1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
5  */
6 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
7 
8 #include "msm_drv.h"
9 #include "dpu_kms.h"
10 #include "dpu_hw_mdss.h"
11 #include "dpu_hw_util.h"
12 
13 /* using a file static variables for debugfs access */
14 static u32 dpu_hw_util_log_mask = DPU_DBG_MASK_NONE;
15 
16 /* DPU_SCALER_QSEED3 */
17 #define QSEED3_HW_VERSION                  0x00
18 #define QSEED3_OP_MODE                     0x04
19 #define QSEED3_RGB2Y_COEFF                 0x08
20 #define QSEED3_PHASE_INIT                  0x0C
21 #define QSEED3_PHASE_STEP_Y_H              0x10
22 #define QSEED3_PHASE_STEP_Y_V              0x14
23 #define QSEED3_PHASE_STEP_UV_H             0x18
24 #define QSEED3_PHASE_STEP_UV_V             0x1C
25 #define QSEED3_PRELOAD                     0x20
26 #define QSEED3_DE_SHARPEN                  0x24
27 #define QSEED3_DE_SHARPEN_CTL              0x28
28 #define QSEED3_DE_SHAPE_CTL                0x2C
29 #define QSEED3_DE_THRESHOLD                0x30
30 #define QSEED3_DE_ADJUST_DATA_0            0x34
31 #define QSEED3_DE_ADJUST_DATA_1            0x38
32 #define QSEED3_DE_ADJUST_DATA_2            0x3C
33 #define QSEED3_SRC_SIZE_Y_RGB_A            0x40
34 #define QSEED3_SRC_SIZE_UV                 0x44
35 #define QSEED3_DST_SIZE                    0x48
36 #define QSEED3_COEF_LUT_CTRL               0x4C
37 #define QSEED3_COEF_LUT_SWAP_BIT           0
38 #define QSEED3_COEF_LUT_DIR_BIT            1
39 #define QSEED3_COEF_LUT_Y_CIR_BIT          2
40 #define QSEED3_COEF_LUT_UV_CIR_BIT         3
41 #define QSEED3_COEF_LUT_Y_SEP_BIT          4
42 #define QSEED3_COEF_LUT_UV_SEP_BIT         5
43 #define QSEED3_BUFFER_CTRL                 0x50
44 #define QSEED3_CLK_CTRL0                   0x54
45 #define QSEED3_CLK_CTRL1                   0x58
46 #define QSEED3_CLK_STATUS                  0x5C
47 #define QSEED3_PHASE_INIT_Y_H              0x90
48 #define QSEED3_PHASE_INIT_Y_V              0x94
49 #define QSEED3_PHASE_INIT_UV_H             0x98
50 #define QSEED3_PHASE_INIT_UV_V             0x9C
51 #define QSEED3_COEF_LUT                    0x100
52 #define QSEED3_FILTERS                     5
53 #define QSEED3_LUT_REGIONS                 4
54 #define QSEED3_CIRCULAR_LUTS               9
55 #define QSEED3_SEPARABLE_LUTS              10
56 #define QSEED3_LUT_SIZE                    60
57 #define QSEED3_ENABLE                      2
58 #define QSEED3_DIR_LUT_SIZE                (200 * sizeof(u32))
59 #define QSEED3_CIR_LUT_SIZE \
