xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c (revision 1fd02f66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 
10 #include <linux/debugfs.h>
11 #include <linux/dma-buf.h>
12 #include <linux/of_irq.h>
13 #include <linux/pm_opp.h>
14 
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_file.h>
17 #include <drm/drm_vblank.h>
18 
19 #include "msm_drv.h"
20 #include "msm_mmu.h"
21 #include "msm_gem.h"
22 #include "disp/msm_disp_snapshot.h"
23 
24 #include "dpu_core_irq.h"
25 #include "dpu_crtc.h"
26 #include "dpu_encoder.h"
27 #include "dpu_formats.h"
28 #include "dpu_hw_vbif.h"
29 #include "dpu_kms.h"
30 #include "dpu_plane.h"
31 #include "dpu_vbif.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include "dpu_trace.h"
35 
36 /*
37  * To enable overall DRM driver logging
38  * # echo 0x2 > /sys/module/drm/parameters/debug
39  *
40  * To enable DRM driver h/w logging
41  * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
42  *
43  * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_)
44  */
45 #define DPU_DEBUGFS_DIR "msm_dpu"
46 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask"
47 
48 #define MIN_IB_BW	400000000ULL /* Min ib vote 400MB */
49 
50 static int dpu_kms_hw_init(struct msm_kms *kms);
51 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms);
52 
53 #ifdef CONFIG_DEBUG_FS
54 static int _dpu_danger_signal_status(struct seq_file *s,
55 		bool danger_status)
56 {
57 	struct dpu_kms *kms = (struct dpu_kms *)s->private;
58 	struct dpu_danger_safe_status status;
59 	int i;
60 
61 	if (!kms->hw_mdp) {
62 		DPU_ERROR("invalid arg(s)\n");
63 		return 0;
64 	}
65 
66 	memset(&status, 0, sizeof(struct dpu_danger_safe_status));
67 
68 	pm_runtime_get_sync(&kms->pdev->dev);
69 	if (danger_status) {
70 		seq_puts(s, "\nDanger signal status:\n");
71 		if (kms->hw_mdp->ops.get_danger_status)
72 			kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
73 					&status);
74 	} else {
75 		seq_puts(s, "\nSafe signal status:\n");
76 		if (kms->hw_mdp->ops.get_safe_status)
77 			kms->hw_mdp->ops.get_safe_status(kms->hw_mdp,
78 					&status);
79 	}
80 	pm_runtime_put_sync(&kms->pdev->dev);
81 
82 	seq_printf(s, "MDP     :  0x%x\n", status.mdp);
83 
84 	for (i = SSPP_VIG0; i < SSPP_MAX; i++)
85 		seq_printf(s, "SSPP%d   :  0x%x  \n", i - SSPP_VIG0,
86 				status.sspp[i]);
87 	seq_puts(s, "\n");
88 
89 	return 0;
90 }
91 
92 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v)
93 {
94 	return _dpu_danger_signal_status(s, true);
95 }
96 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats);
97 
98 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v)
99 {
100 	return _dpu_danger_signal_status(s, false);
101 }
102 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats);
103 
104 static ssize_t _dpu_plane_danger_read(struct file *file,
105 			char __user *buff, size_t count, loff_t *ppos)
106 {
107 	struct dpu_kms *kms = file->private_data;
108 	int len;
109 	char buf[40];
110 
111 	len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl);
112 
113 	return simple_read_from_buffer(buff, count, ppos, buf, len);
114 }
115 
116 static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable)
117 {
118 	struct drm_plane *plane;
119 
120 	drm_for_each_plane(plane, kms->dev) {
121 		if (plane->fb && plane->state) {
122 			dpu_plane_danger_signal_ctrl(plane, enable);
123 			DPU_DEBUG("plane:%d img:%dx%d ",
124 				plane->base.id, plane->fb->width,
125 				plane->fb->height);
126 			DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n",
127 				plane->state->src_x >> 16,
128 				plane->state->src_y >> 16,
129 				plane->state->src_w >> 16,
130 				plane->state->src_h >> 16,
131 				plane->state->crtc_x, plane->state->crtc_y,
132 				plane->state->crtc_w, plane->state->crtc_h);
133 		} else {
134 			DPU_DEBUG("Inactive plane:%d\n", plane->base.id);
135 		}
136 	}
137 }
138 
139 static ssize_t _dpu_plane_danger_write(struct file *file,
140 		    const char __user *user_buf, size_t count, loff_t *ppos)
141 {
142 	struct dpu_kms *kms = file->private_data;
143 	int disable_panic;
144 	int ret;
145 
146 	ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic);
147 	if (ret)
148 		return ret;
149 
150 	if (disable_panic) {
151 		/* Disable panic signal for all active pipes */
152 		DPU_DEBUG("Disabling danger:\n");
153 		_dpu_plane_set_danger_state(kms, false);
154 		kms->has_danger_ctrl = false;
155 	} else {
156 		/* Enable panic signal for all active pipes */
157 		DPU_DEBUG("Enabling danger:\n");
158 		kms->has_danger_ctrl = true;
159 		_dpu_plane_set_danger_state(kms, true);
160 	}
161 
162 	return count;
163 }
164 
165 static const struct file_operations dpu_plane_danger_enable = {
166 	.open = simple_open,
167 	.read = _dpu_plane_danger_read,
168 	.write = _dpu_plane_danger_write,
169 };
170 
171 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms,
172 		struct dentry *parent)
173 {
174 	struct dentry *entry = debugfs_create_dir("danger", parent);
175 
176 	debugfs_create_file("danger_status", 0600, entry,
177 			dpu_kms, &dpu_debugfs_danger_stats_fops);
178 	debugfs_create_file("safe_status", 0600, entry,
179 			dpu_kms, &dpu_debugfs_safe_stats_fops);
180 	debugfs_create_file("disable_danger", 0600, entry,
181 			dpu_kms, &dpu_plane_danger_enable);
182 
183 }
184 
185 /*
186  * Companion structure for dpu_debugfs_create_regset32.
