1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 4 * Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 5 */ 6 7 #include "dpu_hwio.h" 8 #include "dpu_hw_catalog.h" 9 #include "dpu_hw_intf.h" 10 #include "dpu_kms.h" 11 #include "dpu_trace.h" 12 13 #include <linux/iopoll.h> 14 15 #define INTF_TIMING_ENGINE_EN 0x000 16 #define INTF_CONFIG 0x004 17 #define INTF_HSYNC_CTL 0x008 18 #define INTF_VSYNC_PERIOD_F0 0x00C 19 #define INTF_VSYNC_PERIOD_F1 0x010 20 #define INTF_VSYNC_PULSE_WIDTH_F0 0x014 21 #define INTF_VSYNC_PULSE_WIDTH_F1 0x018 22 #define INTF_DISPLAY_V_START_F0 0x01C 23 #define INTF_DISPLAY_V_START_F1 0x020 24 #define INTF_DISPLAY_V_END_F0 0x024 25 #define INTF_DISPLAY_V_END_F1 0x028 26 #define INTF_ACTIVE_V_START_F0 0x02C 27 #define INTF_ACTIVE_V_START_F1 0x030 28 #define INTF_ACTIVE_V_END_F0 0x034 29 #define INTF_ACTIVE_V_END_F1 0x038 30 #define INTF_DISPLAY_HCTL 0x03C 31 #define INTF_ACTIVE_HCTL 0x040 32 #define INTF_BORDER_COLOR 0x044 33 #define INTF_UNDERFLOW_COLOR 0x048 34 #define INTF_HSYNC_SKEW 0x04C 35 #define INTF_POLARITY_CTL 0x050 36 #define INTF_TEST_CTL 0x054 37 #define INTF_TP_COLOR0 0x058 38 #define INTF_TP_COLOR1 0x05C 39 #define INTF_CONFIG2 0x060 40 #define INTF_DISPLAY_DATA_HCTL 0x064 41 #define INTF_ACTIVE_DATA_HCTL 0x068 42 43 #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084 44 #define INTF_PANEL_FORMAT 0x090 45 46 #define INTF_FRAME_LINE_COUNT_EN 0x0A8 47 #define INTF_FRAME_COUNT 0x0AC 48 #define INTF_LINE_COUNT 0x0B0 49 50 #define INTF_DEFLICKER_CONFIG 0x0F0 51 #define INTF_DEFLICKER_STRNG_COEFF 0x0F4 52 #define INTF_DEFLICKER_WEAK_COEFF 0x0F8 53 54 #define INTF_TPG_ENABLE 0x100 55 #define INTF_TPG_MAIN_CONTROL 0x104 56 #define INTF_TPG_VIDEO_CONFIG 0x108 57 #define INTF_TPG_COMPONENT_LIMITS 0x10C 58 #define INTF_TPG_RECTANGLE 0x110 59 #define INTF_TPG_INITIAL_VALUE 0x114 60 #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118 61 #define INTF_TPG_RGB_MAPPING 0x11C 62 #define INTF_PROG_FETCH_START 0x170 63 #define INTF_PROG_ROT_START 0x174 64 65 #define INTF_MISR_CTRL 0x180 66 #define INTF_MISR_SIGNATURE 0x184 67 68 #define INTF_MUX 0x25C 69 #define INTF_STATUS 0x26C 70 #define INTF_AVR_CONTROL 0x270 71 #define INTF_AVR_MODE 0x274 72 #define INTF_AVR_TRIGGER 0x278 73 #define INTF_AVR_VTOTAL 0x27C 74 #define INTF_TEAR_MDP_VSYNC_SEL 0x280 75 #define INTF_TEAR_TEAR_CHECK_EN 0x284 76 #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288 77 #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C 78 #define INTF_TEAR_SYNC_WRCOUNT 0x290 79 #define INTF_TEAR_VSYNC_INIT_VAL 0x294 80 #define INTF_TEAR_INT_COUNT_VAL 0x298 81 #define INTF_TEAR_SYNC_THRESH 0x29C 82 #define INTF_TEAR_START_POS 0x2A0 83 #define INTF_TEAR_RD_PTR_IRQ 0x2A4 84 #define INTF_TEAR_WR_PTR_IRQ 0x2A8 85 #define INTF_TEAR_OUT_LINE_COUNT 0x2AC 86 #define INTF_TEAR_LINE_COUNT 0x2B0 87 #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4 88 89 #define INTF_CFG_ACTIVE_H_EN BIT(29) 90 #define INTF_CFG_ACTIVE_V_EN BIT(30) 91 92 #define INTF_CFG2_DATABUS_WIDEN BIT(0) 93 #define INTF_CFG2_DATA_HCTL_EN BIT(4) 94 #define INTF_CFG2_DCE_DATA_COMPRESS BIT(12) 95 96 97 static void dpu_hw_intf_setup_timing_engine(struct dpu_hw_intf *ctx, 98 const struct intf_timing_params *p, 99 const struct dpu_format *fmt) 100 { 101 struct dpu_hw_blk_reg_map *c = &ctx->hw; 102 u32 hsync_period, vsync_period; 103 u32 display_v_start, display_v_end; 104 u32 hsync_start_x, hsync_end_x; 105 u32 hsync_data_start_x, hsync_data_end_x; 106 u32 active_h_start, active_h_end; 107 u32 