60 	(QSEED3_LUT_SIZE * QSEED3_CIRCULAR_LUTS * sizeof(u32))
61 #define QSEED3_SEP_LUT_SIZE \
62 	(QSEED3_LUT_SIZE * QSEED3_SEPARABLE_LUTS * sizeof(u32))
63 
64 /* DPU_SCALER_QSEED3LITE */
65 #define QSEED3LITE_COEF_LUT_Y_SEP_BIT         4
66 #define QSEED3LITE_COEF_LUT_UV_SEP_BIT        5
67 #define QSEED3LITE_COEF_LUT_CTRL              0x4C
68 #define QSEED3LITE_COEF_LUT_SWAP_BIT          0
69 #define QSEED3LITE_DIR_FILTER_WEIGHT          0x60
70 #define QSEED3LITE_FILTERS                 2
71 #define QSEED3LITE_SEPARABLE_LUTS             10
72 #define QSEED3LITE_LUT_SIZE                   33
73 #define QSEED3LITE_SEP_LUT_SIZE \
74 	        (QSEED3LITE_LUT_SIZE * QSEED3LITE_SEPARABLE_LUTS * sizeof(u32))
75 
76 
77 void dpu_reg_write(struct dpu_hw_blk_reg_map *c,
78 		u32 reg_off,
79 		u32 val,
80 		const char *name)
81 {
82 	/* don't need to mutex protect this */
83 	if (c->log_mask & dpu_hw_util_log_mask)
84 		DPU_DEBUG_DRIVER("[%s:0x%X] <= 0x%X\n",
85 				name, reg_off, val);
86 	writel_relaxed(val, c->blk_addr + reg_off);
87 }
88 
89 int dpu_reg_read(struct dpu_hw_blk_reg_map *c, u32 reg_off)
90 {
91 	return readl_relaxed(c->blk_addr + reg_off);
92 }
93 
94 u32 *dpu_hw_util_get_log_mask_ptr(void)
95 {
96 	return &dpu_hw_util_log_mask;
97 }
98 
99 static void _dpu_hw_setup_scaler3_lut(struct dpu_hw_blk_reg_map *c,
100 		struct dpu_hw_scaler3_cfg *scaler3_cfg, u32 offset)
101 {
102 	int i, j, filter;
103 	int config_lut = 0x0;
104 	unsigned long lut_flags;
105 	u32 lut_addr, lut_offset, lut_len;
106 	u32 *lut[QSEED3_FILTERS] = {NULL, NULL, NULL, NULL, NULL};
107 	static const uint32_t off_tbl[QSEED3_FILTERS][QSEED3_LUT_REGIONS][2] = {
108 		{{18, 0x000}, {12, 0x120}, {12, 0x1E0}, {8, 0x2A0} },
109 		{{6, 0x320}, {3, 0x3E0}, {3, 0x440}, {3, 0x4A0} },
110 		{{6, 0x500}, {3, 0x5c0}, {3, 0x620}, {3, 0x680} },
111 		{{6, 0x380}, {3, 0x410}, {3, 0x470}, {3, 0x4d0} },
112 		{{6, 0x560}, {3, 0x5f0}, {3, 0x650}, {3, 0x6b0} },
113 	};
114 
115 	lut_flags = (unsigned long) scaler3_cfg->lut_flag;
116 	if (test_bit(QSEED3_COEF_LUT_DIR_BIT, &lut_flags) &&
117 		(scaler3_cfg->dir_len == QSEED3_DIR_LUT_SIZE)) {
118 		lut[0] = scaler3_cfg->dir_lut;
119 		config_lut = 1;
120 	}
121 	if (test_bit(QSEED3_COEF_LUT_Y_CIR_BIT, &lut_flags) &&
122 		(scaler3_cfg->y_rgb_cir_lut_idx < QSEED3_CIRCULAR_LUTS) &&
123 		(scaler3_cfg->cir_len == QSEED3_CIR_LUT_SIZE)) {
124 		lut[1] = scaler3_cfg->cir_lut +
125 			scaler3_cfg->y_rgb_cir_lut_idx * QSEED3_LUT_SIZE;
126 		config_lut = 1;
127 	}