187  */
188 struct dpu_debugfs_regset32 {
189 	uint32_t offset;
190 	uint32_t blk_len;
191 	struct dpu_kms *dpu_kms;
192 };
193 
194 static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data)
195 {
196 	struct dpu_debugfs_regset32 *regset = s->private;
197 	struct dpu_kms *dpu_kms = regset->dpu_kms;
198 	void __iomem *base;
199 	uint32_t i, addr;
200 
201 	if (!dpu_kms->mmio)
202 		return 0;
203 
204 	base = dpu_kms->mmio + regset->offset;
205 
206 	/* insert padding spaces, if needed */
207 	if (regset->offset & 0xF) {
208 		seq_printf(s, "[%x]", regset->offset & ~0xF);
209 		for (i = 0; i < (regset->offset & 0xF); i += 4)
210 			seq_puts(s, "         ");
211 	}
212 
213 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
214 
215 	/* main register output */
216 	for (i = 0; i < regset->blk_len; i += 4) {
217 		addr = regset->offset + i;
218 		if ((addr & 0xF) == 0x0)
219 			seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
220 		seq_printf(s, " %08x", readl_relaxed(base + i));
221 	}
222 	seq_puts(s, "\n");
223 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
224 
225 	return 0;
226 }
227 
228 static int dpu_debugfs_open_regset32(struct inode *inode,
229 		struct file *file)
230 {
231 	return single_open(file, _dpu_debugfs_show_regset32, inode->i_private);
232 }
233 
234 static const struct file_operations dpu_fops_regset32 = {
235 	.open =		dpu_debugfs_open_regset32,
236 	.read =		seq_read,
237 	.llseek =	seq_lseek,
238 	.release =	single_release,
239 };
240 
241 void dpu_debugfs_create_regset32(const char *name, umode_t mode,
242 		void *parent,
243 		uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms)
244 {
245 	struct dpu_debugfs_regset32 *regset;
246 
247 	if (WARN_ON(!name || !dpu_kms || !length))
248 		return;
249 
250 	regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL);
251 	if (!regset)
252 		return;
253 
254 	/* make sure offset is a multiple of 4 */
255 	regset->offset = round_down(offset, 4);
256 	regset->blk_len = length;
257 	regset->dpu_kms = dpu_kms;
258 
259 	debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32);
260 }
261 
262 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor)
263 {
264 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
265 	void *p = dpu_hw_util_get_log_mask_ptr();
266 	struct dentry *entry;
267 	struct drm_device *dev;
268 	struct msm_drm_private *priv;
269 	int i;
270 
271 	if (!p)
272 		return -EINVAL;
273 
274 	/* Only create a set of debugfs for the primary node, ignore render nodes */
275 	if (minor->type != DRM_MINOR_PRIMARY)
276 		return 0;
277 
278 	dev = dpu_kms->dev;
279 	priv = dev->dev_private;
280 
281 	entry = debugfs_create_dir("debug", minor->debugfs_root);
282 
283 	debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p);
284 
285 	dpu_debugfs_danger_init(dpu_kms, entry);
286 	dpu_debugfs_vbif_init(dpu_kms, entry);
287 	dpu_debugfs_core_irq_init(dpu_kms, entry);
288 	dpu_debugfs_sspp_init(dpu_kms, entry);
289 
290 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
291 		if (priv->dp[i])
292 			msm_dp_debugfs_init(priv->dp[i], minor);
293 	}
294 
295 	return dpu_core_perf_debugfs_init(dpu_kms, entry);
296 }
297 #endif
298 
299 /* Global/shared object state funcs */
300 
301 /*
302  * This is a helper that returns the private state currently in operation.
303  * Note that this would return the "old_state" if called in the atomic check
304  * path, and the "new_state" after the atomic swap has been done.
305  */
306 struct dpu_global_state *
307 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms)
308 {
309 	return to_dpu_global_state(dpu_kms->global_state.state);
310 }
311 
312 /*
313  * This acquires the modeset lock set aside for global state, creates
314  * a new duplicated private object state.