active_v_start, active_v_end; 108 u32 active_hctl, display_hctl, hsync_ctl; 109 u32 polarity_ctl, den_polarity; 110 u32 panel_format; 111 u32 intf_cfg, intf_cfg2 = 0; 112 u32 display_data_hctl = 0, active_data_hctl = 0; 113 u32 data_width; 114 bool dp_intf = false; 115 116 /* read interface_cfg */ 117 intf_cfg = DPU_REG_READ(c, INTF_CONFIG); 118 119 if (ctx->cap->type == INTF_DP) 120 dp_intf = true; 121 122 hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width + 123 p->h_front_porch; 124 vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height + 125 p->v_front_porch; 126 127 display_v_start = ((p->vsync_pulse_width + p->v_back_porch) * 128 hsync_period) + p->hsync_skew; 129 display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) + 130 p->hsync_skew - 1; 131 132 hsync_start_x = p->h_back_porch + p->hsync_pulse_width; 133 hsync_end_x = hsync_period - p->h_front_porch - 1; 134 135 if (p->width != p->xres) { /* border fill added */ 136 active_h_start = hsync_start_x; 137 active_h_end = active_h_start + p->xres - 1; 138 } else { 139 active_h_start = 0; 140 active_h_end = 0; 141 } 142 143 if (p->height != p->yres) { /* border fill added */ 144 active_v_start = display_v_start; 145 active_v_end = active_v_start + (p->yres * hsync_period) - 1; 146 } else { 147 active_v_start = 0; 148 active_v_end = 0; 149 } 150 151 if (active_h_end) { 152 active_hctl = (active_h_end << 16) | active_h_start; 153 intf_cfg |= INTF_CFG_ACTIVE_H_EN; 154 } else { 155 active_hctl = 0; 156 } 157 158 if (active_v_end) 159 intf_cfg |= INTF_CFG_ACTIVE_V_EN; 160 161 hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width; 162 display_hctl = (hsync_end_x << 16) | hsync_start_x; 163 164 /* 165 * DATA_HCTL_EN controls data timing which can be different from 166 * video timing. It is recommended to enable it for all cases, except 167 * if compression is enabled in 1 pixel per clock mode 168 */ 169 if (p->wide_bus_en) 170 intf_cfg2 |= INTF_CFG2_DATABUS_WIDEN | INTF_CFG2_DATA_HCTL_EN; 171 172 data_width = p->width; 173 174 hsync_data_start_x = hsync_start_x; 175 hsync_data_end_x = hsync_start_x + data_width - 1; 176 177 display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x; 178 179 if (dp_intf) { 180 /* DP timing adjustment */ 181 display_v_start += p->hsync_pulse_width + p->h_back_porch; 182 display_v_end -= p->h_front_porch; 183 184 active_h_start = hsync_start_x; 185 active_h_end = active_h_start + p->xres - 1; 186 active_v_start = display_v_start; 187 active_v_end = active_v_start + (p->yres * hsync_period) - 1; 188 189 active_hctl = (active_h_end << 16) | active_h_start; 190 display_hctl = active_hctl; 191 192 intf_cfg |= INTF_CFG_ACTIVE_H_EN | INTF_CFG_ACTIVE_V_EN; 193 } 194 195 den_polarity = 0; 196 polarity_ctl = (den_polarity << 2) | /* DEN Polarity */ 197 (p->vsync_polarity << 1) | /* VSYNC Polarity */ 198 (p->hsync_polarity << 0); /* HSYNC Polarity */ 199 200 if (!DPU_FORMAT_IS_YUV(fmt)) 201 panel_format = (fmt->bits[C0_G_Y] | 202 (fmt->bits[C1_B_Cb] << 2) | 203 (fmt->bits[C2_R_Cr] << 4) | 204 (0x21 << 8)); 205 else 206 /* Interface treats all the pixel data in RGB888 format */ 207 panel_format = (COLOR_8BIT | 208 (COLOR_8BIT << 2) | 209 (COLOR_8BIT << 4) | 210 (0x21 << 8)); 211 212 DPU_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl); 213 DPU_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period); 214 DPU_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0, 215 p->vsync_pulse_width * hsync_period); 216 DPU_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl); 217 