128 	if (test_bit(QSEED3_COEF_LUT_UV_CIR_BIT, &lut_flags) &&
129 		(scaler3_cfg->uv_cir_lut_idx < QSEED3_CIRCULAR_LUTS) &&
130 		(scaler3_cfg->cir_len == QSEED3_CIR_LUT_SIZE)) {
131 		lut[2] = scaler3_cfg->cir_lut +
132 			scaler3_cfg->uv_cir_lut_idx * QSEED3_LUT_SIZE;
133 		config_lut = 1;
134 	}
135 	if (test_bit(QSEED3_COEF_LUT_Y_SEP_BIT, &lut_flags) &&
136 		(scaler3_cfg->y_rgb_sep_lut_idx < QSEED3_SEPARABLE_LUTS) &&
137 		(scaler3_cfg->sep_len == QSEED3_SEP_LUT_SIZE)) {
138 		lut[3] = scaler3_cfg->sep_lut +
139 			scaler3_cfg->y_rgb_sep_lut_idx * QSEED3_LUT_SIZE;
140 		config_lut = 1;
141 	}
142 	if (test_bit(QSEED3_COEF_LUT_UV_SEP_BIT, &lut_flags) &&
143 		(scaler3_cfg->uv_sep_lut_idx < QSEED3_SEPARABLE_LUTS) &&
144 		(scaler3_cfg->sep_len == QSEED3_SEP_LUT_SIZE)) {
145 		lut[4] = scaler3_cfg->sep_lut +
146 			scaler3_cfg->uv_sep_lut_idx * QSEED3_LUT_SIZE;
147 		config_lut = 1;
148 	}
149 
150 	if (config_lut) {
151 		for (filter = 0; filter < QSEED3_FILTERS; filter++) {
152 			if (!lut[filter])
153 				continue;
154 			lut_offset = 0;
155 			for (i = 0; i < QSEED3_LUT_REGIONS; i++) {
156 				lut_addr = QSEED3_COEF_LUT + offset
157 					+ off_tbl[filter][i][1];
158 				lut_len = off_tbl[filter][i][0] << 2;
159 				for (j = 0; j < lut_len; j++) {
160 					DPU_REG_WRITE(c,
161 						lut_addr,
162 						(lut[filter])[lut_offset++]);
163 					lut_addr += 4;
164 				}
165 			}
166 		}
167 	}
168 
169 	if (test_bit(QSEED3_COEF_LUT_SWAP_BIT, &lut_flags))
170 		DPU_REG_WRITE(c, QSEED3_COEF_LUT_CTRL + offset, BIT(0));
171 
172 }
173 
174 static void _dpu_hw_setup_scaler3lite_lut(struct dpu_hw_blk_reg_map *c,
175 		struct dpu_hw_scaler3_cfg *scaler3_cfg, u32 offset)
176 {
177 	int j, filter;
178 	int config_lut = 0x0;
179 	unsigned long lut_flags;
180 	u32 lut_addr, lut_offset;
181 	u32 *lut[QSEED3LITE_FILTERS] = {NULL, NULL};
182 	static const uint32_t off_tbl[QSEED3_FILTERS] = { 0x000, 0x200 };
183 
184 	DPU_REG_WRITE(c, QSEED3LITE_DIR_FILTER_WEIGHT + offset, scaler3_cfg->dir_weight);
185 
186 	if (!scaler3_cfg->sep_lut)
187 		return;
188 
189 	lut_flags = (unsigned long) scaler3_cfg->lut_flag;
190 	if (test_bit(QSEED3_COEF_LUT_Y_SEP_BIT, &lut_flags) &&
191 		(scaler3_cfg->y_rgb_sep_lut_idx < QSEED3LITE_SEPARABLE_LUTS) &&
192 		(scaler3_cfg->sep_len == QSEED3LITE_SEP_LUT_SIZE)) {
193 		lut[0] = scaler3_cfg->sep_lut +
194 			scaler3_cfg->y_rgb_sep_lut_idx * QSEED3LITE_LUT_SIZE;
195 		config_lut = 1;
196 	}
197 	if (test_bit(QSEED3_COEF_LUT_UV_SEP_BIT, &lut_flags) &&
198 		(scaler3_cfg->uv_sep_lut_idx < QSEED3LITE_SEPARABLE_LUTS) &&