315  */
316 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s)
317 {
318 	struct msm_drm_private *priv = s->dev->dev_private;
319 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
320 	struct drm_private_state *priv_state;
321 	int ret;
322 
323 	ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx);
324 	if (ret)
325 		return ERR_PTR(ret);
326 
327 	priv_state = drm_atomic_get_private_obj_state(s,
328 						&dpu_kms->global_state);
329 	if (IS_ERR(priv_state))
330 		return ERR_CAST(priv_state);
331 
332 	return to_dpu_global_state(priv_state);
333 }
334 
335 static struct drm_private_state *
336 dpu_kms_global_duplicate_state(struct drm_private_obj *obj)
337 {
338 	struct dpu_global_state *state;
339 
340 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
341 	if (!state)
342 		return NULL;
343 
344 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
345 
346 	return &state->base;
347 }
348 
349 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj,
350 				      struct drm_private_state *state)
351 {
352 	struct dpu_global_state *dpu_state = to_dpu_global_state(state);
353 
354 	kfree(dpu_state);
355 }
356 
357 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = {
358 	.atomic_duplicate_state = dpu_kms_global_duplicate_state,
359 	.atomic_destroy_state = dpu_kms_global_destroy_state,
360 };
361 
362 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms)
363 {
364 	struct dpu_global_state *state;
365 
366 	drm_modeset_lock_init(&dpu_kms->global_state_lock);
367 
368 	state = kzalloc(sizeof(*state), GFP_KERNEL);
369 	if (!state)
370 		return -ENOMEM;
371 
372 	drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state,
373 				    &state->base,
374 				    &dpu_kms_global_state_funcs);
375 	return 0;
376 }
377 
378 static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms)
379 {
380 	struct icc_path *path0;
381 	struct icc_path *path1;
382 	struct drm_device *dev = dpu_kms->dev;
383 
384 	path0 = of_icc_get(dev->dev, "mdp0-mem");
385 	path1 = of_icc_get(dev->dev, "mdp1-mem");
386 
387 	if (IS_ERR_OR_NULL(path0))
388 		return PTR_ERR_OR_ZERO(path0);
389 
390 	dpu_kms->path[0] = path0;
391 	dpu_kms->num_paths = 1;
392 
393 	if (!IS_ERR_OR_NULL(path1)) {
394 		dpu_kms->path[1] = path1;
395 		dpu_kms->num_paths++;
396 	}
397 	return 0;
398 }
399 
400 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
401 {
402 	return dpu_crtc_vblank(crtc, true);
403 }
404 
405 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
406 {
407 	dpu_crtc_vblank(crtc, false);
408 }
409 
410 static void dpu_kms_enable_commit(struct msm_kms *kms)
411 {
412 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
413 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
414 }
415 
416 static void dpu_kms_disable_commit(struct msm_kms *kms)
417 {
418 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
419 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
420 }
421 
422 static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc)
423 {
424 	struct drm_encoder *encoder;
425 
426 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
427 		ktime_t vsync_time;
428 
429 		if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0)
430 			return vsync_time;
431 	}
432 
433 	return ktime_get();
434 }
435 
436 static void dpu_kms_prepare_commit(struct msm_kms *kms,
437 		struct drm_atomic_state *state)
438 {
439 	struct drm_crtc *crtc;
440 	struct drm_crtc_state *crtc_state;
441 	struct drm_encoder *encoder;
442 	int i;
443 
444 	if (!kms)
445 		return;
446 
447 	/* Call prepare_commit for all affected encoders */
448 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
449 		drm_for_each_encoder_mask(encoder, crtc->dev,
450 					  crtc_state->encoder_mask) {
451 			dpu_encoder_prepare_commit(encoder);
452 		}
453 	}
454 }
455 
456 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask)
457 {
458 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
459 	struct drm_crtc *crtc;
460 
461 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) {
462 		if (!crtc->state->active)
463 			continue;
464 
465 		trace_dpu_kms_commit(DRMID(crtc));
466 		dpu_crtc_commit_kickoff(crtc);
467 	}
468 }
469 
470 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask)
471 {
472 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
473 	struct drm_crtc *crtc;
474 
475 	DPU_ATRACE_BEGIN("kms_complete_commit");
476 
477 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
478 		dpu_crtc_complete_commit(crtc);
479 
480 	DPU_ATRACE_END("kms_complete_commit");
481 }
482 
483 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms,
484 		struct drm_crtc *crtc)
485 {
486 	struct drm_encoder *encoder;
487 	struct drm_device *dev;
488 	int ret;
489 
490 	if (!kms || !crtc || !crtc->state) {
491 		DPU_ERROR("invalid params\n");
492 		return;
493 	}
494 
495 	dev = crtc->dev;
496 
497 	if (!crtc->state->enable) {
498 		DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
499 		return;
500 	}
501 
502 	if (!crtc->state->active) {
503 		DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id);
504 		return;
505 	}
506 
507 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
508 		if (encoder->crtc != crtc)
509 			continue;
510 		/*
511 		 * Wait for post-flush if necessary to delay before
512 		 * plane_cleanup. For example, wait for vsync in case of video
513 		 * mode panels. This may be a no-op for command mode panels.
514 		 */
515 		trace_dpu_kms_wait_for_commit_done(DRMID(crtc));
516 		ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
517 		if (ret && ret != -EWOULDBLOCK) {
518 			DPU_ERROR("wait for commit done returned %d\n", ret);
519 			break;
520 		}
521 	}
522 }
523 
524 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask)
525 {
526 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
527 	struct drm_crtc *crtc;
528 
529 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
530 		dpu_kms_wait_for_commit_done(kms, crtc);
531 }
532 
533 static int _dpu_kms_initialize_dsi(struct drm_device *dev,
534 				    struct msm_drm_private *priv,
535 				    struct dpu_kms *dpu_kms)
536 {
537 	struct drm_encoder *encoder = NULL;
538 	struct msm_display_info info;
539 	int i, rc = 0;
540 
541 	if (!(priv->dsi[0] || priv->dsi[1]))
542 		return rc;
543 
544 	/*
545 	 * We support following confiurations:
546 	 * - Single DSI host (dsi0 or dsi1)
547 	 * - Two independent DSI hosts
548 	 * - Bonded DSI0 and DSI1 hosts
549 	 *
550 	 * TODO: Support swapping DSI0 and DSI1 in the bonded setup.
