1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 3 */ 4 5 #include <linux/bitops.h> 6 #include <linux/slab.h> 7 8 #include "dpu_kms.h" 9 #include "dpu_hw_interrupts.h" 10 #include "dpu_hw_util.h" 11 #include "dpu_hw_mdss.h" 12 13 /** 14 * Register offsets in MDSS register file for the interrupt registers 15 * w.r.t. to the MDP base 16 */ 17 #define MDP_SSPP_TOP0_OFF 0x0 18 #define MDP_INTF_0_OFF 0x6A000 19 #define MDP_INTF_1_OFF 0x6A800 20 #define MDP_INTF_2_OFF 0x6B000 21 #define MDP_INTF_3_OFF 0x6B800 22 #define MDP_INTF_4_OFF 0x6C000 23 #define MDP_AD4_0_OFF 0x7C000 24 #define MDP_AD4_1_OFF 0x7D000 25 #define MDP_AD4_INTR_EN_OFF 0x41c 26 #define MDP_AD4_INTR_CLEAR_OFF 0x424 27 #define MDP_AD4_INTR_STATUS_OFF 0x420 28 29 /** 30 * WB interrupt status bit definitions 31 */ 32 #define DPU_INTR_WB_0_DONE BIT(0) 33 #define DPU_INTR_WB_1_DONE BIT(1) 34 #define DPU_INTR_WB_2_DONE BIT(4) 35 36 /** 37 * WDOG timer interrupt status bit definitions 38 */ 39 #define DPU_INTR_WD_TIMER_0_DONE BIT(2) 40 #define DPU_INTR_WD_TIMER_1_DONE BIT(3) 41 #define DPU_INTR_WD_TIMER_2_DONE BIT(5) 42 #define DPU_INTR_WD_TIMER_3_DONE BIT(6) 43 #define DPU_INTR_WD_TIMER_4_DONE BIT(7) 44 45 /** 46 * Pingpong interrupt status bit definitions 47 */ 48 #define DPU_INTR_PING_PONG_0_DONE BIT(8) 49 #define DPU_INTR_PING_PONG_1_DONE BIT(9) 50 #define DPU_INTR_PING_PONG_2_DONE BIT(10) 51 #define DPU_INTR_PING_PONG_3_DONE BIT(11) 52 #define DPU_INTR_PING_PONG_0_RD_PTR BIT(12) 53 #define DPU_INTR_PING_PONG_1_RD_PTR BIT(13) 54 #define DPU_INTR_PING_PONG_2_RD_PTR BIT(14) 55 #define DPU_INTR_PING_PONG_3_RD_PTR BIT(15) 56 #define DPU_INTR_PING_PONG_0_WR_PTR BIT(16) 57 #define DPU_INTR_PING_PONG_1_WR_PTR BIT(17) 58 #define DPU_INTR_PING_PONG_2_WR_PTR BIT(18) 59 #define DPU_INTR_PING_PONG_3_WR_PTR BIT(19) 60 #define DPU_INTR_PING_PONG_0_AUTOREFRESH_DONE BIT(20) 61 #define DPU_INTR_PING_PONG_1_AUTOREFRESH_DONE BIT(21) 62 #define DPU_INTR_PING_PONG_2_AUTOREFRESH_DONE BIT(22) 63 #define DPU_INTR_PING_PONG_3_AUTOREFRESH_DONE BIT(23) 64 65 /** 66 * Interface interrupt status bit definitions 67 */ 68 #define DPU_INTR_INTF_0_UNDERRUN BIT(24) 69 #define DPU_INTR_INTF_1_UNDERRUN BIT(26) 70 #define DPU_INTR_INTF_2_UNDERRUN BIT(28) 71 #define DPU_INTR_INTF_3_UNDERRUN BIT(30) 72 #define DPU_INTR_INTF_0_VSYNC BIT(25) 73 #define DPU_INTR_INTF_1_VSYNC BIT(27) 