DPU_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start); 218 DPU_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end); 219 DPU_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl); 220 DPU_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start); 221 DPU_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end); 222 DPU_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr); 223 DPU_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr); 224 DPU_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew); 225 DPU_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl); 226 DPU_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3); 227 DPU_REG_WRITE(c, INTF_CONFIG, intf_cfg); 228 DPU_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format); 229 if (ctx->cap->features & BIT(DPU_DATA_HCTL_EN)) { 230 DPU_REG_WRITE(c, INTF_CONFIG2, intf_cfg2); 231 DPU_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl); 232 DPU_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl); 233 } 234 } 235 236 static void dpu_hw_intf_enable_timing_engine( 237 struct dpu_hw_intf *intf, 238 u8 enable) 239 { 240 struct dpu_hw_blk_reg_map *c = &intf->hw; 241 /* Note: Display interface select is handled in top block hw layer */ 242 DPU_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0); 243 } 244 245 static void dpu_hw_intf_setup_prg_fetch( 246 struct dpu_hw_intf *intf, 247 const struct intf_prog_fetch *fetch) 248 { 249 struct dpu_hw_blk_reg_map *c = &intf->hw; 250 int fetch_enable; 251 252 /* 253 * Fetch should always be outside the active lines. If the fetching 254 * is programmed within active region, hardware behavior is unknown. 255 */ 256 257 fetch_enable = DPU_REG_READ(c, INTF_CONFIG); 258 if (fetch->enable) { 259 fetch_enable |= BIT(31); 260 DPU_REG_WRITE(c, INTF_PROG_FETCH_START, 261 fetch->fetch_start); 262 } else { 263 fetch_enable &= ~BIT(31); 264 } 265 266 DPU_REG_WRITE(c, INTF_CONFIG, fetch_enable); 267 } 268 269 static void dpu_hw_intf_bind_pingpong_blk( 270 struct dpu_hw_intf *intf, 271 const enum dpu_pingpong pp) 272 { 273 struct dpu_hw_blk_reg_map *c = &intf->hw; 274 u32 mux_cfg; 275 276 mux_cfg = DPU_REG_READ(c, INTF_MUX); 277 mux_cfg &= ~0xf; 278 279 if (pp) 280 mux_cfg |= (pp - PINGPONG_0) & 0x7; 281 else 282 mux_cfg |= 0xf; 283 284 DPU_REG_WRITE(c, INTF_MUX, mux_cfg); 285 } 286 287 static void dpu_hw_intf_get_status( 288 struct dpu_hw_intf *intf, 289 struct intf_status *s) 290 { 291 struct dpu_hw_blk_reg_map *c = &intf->hw; 292 unsigned long cap = intf->cap->features; 293 294 if (cap & BIT(DPU_INTF_STATUS_SUPPORTED)) 295 s->is_en = DPU_REG_READ(c, INTF_STATUS) & BIT(0); 296 else 297 s->is_en = DPU_REG_READ(c, INTF_TIMING_ENGINE_EN); 298 299 s->is_prog_fetch_en = !!(DPU_REG_READ(c, INTF_CONFIG) & BIT(31)); 300 if (s->is_en) { 301 s->frame_count = DPU_REG_READ(c, INTF_FRAME_COUNT); 302 s->line_count = DPU_REG_READ(c, INTF_LINE_COUNT); 303 } else { 304 s->line_count = 0; 305 s->frame_count = 0; 306 } 307 } 308 309 static u32 dpu_hw_intf_get_line_count(struct dpu_hw_intf *intf) 310 { 311 struct dpu_hw_blk_reg_map *c; 312 313 if (!intf) 314 return 0; 315 316 c = &intf->hw; 317 318 return DPU_REG_READ(c, INTF_LINE_COUNT); 319 } 320 321 static void dpu_hw_intf_setup_misr(struct dpu_hw_intf *intf, bool enable, u32 frame_count) 322 { 323 dpu_hw_setup_misr(&intf->hw, INTF_MISR_CTRL, enable, frame_count); 324 } 325 326 static int dpu_hw_intf_collect_misr(struct dpu_hw_intf *intf, u32 *misr_value) 327 { 328 return dpu_hw_collect_misr(&intf->hw, INTF_MISR_CTRL, INTF_MISR_SIGNATURE, misr_value); 