551 	 */
552 	for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
553 		int other = (i + 1) % 2;
554 
555 		if (!priv->dsi[i])
556 			continue;
557 
558 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) &&
559 		    !msm_dsi_is_master_dsi(priv->dsi[i]))
560 			continue;
561 
562 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI);
563 		if (IS_ERR(encoder)) {
564 			DPU_ERROR("encoder init failed for dsi display\n");
565 			return PTR_ERR(encoder);
566 		}
567 
568 		priv->encoders[priv->num_encoders++] = encoder;
569 
570 		memset(&info, 0, sizeof(info));
571 		info.intf_type = encoder->encoder_type;
572 
573 		rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
574 		if (rc) {
575 			DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
576 				i, rc);
577 			break;
578 		}
579 
580 		info.h_tile_instance[info.num_of_h_tiles++] = i;
581 		info.capabilities = msm_dsi_is_cmd_mode(priv->dsi[i]) ?
582 			MSM_DISPLAY_CAP_CMD_MODE :
583 			MSM_DISPLAY_CAP_VID_MODE;
584 
585 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) {
586 			rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder);
587 			if (rc) {
588 				DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
589 					other, rc);
590 				break;
591 			}
592 
593 			info.h_tile_instance[info.num_of_h_tiles++] = other;
594 		}
595 
596 		rc = dpu_encoder_setup(dev, encoder, &info);
597 		if (rc)
598 			DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
599 				  encoder->base.id, rc);
600 	}
601 
602 	return rc;
603 }
604 
605 static int _dpu_kms_initialize_displayport(struct drm_device *dev,
606 					    struct msm_drm_private *priv,
607 					    struct dpu_kms *dpu_kms)
608 {
609 	struct drm_encoder *encoder = NULL;
610 	struct msm_display_info info;
611 	int rc;
612 	int i;
613 
614 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
615 		if (!priv->dp[i])
616 			continue;
617 
618 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS);
619 		if (IS_ERR(encoder)) {
620 			DPU_ERROR("encoder init failed for dsi display\n");
621 			return PTR_ERR(encoder);
622 		}
623 
624 		memset(&info, 0, sizeof(info));
625 		rc = msm_dp_modeset_init(priv->dp[i], dev, encoder);
626 		if (rc) {
627 			DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
628 			drm_encoder_cleanup(encoder);
629 			return rc;
630 		}
631 
632 		priv->encoders[priv->num_encoders++] = encoder;
633 
634 		info.num_of_h_tiles = 1;
635 		info.h_tile_instance[0] = i;
636 		info.capabilities = MSM_DISPLAY_CAP_VID_MODE;
637 		info.intf_type = encoder->encoder_type;
638 		rc = dpu_encoder_setup(dev, encoder, &info);
639 		if (rc) {
640 			DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
641 				  encoder->base.id, rc);
642 			return rc;
643 		}
644 	}
645 
646 	return 0;
647 }
648 
649 /**
650  * _dpu_kms_setup_displays - create encoders, bridges and connectors
651  *                           for underlying displays
652  * @dev:        Pointer to drm device structure
653  * @priv:       Pointer to private drm device data
654  * @dpu_kms:    Pointer to dpu kms structure
655  * Returns:     Zero on success
656  */
657 static int _dpu_kms_setup_displays(struct drm_device *dev,
658 				    struct msm_drm_private *priv,
659 				    struct dpu_kms *dpu_kms)
660 {
661 	int rc = 0;
662 
663 	rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms);
664 	if (rc) {
665 		DPU_ERROR("initialize_dsi failed, rc = %d\n", rc);
666 		return rc;
667 	}
668 
669 	rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms);
670 	if (rc) {
671 		DPU_ERROR("initialize_DP failed, rc = %d\n", rc);
672 		return rc;
673 	}
674 
675 	return rc;
676 }
677 
678 static void _dpu_kms_drm_obj_destroy(struct dpu_kms *dpu_kms)
679 {
680 	struct msm_drm_private *priv;
681 	int i;
682 
683 	priv = dpu_kms->dev->dev_private;
684 
685 	for (i = 0; i < priv->num_crtcs; i++)
686 		priv->crtcs[i]->funcs->destroy(priv->crtcs[i]);
687 	priv->num_crtcs = 0;
688 
689 	for (i = 0; i < priv->num_planes; i++)
690 		priv->planes[i]->funcs->destroy(priv->planes[i]);
691 	priv->num_planes = 0;
692 
693 	for (i = 0; i < priv->num_connectors; i++)
694 		priv->connectors[i]->funcs->destroy(priv->connectors[i]);
695 	priv->num_connectors = 0;
696 
697 	for (i = 0; i < priv->num_encoders; i++)
698 		priv->encoders[i]->funcs->destroy(priv->encoders[i]);
699 	priv->num_encoders = 0;
700 }
701 
702 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms)
703 {
704 	struct drm_device *dev;
705 	struct drm_plane *primary_planes[MAX_PLANES], *plane;
706 	struct drm_plane *cursor_planes[MAX_PLANES] = { NULL };
707 	struct drm_crtc *crtc;
708 
709 	struct msm_drm_private *priv;
710 	struct dpu_mdss_cfg *catalog;
711 
712 	int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret;
713 	int max_crtc_count;