74 #define DPU_INTR_INTF_2_VSYNC BIT(29) 75 #define DPU_INTR_INTF_3_VSYNC BIT(31) 76 77 /** 78 * Pingpong Secondary interrupt status bit definitions 79 */ 80 #define DPU_INTR_PING_PONG_S0_AUTOREFRESH_DONE BIT(0) 81 #define DPU_INTR_PING_PONG_S0_WR_PTR BIT(4) 82 #define DPU_INTR_PING_PONG_S0_RD_PTR BIT(8) 83 #define DPU_INTR_PING_PONG_S0_TEAR_DETECTED BIT(22) 84 #define DPU_INTR_PING_PONG_S0_TE_DETECTED BIT(28) 85 86 /** 87 * Pingpong TEAR detection interrupt status bit definitions 88 */ 89 #define DPU_INTR_PING_PONG_0_TEAR_DETECTED BIT(16) 90 #define DPU_INTR_PING_PONG_1_TEAR_DETECTED BIT(17) 91 #define DPU_INTR_PING_PONG_2_TEAR_DETECTED BIT(18) 92 #define DPU_INTR_PING_PONG_3_TEAR_DETECTED BIT(19) 93 94 /** 95 * Pingpong TE detection interrupt status bit definitions 96 */ 97 #define DPU_INTR_PING_PONG_0_TE_DETECTED BIT(24) 98 #define DPU_INTR_PING_PONG_1_TE_DETECTED BIT(25) 99 #define DPU_INTR_PING_PONG_2_TE_DETECTED BIT(26) 100 #define DPU_INTR_PING_PONG_3_TE_DETECTED BIT(27) 101 102 /** 103 * Ctl start interrupt status bit definitions 104 */ 105 #define DPU_INTR_CTL_0_START BIT(9) 106 #define DPU_INTR_CTL_1_START BIT(10) 107 #define DPU_INTR_CTL_2_START BIT(11) 108 #define DPU_INTR_CTL_3_START BIT(12) 109 #define DPU_INTR_CTL_4_START BIT(13) 110 111 /** 112 * Concurrent WB overflow interrupt status bit definitions 113 */ 114 #define DPU_INTR_CWB_2_OVERFLOW BIT(14) 115 #define DPU_INTR_CWB_3_OVERFLOW BIT(15) 116 117 /** 118 * Histogram VIG done interrupt status bit definitions 119 */ 120 #define DPU_INTR_HIST_VIG_0_DONE BIT(0) 121 #define DPU_INTR_HIST_VIG_1_DONE BIT(4) 122 #define DPU_INTR_HIST_VIG_2_DONE BIT(8) 123 #define DPU_INTR_HIST_VIG_3_DONE BIT(10) 124 125 /** 126 * Histogram VIG reset Sequence done interrupt status bit definitions 127 */ 128 #define DPU_INTR_HIST_VIG_0_RSTSEQ_DONE BIT(1) 129 #define DPU_INTR_HIST_VIG_1_RSTSEQ_DONE BIT(5) 130 #define DPU_INTR_HIST_VIG_2_RSTSEQ_DONE BIT(9) 131 #define DPU_INTR_HIST_VIG_3_RSTSEQ_DONE BIT(11) 132 133 /** 134 * Histogram DSPP done interrupt status bit definitions 135 */ 136 #define DPU_INTR_HIST_DSPP_0_DONE BIT(12) 137 #define DPU_INTR_HIST_DSPP_1_DONE BIT(16) 138 #define DPU_INTR_HIST_DSPP_2_DONE BIT(20) 139 #define DPU_INTR_HIST_DSPP_3_DONE BIT(22) 140 141 /** 142 * Histogram DSPP reset Sequence done interrupt status bit definitions 143 */ 144 #define