199 		(scaler3_cfg->sep_len == QSEED3LITE_SEP_LUT_SIZE)) {
200 		lut[1] = scaler3_cfg->sep_lut +
201 			scaler3_cfg->uv_sep_lut_idx * QSEED3LITE_LUT_SIZE;
202 		config_lut = 1;
203 	}
204 
205 	if (config_lut) {
206 		for (filter = 0; filter < QSEED3LITE_FILTERS; filter++) {
207 			if (!lut[filter])
208 				continue;
209 			lut_offset = 0;
210 			lut_addr = QSEED3_COEF_LUT + offset + off_tbl[filter];
211 			for (j = 0; j < QSEED3LITE_LUT_SIZE; j++) {
212 				DPU_REG_WRITE(c,
213 					lut_addr,
214 					(lut[filter])[lut_offset++]);
215 				lut_addr += 4;
216 			}
217 		}
218 	}
219 
220 	if (test_bit(QSEED3_COEF_LUT_SWAP_BIT, &lut_flags))
221 		DPU_REG_WRITE(c, QSEED3_COEF_LUT_CTRL + offset, BIT(0));
222 
223 }
224 
225 static void _dpu_hw_setup_scaler3_de(struct dpu_hw_blk_reg_map *c,
226 		struct dpu_hw_scaler3_de_cfg *de_cfg, u32 offset)
227 {
228 	u32 sharp_lvl, sharp_ctl, shape_ctl, de_thr;
229 	u32 adjust_a, adjust_b, adjust_c;
230 
231 	if (!de_cfg->enable)
232 		return;
233 
234 	sharp_lvl = (de_cfg->sharpen_level1 & 0x1FF) |
235 		((de_cfg->sharpen_level2 & 0x1FF) << 16);
236 
237 	sharp_ctl = ((de_cfg->limit & 0xF) << 9) |
238 		((de_cfg->prec_shift & 0x7) << 13) |
239 		((de_cfg->clip & 0x7) << 16);
240 
241 	shape_ctl = (de_cfg->thr_quiet & 0xFF) |
242 		((de_cfg->thr_dieout & 0x3FF) << 16);
243 
244 	de_thr = (de_cfg->thr_low & 0x3FF) |
245 		((de_cfg->thr_high & 0x3FF) << 16);
246 
247 	adjust_a = (de_cfg->adjust_a[0] & 0x3FF) |
248 		((de_cfg->adjust_a[1] & 0x3FF) << 10) |
249 		((de_cfg->adjust_a[2] & 0x3FF) << 20);
250 
251 	adjust_b = (de_cfg->adjust_b[0] & 0x3FF) |
252 		((de_cfg->adjust_b[1] & 0x3FF) << 10) |
253 		((de_cfg->adjust_b[2] & 0x3FF) << 20);
254 
255 	adjust_c = (de_cfg->adjust_c[0] & 0x3FF) |
256 		((de_cfg->adjust_c[1] & 0x3FF) << 10) |
257 		((de_cfg->adjust_c[2] & 0x3FF) << 20);
258 
259 	DPU_REG_WRITE(c, QSEED3_DE_SHARPEN + offset, sharp_lvl);
260 	DPU_REG_WRITE(c, QSEED3_DE_SHARPEN_CTL + offset, sharp_ctl);
261 	DPU_REG_WRITE(c, QSEED3_DE_SHAPE_CTL + offset, shape_ctl);
262 	DPU_REG_WRITE(c, QSEED3_DE_THRESHOLD + offset, de_thr);
263 	DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_0 + offset, adjust_a);
264 	DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_1 + offset, adjust_b);
265 	DPU_REG_WRITE(c, QSEED3_DE_ADJUST_DATA_2 + offset, adjust_c);
266 
267 }
268 
269 void dpu_hw_setup_scaler3(struct dpu_hw_blk_reg_map *c,
270 		struct dpu_hw_scaler3_cfg *scaler3_cfg,
271 		u32 scaler_offset, u32 scaler_version,