714 	dev = dpu_kms->dev;
715 	priv = dev->dev_private;
716 	catalog = dpu_kms->catalog;
717 
718 	/*
719 	 * Create encoder and query display drivers to create
720 	 * bridges and connectors
721 	 */
722 	ret = _dpu_kms_setup_displays(dev, priv, dpu_kms);
723 	if (ret)
724 		goto fail;
725 
726 	max_crtc_count = min(catalog->mixer_count, priv->num_encoders);
727 
728 	/* Create the planes, keeping track of one primary/cursor per crtc */
729 	for (i = 0; i < catalog->sspp_count; i++) {
730 		enum drm_plane_type type;
731 
732 		if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR))
733 			&& cursor_planes_idx < max_crtc_count)
734 			type = DRM_PLANE_TYPE_CURSOR;
735 		else if (primary_planes_idx < max_crtc_count)
736 			type = DRM_PLANE_TYPE_PRIMARY;
737 		else
738 			type = DRM_PLANE_TYPE_OVERLAY;
739 
740 		DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n",
741 			  type, catalog->sspp[i].features,
742 			  catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR));
743 
744 		plane = dpu_plane_init(dev, catalog->sspp[i].id, type,
745 				       (1UL << max_crtc_count) - 1, 0);
746 		if (IS_ERR(plane)) {
747 			DPU_ERROR("dpu_plane_init failed\n");
748 			ret = PTR_ERR(plane);
749 			goto fail;
750 		}
751 		priv->planes[priv->num_planes++] = plane;
752 
753 		if (type == DRM_PLANE_TYPE_CURSOR)
754 			cursor_planes[cursor_planes_idx++] = plane;
755 		else if (type == DRM_PLANE_TYPE_PRIMARY)
756 			primary_planes[primary_planes_idx++] = plane;
757 	}
758 
759 	max_crtc_count = min(max_crtc_count, primary_planes_idx);
760 
761 	/* Create one CRTC per encoder */
762 	for (i = 0; i < max_crtc_count; i++) {
763 		crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]);
764 		if (IS_ERR(crtc)) {
765 			ret = PTR_ERR(crtc);
766 			goto fail;
767 		}
768 		priv->crtcs[priv->num_crtcs++] = crtc;
769 	}
770 
771 	/* All CRTCs are compatible with all encoders */
772 	for (i = 0; i < priv->num_encoders; i++)
773 		priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1;
774 
775 	return 0;
776 fail:
777 	_dpu_kms_drm_obj_destroy(dpu_kms);
778 	return ret;
779 }
780 
781 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms)
782 {
783 	int i;
784 
785 	if (dpu_kms->hw_intr)
786 		dpu_hw_intr_destroy(dpu_kms->hw_intr);
787 	dpu_kms->hw_intr = NULL;
788 
789 	/* safe to call these more than once during shutdown */
790 	_dpu_kms_mmu_destroy(dpu_kms);
791 
792 	if (dpu_kms->catalog) {
793 		for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
794 			u32 vbif_idx = dpu_kms->catalog->vbif[i].id;
795 
796 			if ((vbif_idx < VBIF_MAX) && dpu_kms->hw_vbif[vbif_idx])
797 				dpu_hw_vbif_destroy(dpu_kms->hw_vbif[vbif_idx]);
798 		}
799 	}
800 
801 	if (dpu_kms->rm_init)
802 		dpu_rm_destroy(&dpu_kms->rm);
803 	dpu_kms->rm_init = false;
804 
805 	if (dpu_kms->catalog)
806 		dpu_hw_catalog_deinit(dpu_kms->catalog);
807 	dpu_kms->catalog = NULL;
808 
809 	if (dpu_kms->vbif[VBIF_NRT])
810 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]);
811 	dpu_kms->vbif[VBIF_NRT] = NULL;
812 
813 	if (dpu_kms->vbif[VBIF_RT])
814 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]);
815 	dpu_kms->vbif[VBIF_RT] = NULL;
816 
817 	if (dpu_kms->hw_mdp)
818 		dpu_hw_mdp_destroy(dpu_kms->hw_mdp);
819 	dpu_kms->hw_mdp = NULL;
820 
821 	if (dpu_kms->mmio)
822 		devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio);
823 	dpu_kms->mmio = NULL;
824 }
825 
826 static void dpu_kms_destroy(struct msm_kms *kms)
827 {
828 	struct dpu_kms *dpu_kms;
829 
830 	if (!kms) {
831 		DPU_ERROR("invalid kms\n");
832 		return;
833 	}
834 
835 	dpu_kms = to_dpu_kms(kms);
836 
837 	_dpu_kms_hw_destroy(dpu_kms);
838 
839 	msm_kms_destroy(&dpu_kms->base);
840 }
841 
842 static irqreturn_t dpu_irq(struct msm_kms *kms)
843 {
844 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
845 
846 	return dpu_core_irq(dpu_kms);
847 }
848 
849 static void dpu_irq_preinstall(struct msm_kms *kms)
850 {
851 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
852 
853 	dpu_core_irq_preinstall(dpu_kms);
854 }
855 
856 static int dpu_irq_postinstall(struct msm_kms *kms)
857 {
858 	struct msm_drm_private *priv;
859 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
860 	int i;
861 
862 	if (!dpu_kms || !dpu_kms->dev)
863 		return -EINVAL;
864 
865 	priv = dpu_kms->dev->dev_private;
866 	if (!priv)
867 		return -EINVAL;
868 
869 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++)
870 		msm_dp_irq_postinstall(priv->dp[i]);
871 
872 	return 0;
873 }
874 
875 static void dpu_irq_uninstall(struct msm_kms *kms)
876 {
877 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
878 
879 	dpu_core_irq_uninstall(dpu_kms);
880 }
881 
882 static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms)
883 {
884 	int i;
885 	struct dpu_kms *dpu_kms;