DPU_INTR_HIST_DSPP_0_RSTSEQ_DONE BIT(13) 145 #define DPU_INTR_HIST_DSPP_1_RSTSEQ_DONE BIT(17) 146 #define DPU_INTR_HIST_DSPP_2_RSTSEQ_DONE BIT(21) 147 #define DPU_INTR_HIST_DSPP_3_RSTSEQ_DONE BIT(23) 148 149 /** 150 * INTF interrupt status bit definitions 151 */ 152 #define DPU_INTR_VIDEO_INTO_STATIC BIT(0) 153 #define DPU_INTR_VIDEO_OUTOF_STATIC BIT(1) 154 #define DPU_INTR_DSICMD_0_INTO_STATIC BIT(2) 155 #define DPU_INTR_DSICMD_0_OUTOF_STATIC BIT(3) 156 #define DPU_INTR_DSICMD_1_INTO_STATIC BIT(4) 157 #define DPU_INTR_DSICMD_1_OUTOF_STATIC BIT(5) 158 #define DPU_INTR_DSICMD_2_INTO_STATIC BIT(6) 159 #define DPU_INTR_DSICMD_2_OUTOF_STATIC BIT(7) 160 #define DPU_INTR_PROG_LINE BIT(8) 161 162 /** 163 * AD4 interrupt status bit definitions 164 */ 165 #define DPU_INTR_BACKLIGHT_UPDATED BIT(0) 166 /** 167 * struct dpu_intr_reg - array of DPU register sets 168 * @clr_off: offset to CLEAR reg 169 * @en_off: offset to ENABLE reg 170 * @status_off: offset to STATUS reg 171 */ 172 struct dpu_intr_reg { 173 u32 clr_off; 174 u32 en_off; 175 u32 status_off; 176 }; 177 178 /** 179 * struct dpu_irq_type - maps each irq with i/f 180 * @intr_type: type of interrupt listed in dpu_intr_type 181 * @instance_idx: instance index of the associated HW block in DPU 182 * @irq_mask: corresponding bit in the interrupt status reg 183 * @reg_idx: which reg set to use 184 */ 185 struct dpu_irq_type { 186 u32 intr_type; 187 u32 instance_idx; 188 u32 irq_mask; 189 u32 reg_idx; 190 }; 191 192 /** 193 * List of DPU interrupt registers 194 */ 195 static const struct dpu_intr_reg dpu_intr_set[] = { 196 { 197 MDP_SSPP_TOP0_OFF+INTR_CLEAR, 198 MDP_SSPP_TOP0_OFF+INTR_EN, 199 MDP_SSPP_TOP0_OFF+INTR_STATUS 200 }, 201 { 202 MDP_SSPP_TOP0_OFF+INTR2_CLEAR, 203 MDP_SSPP_TOP0_OFF+INTR2_EN, 204 MDP_SSPP_TOP0_OFF+INTR2_STATUS 205 }, 206 { 207 MDP_SSPP_TOP0_OFF+HIST_INTR_CLEAR, 208 MDP_SSPP_TOP0_OFF+HIST_INTR_EN, 209 MDP_SSPP_TOP0_OFF+HIST_INTR_STATUS 210 }, 211 { 212 MDP_INTF_0_OFF+INTF_INTR_CLEAR, 213 MDP_INTF_0_OFF+INTF_INTR_EN, 214 MDP_INTF_0_OFF+INTF_INTR_STATUS 215 }, 216 { 217 MDP_INTF_1_OFF+INTF_INTR_CLEAR, 218 MDP_INTF_1_OFF+INTF_INTR_EN, 219 MDP_INTF_1_OFF+INTF_INTR_STATUS 220 }, 221 { 222 MDP_INTF_2_OFF+INTF_INTR_CLEAR, 223 MDP_INTF_2_OFF+INTF_INTR_EN, 224 MDP_INTF_2_OFF+INTF_INTR_STATUS 225 }, 226 { 227 MDP_INTF_3_OFF+INTF_INTR_CLEAR, 228 