272 		const struct dpu_format *format)
273 {
274 	u32 op_mode = 0;
275 	u32 phase_init, preload, src_y_rgb, src_uv, dst;
276 
277 	if (!scaler3_cfg->enable)
278 		goto end;
279 
280 	op_mode |= BIT(0);
281 	op_mode |= (scaler3_cfg->y_rgb_filter_cfg & 0x3) << 16;
282 
283 	if (format && DPU_FORMAT_IS_YUV(format)) {
284 		op_mode |= BIT(12);
285 		op_mode |= (scaler3_cfg->uv_filter_cfg & 0x3) << 24;
286 	}
287 
288 	op_mode |= (scaler3_cfg->blend_cfg & 1) << 31;
289 	op_mode |= (scaler3_cfg->dir_en) ? BIT(4) : 0;
290 
291 	preload =
292 		((scaler3_cfg->preload_x[0] & 0x7F) << 0) |
293 		((scaler3_cfg->preload_y[0] & 0x7F) << 8) |
294 		((scaler3_cfg->preload_x[1] & 0x7F) << 16) |
295 		((scaler3_cfg->preload_y[1] & 0x7F) << 24);
296 
297 	src_y_rgb = (scaler3_cfg->src_width[0] & 0x1FFFF) |
298 		((scaler3_cfg->src_height[0] & 0x1FFFF) << 16);
299 
300 	src_uv = (scaler3_cfg->src_width[1] & 0x1FFFF) |
301 		((scaler3_cfg->src_height[1] & 0x1FFFF) << 16);
302 
303 	dst = (scaler3_cfg->dst_width & 0x1FFFF) |
304 		((scaler3_cfg->dst_height & 0x1FFFF) << 16);
305 
306 	if (scaler3_cfg->de.enable) {
307 		_dpu_hw_setup_scaler3_de(c, &scaler3_cfg->de, scaler_offset);
308 		op_mode |= BIT(8);
309 	}
310 
311 	if (scaler3_cfg->lut_flag) {
312 		if (scaler_version < 0x2004)
313 			_dpu_hw_setup_scaler3_lut(c, scaler3_cfg, scaler_offset);
314 		else
315 			_dpu_hw_setup_scaler3lite_lut(c, scaler3_cfg, scaler_offset);
316 	}
317 
318 	if (scaler_version == 0x1002) {
319 		phase_init =
320 			((scaler3_cfg->init_phase_x[0] & 0x3F) << 0) |
321 			((scaler3_cfg->init_phase_y[0] & 0x3F) << 8) |
322 			((scaler3_cfg->init_phase_x[1] & 0x3F) << 16) |
323 			((scaler3_cfg->init_phase_y[1] & 0x3F) << 24);
324 		DPU_REG_WRITE(c, QSEED3_PHASE_INIT + scaler_offset, phase_init);
325 	} else {
326 		DPU_REG_WRITE(c, QSEED3_PHASE_INIT_Y_H + scaler_offset,
327 			scaler3_cfg->init_phase_x[0] & 0x1FFFFF);
328 		DPU_REG_WRITE(c, QSEED3_PHASE_INIT_Y_V + scaler_offset,
329 			scaler3_cfg->init_phase_y[0] & 0x1FFFFF);
330 		DPU_REG_WRITE(c, QSEED3_PHASE_INIT_UV_H + scaler_offset,
331 			scaler3_cfg->init_phase_x[1] & 0x1FFFFF);
332 		DPU_REG_WRITE(c, QSEED3_PHASE_INIT_UV_V + scaler_offset,
333 			scaler3_cfg->init_phase_y[1] & 0x1FFFFF);
334 	}
335 
336 	DPU_REG_WRITE(c, QSEED3_PHASE_STEP_Y_H + scaler_offset,
337 		scaler3_cfg->phase_step_x[0] & 0xFFFFFF);
338 
339 	DPU_REG_WRITE(c, QSEED3_PHASE_STEP_Y_V + scaler_offset,
340 		scaler3_cfg->phase_step_y[0] & 0xFFFFFF);
341 
342 	DPU_REG_WRITE(c, QSEED3_PHASE_STEP_UV_H + scaler_offset,