886 	struct dpu_mdss_cfg *cat;
887 	struct dpu_hw_mdp *top;
888 
889 	dpu_kms = to_dpu_kms(kms);
890 
891 	cat = dpu_kms->catalog;
892 	top = dpu_kms->hw_mdp;
893 
894 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
895 
896 	/* dump CTL sub-blocks HW regs info */
897 	for (i = 0; i < cat->ctl_count; i++)
898 		msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len,
899 				dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i);
900 
901 	/* dump DSPP sub-blocks HW regs info */
902 	for (i = 0; i < cat->dspp_count; i++)
903 		msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len,
904 				dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i);
905 
906 	/* dump INTF sub-blocks HW regs info */
907 	for (i = 0; i < cat->intf_count; i++)
908 		msm_disp_snapshot_add_block(disp_state, cat->intf[i].len,
909 				dpu_kms->mmio + cat->intf[i].base, "intf_%d", i);
910 
911 	/* dump PP sub-blocks HW regs info */
912 	for (i = 0; i < cat->pingpong_count; i++)
913 		msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len,
914 				dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i);
915 
916 	/* dump SSPP sub-blocks HW regs info */
917 	for (i = 0; i < cat->sspp_count; i++)
918 		msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len,
919 				dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i);
920 
921 	/* dump LM sub-blocks HW regs info */
922 	for (i = 0; i < cat->mixer_count; i++)
923 		msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len,
924 				dpu_kms->mmio + cat->mixer[i].base, "lm_%d", i);
925 
926 	msm_disp_snapshot_add_block(disp_state, top->hw.length,
927 			dpu_kms->mmio + top->hw.blk_off, "top");
928 
929 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
930 }
931 
932 static const struct msm_kms_funcs kms_funcs = {
933 	.hw_init         = dpu_kms_hw_init,
934 	.irq_preinstall  = dpu_irq_preinstall,
935 	.irq_postinstall = dpu_irq_postinstall,
936 	.irq_uninstall   = dpu_irq_uninstall,
937 	.irq             = dpu_irq,
938 	.enable_commit   = dpu_kms_enable_commit,
939 	.disable_commit  = dpu_kms_disable_commit,
940 	.vsync_time      = dpu_kms_vsync_time,
941 	.prepare_commit  = dpu_kms_prepare_commit,
942 	.flush_commit    = dpu_kms_flush_commit,
943 	.wait_flush      = dpu_kms_wait_flush,
944 	.complete_commit = dpu_kms_complete_commit,
945 	.enable_vblank   = dpu_kms_enable_vblank,
946 	.disable_vblank  = dpu_kms_disable_vblank,
947 	.check_modified_format = dpu_format_check_modified_format,
948 	.get_format      = dpu_get_msm_format,
949 	.destroy         = dpu_kms_destroy,
950 	.snapshot        = dpu_kms_mdp_snapshot,
951 #ifdef CONFIG_DEBUG_FS
952 	.debugfs_init    = dpu_kms_debugfs_init,
953 #endif
954 };
955 
956 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms)
957 {
958 	struct msm_mmu *mmu;
959 
960 	if (!dpu_kms->base.aspace)
961 		return;
962 
963 	mmu = dpu_kms->base.aspace->mmu;
964 
965 	mmu->funcs->detach(mmu);
966 	msm_gem_address_space_put(dpu_kms->base.aspace);
967 
968 	dpu_kms->base.aspace = NULL;
969 }
970 
971 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms)
972 {
973 	struct iommu_domain *domain;
974 	struct msm_gem_address_space *aspace;
975 	struct msm_mmu *mmu;
976 
977 	domain = iommu_domain_alloc(&platform_bus_type);
978 	if (!domain)
979 		return 0;
980 
981 	mmu = msm_iommu_new(dpu_kms->dev->dev, domain);
982 	if (IS_ERR(mmu)) {
983 		iommu_domain_free(domain);
984 		return PTR_ERR(mmu);
985 	}
986 	aspace = msm_gem_address_space_create(mmu, "dpu1",
987 		0x1000, 0x100000000 - 0x1000);
988 
989 	if (IS_ERR(aspace)) {
990 		mmu->funcs->destroy(mmu);
991 		return PTR_ERR(aspace);
992 	}
993 
994 	dpu_kms->base.aspace = aspace;
995 	return 0;
996 }
997 
998 u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name)
999 {
1000 	struct clk *clk;
1001 
1002 	clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name);
1003 	if (!clk)
1004 		return -EINVAL;
1005 
1006 	return clk_get_rate(clk);
1007 }
1008 
1009 static int dpu_kms_hw_init(struct msm_kms *kms)
1010 {
1011 	struct dpu_kms *dpu_kms;
1012 	struct drm_device *dev;
1013 	int i, rc = -EINVAL;
1014 
1015 	if (!kms) {
1016 		DPU_ERROR("invalid kms\n");
1017 		return rc;
1018 	}
1019 
1020 	dpu_kms = to_dpu_kms(kms);
1021 	dev = dpu_kms->dev;
1022 
1023 	rc = dpu_kms_global_obj_init(dpu_kms);
1024 	if (rc)
1025 		return rc;
1026 
1027 	atomic_set(&dpu_kms->bandwidth_ref, 0);
1028 
1029 	dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp");
1030 	if (IS_ERR(dpu_kms->mmio)) {
1031 		rc = PTR_ERR(dpu_kms->mmio);
1032 		DPU_ERROR("mdp register memory map failed: %d\n", rc);
1033 		dpu_kms->mmio = NULL;
1034 		goto error;
1035 	}
1036 	DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio);
1037 
1038 	dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif");