329 } 330 331 static int dpu_hw_intf_enable_te(struct dpu_hw_intf *intf, 332 struct dpu_hw_tear_check *te) 333 { 334 struct dpu_hw_blk_reg_map *c; 335 int cfg; 336 337 if (!intf) 338 return -EINVAL; 339 340 c = &intf->hw; 341 342 cfg = BIT(19); /* VSYNC_COUNTER_EN */ 343 if (te->hw_vsync_mode) 344 cfg |= BIT(20); 345 346 cfg |= te->vsync_count; 347 348 DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); 349 DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height); 350 DPU_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val); 351 DPU_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq); 352 DPU_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos); 353 DPU_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, 354 ((te->sync_threshold_continue << 16) | 355 te->sync_threshold_start)); 356 DPU_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, 357 (te->start_pos + te->sync_threshold_start + 1)); 358 359 DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 1); 360 361 return 0; 362 } 363 364 static void dpu_hw_intf_setup_autorefresh_config(struct dpu_hw_intf *intf, 365 u32 frame_count, bool enable) 366 { 367 struct dpu_hw_blk_reg_map *c; 368 u32 refresh_cfg; 369 370 c = &intf->hw; 371 refresh_cfg = DPU_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG); 372 if (enable) 373 refresh_cfg = BIT(31) | frame_count; 374 else 375 refresh_cfg &= ~BIT(31); 376 377 DPU_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg); 378 } 379 380 /* 381 * dpu_hw_intf_get_autorefresh_config - Get autorefresh config from HW 382 * @intf: DPU intf structure 383 * @frame_count: Used to return the current frame count from hw 384 * 385 * Returns: True if autorefresh enabled, false if disabled. 386 */ 387 static bool dpu_hw_intf_get_autorefresh_config(struct dpu_hw_intf *intf, 388 u32 *frame_count) 389 { 390 u32 val = DPU_REG_READ(&intf->hw, INTF_TEAR_AUTOREFRESH_CONFIG); 391 392 if (frame_count != NULL) 393 *frame_count = val & 0xffff; 394 return !!((val & BIT(31)) >> 31); 395 } 396 397 static int dpu_hw_intf_disable_te(struct dpu_hw_intf *intf) 398 { 399 struct dpu_hw_blk_reg_map *c; 400 401 if (!intf) 402 return -EINVAL; 403 404 c = &intf->hw; 405 DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 0); 406 return 0; 407 } 408 409 static int dpu_hw_intf_connect_external_te(struct dpu_hw_intf *intf, 410 bool enable_external_te) 411 { 412 struct dpu_hw_blk_reg_map *c = &intf->hw; 413 u32 cfg; 414 int orig; 415 416 if (!intf) 417 return -EINVAL; 418 419 c = &intf->hw; 420 cfg = DPU_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC); 421 orig = (bool)(cfg & BIT(20)); 422 if (enable_external_te) 423 cfg |= BIT(20); 424 else 425 cfg &= ~BIT(20); 426 DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); 427 trace_dpu_intf_connect_ext_te(intf->idx - INTF_0, cfg); 428 429 return orig; 430 } 431 432 static int dpu_hw_intf_get_vsync_info(struct dpu_hw_intf *intf, 433 struct dpu_hw_pp_vsync_info *info) 434 { 435 struct dpu_hw_blk_reg_map *c = &intf->hw; 436 u32 val; 437 438 if (!intf || !info) 439 return -EINVAL; 440 441 c = &intf->hw; 442 443 val = DPU_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL); 444 info->rd_ptr_init_val = val & 0xffff; 445 446 val = DPU_REG_READ(c, INTF_TEAR_INT_COUNT_VAL); 447 info->rd_ptr_frame_count = (val & 0xffff0000) >> 16; 448 info->rd_ptr_line_count = val & 0xffff; 449 450 val = DPU_REG_READ(c, INTF_TEAR_LINE_COUNT); 451 info->wr_ptr_line_count = val & 0xffff; 452 453 val = DPU_REG_READ(c, INTF_FRAME_COUNT); 