343 		scaler3_cfg->phase_step_x[1] & 0xFFFFFF);
344 
345 	DPU_REG_WRITE(c, QSEED3_PHASE_STEP_UV_V + scaler_offset,
346 		scaler3_cfg->phase_step_y[1] & 0xFFFFFF);
347 
348 	DPU_REG_WRITE(c, QSEED3_PRELOAD + scaler_offset, preload);
349 
350 	DPU_REG_WRITE(c, QSEED3_SRC_SIZE_Y_RGB_A + scaler_offset, src_y_rgb);
351 
352 	DPU_REG_WRITE(c, QSEED3_SRC_SIZE_UV + scaler_offset, src_uv);
353 
354 	DPU_REG_WRITE(c, QSEED3_DST_SIZE + scaler_offset, dst);
355 
356 end:
357 	if (format && !DPU_FORMAT_IS_DX(format))
358 		op_mode |= BIT(14);
359 
360 	if (format && format->alpha_enable) {
361 		op_mode |= BIT(10);
362 		if (scaler_version == 0x1002)
363 			op_mode |= (scaler3_cfg->alpha_filter_cfg & 0x1) << 30;
364 		else
365 			op_mode |= (scaler3_cfg->alpha_filter_cfg & 0x3) << 29;
366 	}
367 
368 	DPU_REG_WRITE(c, QSEED3_OP_MODE + scaler_offset, op_mode);
369 }
370 
371 u32 dpu_hw_get_scaler3_ver(struct dpu_hw_blk_reg_map *c,
372 			u32 scaler_offset)
373 {
374 	return DPU_REG_READ(c, QSEED3_HW_VERSION + scaler_offset);
375 }
376 
377 void dpu_hw_csc_setup(struct dpu_hw_blk_reg_map *c,
378 		u32 csc_reg_off,
379 		const struct dpu_csc_cfg *data, bool csc10)
380 {
381 	static const u32 matrix_shift = 7;
382 	u32 clamp_shift = csc10 ? 16 : 8;
383 	u32 val;
384 
385 	/* matrix coeff - convert S15.16 to S4.9 */
386 	val = ((data->csc_mv[0] >> matrix_shift) & 0x1FFF) |
387 		(((data->csc_mv[1] >> matrix_shift) & 0x1FFF) << 16);
388 	DPU_REG_WRITE(c, csc_reg_off, val);
389 	val = ((data->csc_mv[2] >> matrix_shift) & 0x1FFF) |
390 		(((data->csc_mv[3] >> matrix_shift) & 0x1FFF) << 16);
391 	DPU_REG_WRITE(c, csc_reg_off + 0x4, val);
392 	val = ((data->csc_mv[4] >> matrix_shift) & 0x1FFF) |
393 		(((data->csc_mv[5] >> matrix_shift) & 0x1FFF) << 16);
394 	DPU_REG_WRITE(c, csc_reg_off + 0x8, val);
395 	val = ((data->csc_mv[6] >> matrix_shift) & 0x1FFF) |
396 		(((data->csc_mv[7] >> matrix_shift) & 0x1FFF) << 16);
397 	DPU_REG_WRITE(c, csc_reg_off + 0xc, val);
398 	val = (data->csc_mv[8] >> matrix_shift) & 0x1FFF;
399 	DPU_REG_WRITE(c, csc_reg_off + 0x10, val);
400 
401 	/* Pre clamp */
402 	val = (data->csc_pre_lv[0] << clamp_shift) | data->csc_pre_lv[1];
403 	DPU_REG_WRITE(c, csc_reg_off + 0x14, val);
404 	val = (data->csc_pre_lv[2] << clamp_shift) | data->csc_pre_lv[3];
405 	DPU_REG_WRITE(c, csc_reg_off + 0x18, val);
406 	val = (data->csc_pre_lv[4] << clamp_shift) | data->csc_pre_lv[5];
407 	DPU_REG_WRITE(c, csc_reg_off + 0x1c, val);
408 
409 	/* Post clamp */