1039 	if (IS_ERR(dpu_kms->vbif[VBIF_RT])) {
1040 		rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]);
1041 		DPU_ERROR("vbif register memory map failed: %d\n", rc);
1042 		dpu_kms->vbif[VBIF_RT] = NULL;
1043 		goto error;
1044 	}
1045 	dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt");
1046 	if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) {
1047 		dpu_kms->vbif[VBIF_NRT] = NULL;
1048 		DPU_DEBUG("VBIF NRT is not defined");
1049 	}
1050 
1051 	dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma");
1052 	if (IS_ERR(dpu_kms->reg_dma)) {
1053 		dpu_kms->reg_dma = NULL;
1054 		DPU_DEBUG("REG_DMA is not defined");
1055 	}
1056 
1057 	dpu_kms_parse_data_bus_icc_path(dpu_kms);
1058 
1059 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
1060 
1061 	dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0);
1062 
1063 	pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev);
1064 
1065 	dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev);
1066 	if (IS_ERR_OR_NULL(dpu_kms->catalog)) {
1067 		rc = PTR_ERR(dpu_kms->catalog);
1068 		if (!dpu_kms->catalog)
1069 			rc = -EINVAL;
1070 		DPU_ERROR("catalog init failed: %d\n", rc);
1071 		dpu_kms->catalog = NULL;
1072 		goto power_error;
1073 	}
1074 
1075 	/*
1076 	 * Now we need to read the HW catalog and initialize resources such as
1077 	 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc
1078 	 */
1079 	rc = _dpu_kms_mmu_init(dpu_kms);
1080 	if (rc) {
1081 		DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc);
1082 		goto power_error;
1083 	}
1084 
1085 	rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio);
1086 	if (rc) {
1087 		DPU_ERROR("rm init failed: %d\n", rc);
1088 		goto power_error;
1089 	}
1090 
1091 	dpu_kms->rm_init = true;
1092 
1093 	dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio,
1094 					     dpu_kms->catalog);
1095 	if (IS_ERR(dpu_kms->hw_mdp)) {
1096 		rc = PTR_ERR(dpu_kms->hw_mdp);
1097 		DPU_ERROR("failed to get hw_mdp: %d\n", rc);
1098 		dpu_kms->hw_mdp = NULL;
1099 		goto power_error;
1100 	}
1101 
1102 	for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
1103 		u32 vbif_idx = dpu_kms->catalog->vbif[i].id;
1104 
1105 		dpu_kms->hw_vbif[i] = dpu_hw_vbif_init(vbif_idx,
1106 				dpu_kms->vbif[vbif_idx], dpu_kms->catalog);
1107 		if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) {
1108 			rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]);
1109 			if (!dpu_kms->hw_vbif[vbif_idx])
1110 				rc = -EINVAL;
1111 			DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc);
1112 			dpu_kms->hw_vbif[vbif_idx] = NULL;
1113 			goto power_error;
1114 		}
1115 	}
1116 
1117 	rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog,
1118 			msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, "core"));
1119 	if (rc) {
1120 		DPU_ERROR("failed to init perf %d\n", rc);
1121 		goto perf_err;
1122 	}
1123 
1124 	dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog);
1125 	if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) {
1126 		rc = PTR_ERR(dpu_kms->hw_intr);
1127 		DPU_ERROR("hw_intr init failed: %d\n", rc);
1128 		dpu_kms->hw_intr = NULL;
1129 		goto hw_intr_init_err;
1130 	}
1131 
1132 	dev->mode_config.min_width = 0;
1133 	dev->mode_config.min_height = 0;
1134 
1135 	/*
1136 	 * max crtc width is equal to the max mixer width * 2 and max height is
1137 	 * is 4K
1138 	 */
1139 	dev->mode_config.max_width =
1140 			dpu_kms->catalog->caps->max_mixer_width * 2;
1141 	dev->mode_config.max_height = 4096;
1142 
1143 	dev->max_vblank_count = 0xffffffff;
1144 	/* Disable vblank irqs aggressively for power-saving */
1145 	dev->vblank_disable_immediate = true;
1146 
1147 	/*
1148 	 * _dpu_kms_drm_obj_init should create the DRM related objects
1149 	 * i.e. CRTCs, planes, encoders, connectors and so forth
1150 	 */
1151 	rc = _dpu_kms_drm_obj_init(dpu_kms);
1152 	if (rc) {
1153 		DPU_ERROR("modeset init failed: %d\n", rc);
1154 		goto drm_obj_init_err;
1155 	}
1156 
1157 	dpu_vbif_init_memtypes(dpu_kms);
1158 
1159 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1160 
1161 	return 0;
1162 
1163 drm_obj_init_err:
1164 	dpu_core_perf_destroy(&dpu_kms->perf);
1165 hw_intr_init_err:
1166 perf_err:
1167 power_error:
1168 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1169 error:
1170 	_dpu_kms_hw_destroy(dpu_kms);
1171 
1172 	return rc;
1173 }
1174 
1175 struct msm_kms *dpu_kms_init(struct drm_device *dev)
1176 {
1177 	struct msm_drm_private *priv;
1178 	struct dpu_kms *dpu_kms;
1179 	int irq;
1180 
1181 	if (!dev) {
1182 		DPU_ERROR("drm device node invalid\n");
1183 		return ERR_PTR(-EINVAL);
1184 	}
1185 
1186 	priv = dev->dev_private;
1187 	dpu_kms = to_dpu_kms(priv->kms);
1188 
1189 	irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0);
