
1079 	 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc
1080 	 */
1081 	rc = _dpu_kms_mmu_init(dpu_kms);
1082 	if (rc) {
1083 		DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc);
1084 		goto power_error;
1085 	}
1086 
1087 	rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio);
1088 	if (rc) {
1089 		DPU_ERROR("rm init failed: %d\n", rc);
1090 		goto power_error;
1091 	}
1092 
1093 	dpu_kms->rm_init = true;
1094 
1095 	dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio,
1096 					     dpu_kms->catalog);
1097 	if (IS_ERR(dpu_kms->hw_mdp)) {
1098 		rc = PTR_ERR(dpu_kms->hw_mdp);
1099 		DPU_ERROR("failed to get hw_mdp: %d\n", rc);
1100 		dpu_kms->hw_mdp = NULL;
1101 		goto power_error;
1102 	}
1103 
1104 	for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
1105 		struct dpu_hw_vbif *hw;
1106 		const struct dpu_vbif_cfg *vbif = &dpu_kms->catalog->vbif[i];
1107 
1108 		hw = dpu_hw_vbif_init(vbif, dpu_kms->vbif[vbif->id]);
1109 		if (IS_ERR(hw)) {
1110 			rc = PTR_ERR(hw);
1111 			DPU_ERROR("failed to init vbif %d: %d\n", vbif->id, rc);
1112 			goto power_error;
1113 		}
1114 
1115 		dpu_kms->hw_vbif[vbif->id] = hw;
1116 	}
1117 
1118 	rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog,
1119 			msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, "core"));
1120 	if (rc) {
1121 		DPU_ERROR("failed to init perf %d\n", rc);
1122 		goto perf_err;
1123 	}
1124 
1125 	dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog);
1126 	if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) {
1127 		rc = PTR_ERR(dpu_kms->hw_intr);
1128 		DPU_ERROR("hw_intr init failed: %d\n", rc);
1129 		dpu_kms->hw_intr = NULL;
1130 		goto hw_intr_init_err;
1131 	}
1132 
1133 	dev->mode_config.min_width = 0;
1134 	dev->mode_config.min_height = 0;
1135 
1136 	/*
1137 	 * max crtc width is equal to the max mixer width * 2 and max height is
1138 	 * is 4K
1139 	 */
1140 	dev->mode_config.max_width =
1141 			dpu_kms->catalog->caps->max_mixer_width * 2;
1142 	dev->mode_config.max_height = 4096;
1143 
1144 	dev->max_vblank_count = 0xffffffff;
1145 	/* Disable vblank irqs aggressively for power-saving */
1146 	dev->vblank_disable_immediate = true;
1147 
1148 	/*
1149 	 * _dpu_kms_drm_obj_init should create the DRM related objects
1150 	 * i.e. CRTCs, planes, encoders, connectors and so forth
1151 	 */
1152 	rc = _dpu_kms_drm_obj_init(dpu_kms);
1153 	if (rc) {
1154 		DPU_ERROR("modeset init failed: %d\n", rc);
1155 		goto drm_obj_init_err;
1156 	}
1157 
1158 	dpu_vbif_init_memtypes(dpu_kms);
1159 
1160 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1161 
1162 	return 0;
1163 
1164 drm_obj_init_err:
1165 	dpu_core_perf_destroy(&dpu_kms->perf);
1166 hw_intr_init_err:
1167 perf_err:
1168 power_error:
1169 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1170 error:
1171 	_dpu_kms_hw_destroy(dpu_kms);
1172 
1173 	return rc;
1174 }
1175 
1176 static int dpu_kms_init(struct drm_device *ddev)
1177 {
1178 	struct msm_drm_private *priv = ddev->dev_private;
1179 	struct device *dev = ddev->dev;
1180 	struct platform_device *pdev = to_platform_device(dev);
1181 	struct dpu_kms *dpu_kms;
1182 	int irq;
1183 	struct dev_pm_opp *opp;
1184 	int ret = 0;
1185 	unsigned long max_freq = ULONG_MAX;
1186 
1187 	dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL);
1188 	if (!dpu_kms)
1189 		return -ENOMEM;
1190 
1191 	ret = devm_pm_opp_set_clkname(dev, "core");
1192 	if (ret)
1193 		return ret;
1194 	/* OPP table is optional */
1195 	ret = devm_pm_opp_of_add_table(dev);
1196 	if (ret && ret != -ENODEV) {
1197 		dev_err(dev, "invalid OPP table in device tree\n");
1198 		return ret;
1199 	}
1200 
1201 	ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks);
1202 	if (ret < 0) {
1203 		DPU_ERROR("failed to parse clocks, ret=%d\n", ret);
1204 		return ret;
1205 	}
1206 	dpu_kms->num_clocks = ret;
1207 
1208 	opp = dev_pm_opp_find_freq_floor(dev, &max_freq);
1209 	if (!IS_ERR(opp))
1210 		dev_pm_opp_put(opp);
1211 
1212 	dev_pm_opp_set_rate(dev, max_freq);
1213 