410 	val = (data->csc_post_lv[0] << clamp_shift) | data->csc_post_lv[1];
411 	DPU_REG_WRITE(c, csc_reg_off + 0x20, val);
412 	val = (data->csc_post_lv[2] << clamp_shift) | data->csc_post_lv[3];
413 	DPU_REG_WRITE(c, csc_reg_off + 0x24, val);
414 	val = (data->csc_post_lv[4] << clamp_shift) | data->csc_post_lv[5];
415 	DPU_REG_WRITE(c, csc_reg_off + 0x28, val);
416 
417 	/* Pre-Bias */
418 	DPU_REG_WRITE(c, csc_reg_off + 0x2c, data->csc_pre_bv[0]);
419 	DPU_REG_WRITE(c, csc_reg_off + 0x30, data->csc_pre_bv[1]);
420 	DPU_REG_WRITE(c, csc_reg_off + 0x34, data->csc_pre_bv[2]);
421 
422 	/* Post-Bias */
423 	DPU_REG_WRITE(c, csc_reg_off + 0x38, data->csc_post_bv[0]);
424 	DPU_REG_WRITE(c, csc_reg_off + 0x3c, data->csc_post_bv[1]);
425 	DPU_REG_WRITE(c, csc_reg_off + 0x40, data->csc_post_bv[2]);
426 }
427 
428 /**
429  * _dpu_hw_get_qos_lut - get LUT mapping based on fill level
430  * @tbl:		Pointer to LUT table
431  * @total_fl:		fill level
432  * Return: LUT setting corresponding to the fill level
433  */
434 u64 _dpu_hw_get_qos_lut(const struct dpu_qos_lut_tbl *tbl,
435 		u32 total_fl)
436 {
437 	int i;
438 
439 	if (!tbl || !tbl->nentry || !tbl->entries)
440 		return 0;
441 
442 	for (i = 0; i < tbl->nentry; i++)
443 		if (total_fl <= tbl->entries[i].fl)
444 			return tbl->entries[i].lut;
445 
446 	/* if last fl is zero, use as default */
447 	if (!tbl->entries[i-1].fl)
448 		return tbl->entries[i-1].lut;
449 
450 	return 0;
451 }
452 
453 void dpu_hw_setup_misr(struct dpu_hw_blk_reg_map *c,
454 		u32 misr_ctrl_offset,
455 		bool enable, u32 frame_count)
456 {
457 	u32 config = 0;
458 
459 	DPU_REG_WRITE(c, misr_ctrl_offset, MISR_CTRL_STATUS_CLEAR);
460 
461 	/* Clear old MISR value (in case it's read before a new value is calculated)*/
462 	wmb();
463 
464 	if (enable) {
465 		config = (frame_count & MISR_FRAME_COUNT_MASK) |
466 			MISR_CTRL_ENABLE | MISR_CTRL_FREE_RUN_MASK;
467 
468 		DPU_REG_WRITE(c, misr_ctrl_offset, config);
469 	} else {
470 		DPU_REG_WRITE(c, misr_ctrl_offset, 0);
471 	}
472 
473 }
474 
475 int dpu_hw_collect_misr(struct dpu_hw_blk_reg_map *c,
476 		u32 misr_ctrl_offset,
477 		u32 misr_signature_offset,
478 		u32 *misr_value)
479 {
480 	u32 ctrl = 0;
481 
482 	if (!misr_value)
483 		return -EINVAL;
484 
485 	ctrl = DPU_REG_READ(c, misr_ctrl_offset);
486 
487 	if (!(ctrl & MISR_CTRL_ENABLE))
488 		return -ENODATA;
489 
490 	if (!(ctrl & MISR_CTRL_STATUS))
491 		return -EINVAL;
492 
493 	*misr_value = DPU_REG_READ(c, misr_signature_offset);
494 
495 	return 0;
496 }
497