454 info->intf_frame_count = val; 455 456 return 0; 457 } 458 459 static void dpu_hw_intf_vsync_sel(struct dpu_hw_intf *intf, 460 u32 vsync_source) 461 { 462 struct dpu_hw_blk_reg_map *c; 463 464 if (!intf) 465 return; 466 467 c = &intf->hw; 468 469 DPU_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf)); 470 } 471 472 static void dpu_hw_intf_disable_autorefresh(struct dpu_hw_intf *intf, 473 uint32_t encoder_id, u16 vdisplay) 474 { 475 struct dpu_hw_pp_vsync_info info; 476 int trial = 0; 477 478 /* If autorefresh is already disabled, we have nothing to do */ 479 if (!dpu_hw_intf_get_autorefresh_config(intf, NULL)) 480 return; 481 482 /* 483 * If autorefresh is enabled, disable it and make sure it is safe to 484 * proceed with current frame commit/push. Sequence followed is, 485 * 1. Disable TE 486 * 2. Disable autorefresh config 487 * 4. Poll for frame transfer ongoing to be false 488 * 5. Enable TE back 489 */ 490 491 dpu_hw_intf_connect_external_te(intf, false); 492 dpu_hw_intf_setup_autorefresh_config(intf, 0, false); 493 494 do { 495 udelay(DPU_ENC_MAX_POLL_TIMEOUT_US); 496 if ((trial * DPU_ENC_MAX_POLL_TIMEOUT_US) 497 > (KICKOFF_TIMEOUT_MS * USEC_PER_MSEC)) { 498 DPU_ERROR("enc%d intf%d disable autorefresh failed\n", 499 encoder_id, intf->idx - INTF_0); 500 break; 501 } 502 503 trial++; 504 505 dpu_hw_intf_get_vsync_info(intf, &info); 506 } while (info.wr_ptr_line_count > 0 && 507 info.wr_ptr_line_count < vdisplay); 508 509 dpu_hw_intf_connect_external_te(intf, true); 510 511 DPU_DEBUG("enc%d intf%d disabled autorefresh\n", 512 encoder_id, intf->idx - INTF_0); 513 514 } 515 516 static void dpu_hw_intf_enable_compression(struct dpu_hw_intf *ctx) 517 { 518 u32 intf_cfg2 = DPU_REG_READ(&ctx->hw, INTF_CONFIG2); 519 520 intf_cfg2 |= INTF_CFG2_DCE_DATA_COMPRESS; 521 522 DPU_REG_WRITE(&ctx->hw, INTF_CONFIG2, intf_cfg2); 523 } 524 525 static void _setup_intf_ops(struct dpu_hw_intf_ops *ops, 526 unsigned long cap) 527 { 528 ops->setup_timing_gen = dpu_hw_intf_setup_timing_engine; 529 ops->setup_prg_fetch = dpu_hw_intf_setup_prg_fetch; 530 ops->get_status = dpu_hw_intf_get_status; 531 ops->enable_timing = dpu_hw_intf_enable_timing_engine; 532 ops->get_line_count = dpu_hw_intf_get_line_count; 533 if (cap & BIT(DPU_INTF_INPUT_CTRL)) 534 ops->bind_pingpong_blk = dpu_hw_intf_bind_pingpong_blk; 535 ops->setup_misr = dpu_hw_intf_setup_misr; 536 ops->collect_misr = dpu_hw_intf_collect_misr; 537 538 if (cap & BIT(DPU_INTF_TE)) { 539 ops->enable_tearcheck = dpu_hw_intf_enable_te; 540 ops->disable_tearcheck = dpu_hw_intf_disable_te; 541 ops->connect_external_te = dpu_hw_intf_connect_external_te; 542 ops->vsync_sel = dpu_hw_intf_vsync_sel; 543 ops->disable_autorefresh = dpu_hw_intf_disable_autorefresh; 544 } 545 546 if (cap & BIT(DPU_INTF_DATA_COMPRESS)) 547 ops->enable_compression = dpu_hw_intf_enable_compression; 548 } 549 550 struct dpu_hw_intf *dpu_hw_intf_init(const struct dpu_intf_cfg *cfg, 551 void __iomem *addr) 552 { 553 struct dpu_hw_intf *c; 554 555 if (cfg->type == INTF_NONE) { 556 DPU_DEBUG("Skip intf %d with type NONE\n", cfg->id - INTF_0); 557 return NULL; 558 } 559 560 c = kzalloc(sizeof(*c), GFP_KERNEL); 561 if (!c) 562 return ERR_PTR(-ENOMEM); 563 564 c->hw.blk_addr = addr + cfg->base; 565 c->hw.log_mask = DPU_DBG_MASK_INTF; 566 567 /* 568 * Assign ops 569 */ 570 c->idx = cfg->id; 571 c->cap = cfg; 572 _setup_intf_ops(&c->ops, c->cap->features); 573 574 return c; 575 } 576 577 void dpu_hw_intf_destroy(struct dpu_hw_intf *intf) 578 { 579 kfree(intf); 580 } 581 582