1214 	ret = msm_kms_init(&dpu_kms->base, &kms_funcs);
1215 	if (ret) {
1216 		DPU_ERROR("failed to init kms, ret=%d\n", ret);
1217 		return ret;
1218 	}
1219 	dpu_kms->dev = ddev;
1220 	dpu_kms->pdev = pdev;
1221 
1222 	pm_runtime_enable(&pdev->dev);
1223 	dpu_kms->rpm_enabled = true;
1224 
1225 	priv->kms = &dpu_kms->base;
1226 
1227 	irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0);
1228 	if (!irq) {
1229 		DPU_ERROR("failed to get irq\n");
1230 		return -EINVAL;
1231 	}
1232 	dpu_kms->base.irq = irq;
1233 
1234 	return 0;
1235 }
1236 
1237 static int dpu_dev_probe(struct platform_device *pdev)
1238 {
1239 	return msm_drv_probe(&pdev->dev, dpu_kms_init);
1240 }
1241 
1242 static int dpu_dev_remove(struct platform_device *pdev)
1243 {
1244 	component_master_del(&pdev->dev, &msm_drm_ops);
1245 
1246 	return 0;
1247 }
1248 
1249 static int __maybe_unused dpu_runtime_suspend(struct device *dev)
1250 {
1251 	int i;
1252 	struct platform_device *pdev = to_platform_device(dev);
1253 	struct msm_drm_private *priv = platform_get_drvdata(pdev);
1254 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1255 
1256 	/* Drop the performance state vote */
1257 	dev_pm_opp_set_rate(dev, 0);
1258 	clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks);
1259 
1260 	for (i = 0; i < dpu_kms->num_paths; i++)
1261 		icc_set_bw(dpu_kms->path[i], 0, 0);
1262 
1263 	return 0;
1264 }
1265 
1266 static int __maybe_unused dpu_runtime_resume(struct device *dev)
1267 {
1268 	int rc = -1;
1269 	struct platform_device *pdev = to_platform_device(dev);
1270 	struct msm_drm_private *priv = platform_get_drvdata(pdev);
1271 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1272 	struct drm_encoder *encoder;
1273 	struct drm_device *ddev;
1274 
1275 	ddev = dpu_kms->dev;
1276 
1277 	rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks);
1278 	if (rc) {
1279 		DPU_ERROR("clock enable failed rc:%d\n", rc);
1280 		return rc;
1281 	}
1282 
1283 	dpu_vbif_init_memtypes(dpu_kms);
1284 
1285 	drm_for_each_encoder(encoder, ddev)
1286 		dpu_encoder_virt_runtime_resume(encoder);
1287 
1288 	return rc;
1289 }
1290 
1291 static const struct dev_pm_ops dpu_pm_ops = {
1292 	SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL)
1293 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1294 				pm_runtime_force_resume)
1295 	.prepare = msm_pm_prepare,
1296 	.complete = msm_pm_complete,
1297 };
1298 
1299 static const struct of_device_id dpu_dt_match[] = {
1300 	{ .compatible = "qcom,msm8998-dpu", .data = &dpu_msm8998_cfg, },
1301 	{ .compatible = "qcom,qcm2290-dpu", .data = &dpu_qcm2290_cfg, },
1302 	{ .compatible = "qcom,sdm845-dpu", .data = &dpu_sdm845_cfg, },
1303 	{ .compatible = "qcom,sc7180-dpu", .data = &dpu_sc7180_cfg, },
1304 	{ .compatible = "qcom,sc7280-dpu", .data = &dpu_sc7280_cfg, },
1305 	{ .compatible = "qcom,sc8180x-dpu", .data = &dpu_sc8180x_cfg, },
1306 	{ .compatible = "qcom,sc8280xp-dpu", .data = &dpu_sc8280xp_cfg, },
1307 	{ .compatible = "qcom,sm6115-dpu", .data = &dpu_sm6115_cfg, },
1308 	{ .compatible = "qcom,sm6350-dpu", .data = &dpu_sm6350_cfg, },
1309 	{ .compatible = "qcom,sm6375-dpu", .data = &dpu_sm6375_cfg, },
1310 	{ .compatible = "qcom,sm8150-dpu", .data = &dpu_sm8150_cfg, },
1311 	{ .compatible = "qcom,sm8250-dpu", .data = &dpu_sm8250_cfg, },
1312 	{ .compatible = "qcom,sm8350-dpu", .data = &dpu_sm8350_cfg, },
1313 	{ .compatible = "qcom,sm8450-dpu", .data = &dpu_sm8450_cfg, },
1314 	{ .compatible = "qcom,sm8550-dpu", .data = &dpu_sm8550_cfg, },
1315 	{}
1316 };
1317 MODULE_DEVICE_TABLE(of, dpu_dt_match);
1318 
1319 static struct platform_driver dpu_driver = {
1320 	.probe = dpu_dev_probe,
1321 	.remove = dpu_dev_remove,
1322 	.shutdown = msm_drv_shutdown,
1323 	.driver = {
1324 		.name = "msm_dpu",
1325 		.of_match_table = dpu_dt_match,
1326 		.pm = &dpu_pm_ops,
1327 	},
1328 };
1329 
1330 void __init msm_dpu_register(void)
1331 {
1332 	platform_driver_register(&dpu_driver);
1333 }
1334 
1335 void __exit msm_dpu_unregister(void)
1336 {
1337 	platform_driver_unregister(&dpu_driver);
1338 }
1339