1190 	if (irq < 0) {
1191 		DPU_ERROR("failed to get irq: %d\n", irq);
1192 		return ERR_PTR(irq);
1193 	}
1194 	dpu_kms->base.irq = irq;
1195 
1196 	return &dpu_kms->base;
1197 }
1198 
1199 static int dpu_bind(struct device *dev, struct device *master, void *data)
1200 {
1201 	struct msm_drm_private *priv = dev_get_drvdata(master);
1202 	struct platform_device *pdev = to_platform_device(dev);
1203 	struct drm_device *ddev = priv->dev;
1204 	struct dpu_kms *dpu_kms;
1205 	int ret = 0;
1206 
1207 	dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL);
1208 	if (!dpu_kms)
1209 		return -ENOMEM;
1210 
1211 	ret = devm_pm_opp_set_clkname(dev, "core");
1212 	if (ret)
1213 		return ret;
1214 	/* OPP table is optional */
1215 	ret = devm_pm_opp_of_add_table(dev);
1216 	if (ret && ret != -ENODEV) {
1217 		dev_err(dev, "invalid OPP table in device tree\n");
1218 		return ret;
1219 	}
1220 
1221 	ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks);
1222 	if (ret < 0) {
1223 		DPU_ERROR("failed to parse clocks, ret=%d\n", ret);
1224 		return ret;
1225 	}
1226 	dpu_kms->num_clocks = ret;
1227 
1228 	platform_set_drvdata(pdev, dpu_kms);
1229 
1230 	ret = msm_kms_init(&dpu_kms->base, &kms_funcs);
1231 	if (ret) {
1232 		DPU_ERROR("failed to init kms, ret=%d\n", ret);
1233 		return ret;
1234 	}
1235 	dpu_kms->dev = ddev;
1236 	dpu_kms->pdev = pdev;
1237 
1238 	pm_runtime_enable(&pdev->dev);
1239 	dpu_kms->rpm_enabled = true;
1240 
1241 	priv->kms = &dpu_kms->base;
1242 
1243 	return ret;
1244 }
1245 
1246 static void dpu_unbind(struct device *dev, struct device *master, void *data)
1247 {
1248 	struct platform_device *pdev = to_platform_device(dev);
1249 	struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
1250 
1251 	if (dpu_kms->rpm_enabled)
1252 		pm_runtime_disable(&pdev->dev);
1253 }
1254 
1255 static const struct component_ops dpu_ops = {
1256 	.bind   = dpu_bind,
1257 	.unbind = dpu_unbind,
1258 };
1259 
1260 static int dpu_dev_probe(struct platform_device *pdev)
1261 {
1262 	return component_add(&pdev->dev, &dpu_ops);
1263 }
1264 
1265 static int dpu_dev_remove(struct platform_device *pdev)
1266 {
1267 	component_del(&pdev->dev, &dpu_ops);
1268 	return 0;
1269 }
1270 
1271 static int __maybe_unused dpu_runtime_suspend(struct device *dev)
1272 {
1273 	int i;
1274 	struct platform_device *pdev = to_platform_device(dev);
1275 	struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
1276 
1277 	/* Drop the performance state vote */
1278 	dev_pm_opp_set_rate(dev, 0);
1279 	clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks);
1280 
1281 	for (i = 0; i < dpu_kms->num_paths; i++)
1282 		icc_set_bw(dpu_kms->path[i], 0, 0);
1283 
1284 	return 0;
1285 }
1286 
1287 static int __maybe_unused dpu_runtime_resume(struct device *dev)
1288 {
1289 	int rc = -1;
1290 	struct platform_device *pdev = to_platform_device(dev);
1291 	struct dpu_kms *dpu_kms = platform_get_drvdata(pdev);
1292 	struct drm_encoder *encoder;
1293 	struct drm_device *ddev;
1294 	int i;
1295 
1296 	ddev = dpu_kms->dev;
1297 
1298 	WARN_ON(!(dpu_kms->num_paths));
1299 	/* Min vote of BW is required before turning on AXI clk */
1300 	for (i = 0; i < dpu_kms->num_paths; i++)
1301 		icc_set_bw(dpu_kms->path[i], 0, Bps_to_icc(MIN_IB_BW));
1302 
1303 	rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks);
1304 	if (rc) {
1305 		DPU_ERROR("clock enable failed rc:%d\n", rc);
1306 		return rc;
1307 	}
1308 
1309 	dpu_vbif_init_memtypes(dpu_kms);
1310 
1311 	drm_for_each_encoder(encoder, ddev)
1312 		dpu_encoder_virt_runtime_resume(encoder);
1313 
1314 	return rc;
1315 }
1316 
1317 static const struct dev_pm_ops dpu_pm_ops = {
1318 	SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL)
1319 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1320 				pm_runtime_force_resume)
1321 };
1322 
1323 const struct of_device_id dpu_dt_match[] = {
1324 	{ .compatible = "qcom,msm8998-dpu", },
1325 	{ .compatible = "qcom,qcm2290-dpu", },
1326 	{ .compatible = "qcom,sdm845-dpu", },
1327 	{ .compatible = "qcom,sc7180-dpu", },
1328 	{ .compatible = "qcom,sc7280-dpu", },
1329 	{ .compatible = "qcom,sc8180x-dpu", },
1330 	{ .compatible = "qcom,sm8150-dpu", },
1331 	{ .compatible = "qcom,sm8250-dpu", },
1332 	{}
1333 };
1334 MODULE_DEVICE_TABLE(of, dpu_dt_match);
1335 
1336 static struct platform_driver dpu_driver = {
1337 	.probe = dpu_dev_probe,
1338 	.remove = dpu_dev_remove,
1339 	.driver = {
1340 		.name = "msm_dpu",
1341 		.of_match_table = dpu_dt_match,
1342 		.pm = &dpu_pm_ops,
1343 	},
1344 };
1345 
1346 void __init msm_dpu_register(void)
1347 {
1348 	platform_driver_register(&dpu_driver);
1349 }
1350 
1351 void __exit msm_dpu_unregister(void)
1352 {
1353 	platform_driver_unregister(&dpu_driver);
1354 }
1355