MDP_INTF_3_OFF+INTF_INTR_EN, 229 MDP_INTF_3_OFF+INTF_INTR_STATUS 230 }, 231 { 232 MDP_INTF_4_OFF+INTF_INTR_CLEAR, 233 MDP_INTF_4_OFF+INTF_INTR_EN, 234 MDP_INTF_4_OFF+INTF_INTR_STATUS 235 }, 236 { 237 MDP_AD4_0_OFF + MDP_AD4_INTR_CLEAR_OFF, 238 MDP_AD4_0_OFF + MDP_AD4_INTR_EN_OFF, 239 MDP_AD4_0_OFF + MDP_AD4_INTR_STATUS_OFF, 240 }, 241 { 242 MDP_AD4_1_OFF + MDP_AD4_INTR_CLEAR_OFF, 243 MDP_AD4_1_OFF + MDP_AD4_INTR_EN_OFF, 244 MDP_AD4_1_OFF + MDP_AD4_INTR_STATUS_OFF, 245 } 246 }; 247 248 /** 249 * IRQ mapping table - use for lookup an irq_idx in this table that have 250 * a matching interface type and instance index. 251 */ 252 static const struct dpu_irq_type dpu_irq_map[] = { 253 /* BEGIN MAP_RANGE: 0-31, INTR */ 254 /* irq_idx: 0-3 */ 255 { DPU_IRQ_TYPE_WB_ROT_COMP, WB_0, DPU_INTR_WB_0_DONE, 0}, 256 { DPU_IRQ_TYPE_WB_ROT_COMP, WB_1, DPU_INTR_WB_1_DONE, 0}, 257 { DPU_IRQ_TYPE_WD_TIMER, WD_TIMER_0, DPU_INTR_WD_TIMER_0_DONE, 0}, 258 { DPU_IRQ_TYPE_WD_TIMER, WD_TIMER_1, DPU_INTR_WD_TIMER_1_DONE, 0}, 259 /* irq_idx: 4-7 */ 260 { DPU_IRQ_TYPE_WB_WFD_COMP, WB_2, DPU_INTR_WB_2_DONE, 0}, 261 { DPU_IRQ_TYPE_WD_TIMER, WD_TIMER_2, DPU_INTR_WD_TIMER_2_DONE, 0}, 262 { DPU_IRQ_TYPE_WD_TIMER, WD_TIMER_3, DPU_INTR_WD_TIMER_3_DONE, 0}, 263 { DPU_IRQ_TYPE_WD_TIMER, WD_TIMER_4, DPU_INTR_WD_TIMER_4_DONE, 0}, 264 /* irq_idx: 8-11 */ 265 { DPU_IRQ_TYPE_PING_PONG_COMP, PINGPONG_0, 266 DPU_INTR_PING_PONG_0_DONE, 0}, 267 { DPU_IRQ_TYPE_PING_PONG_COMP, PINGPONG_1, 268 DPU_INTR_PING_PONG_1_DONE, 0}, 269 { DPU_IRQ_TYPE_PING_PONG_COMP, PINGPONG_2, 270 DPU_INTR_PING_PONG_2_DONE, 0}, 271 { DPU_IRQ_TYPE_PING_PONG_COMP, PINGPONG_3, 272 DPU_INTR_PING_PONG_3_DONE, 0}, 273 /* irq_idx: 12-15 */ 274 { DPU_IRQ_TYPE_PING_PONG_RD_PTR, PINGPONG_0, 275 DPU_INTR_PING_PONG_0_RD_PTR, 0}, 276 { DPU_IRQ_TYPE_PING_PONG_RD_PTR, PINGPONG_1, 277 DPU_INTR_PING_PONG_1_RD_PTR, 0}, 278 { DPU_IRQ_TYPE_PING_PONG_RD_PTR, PINGPONG_2, 279 DPU_INTR_PING_PONG_2_RD_PTR, 0}, 280 { DPU_IRQ_TYPE_PING_PONG_RD_PTR, PINGPONG_3, 281 DPU_INTR_PING_PONG_3_RD_PTR, 0}, 282 /* irq_idx: 16-19 */ 283 { DPU_IRQ_TYPE_PING_PONG_WR_PTR, PINGPONG_0, 284 DPU_INTR_PING_PONG_0_WR_PTR, 0}, 285 { DPU_IRQ_TYPE_PING_PONG_WR_PTR, PINGPONG_1, 286 DPU_INTR_PING_PONG_1_WR_PTR, 0}, 287 { DPU_IRQ_TYPE_PING_PONG_WR_PTR, PINGPONG_2, 288 DPU_INTR_PING_PONG_2_WR_PTR, 0}, 289 { DPU_IRQ_TYPE_PING_PONG_WR_PTR, PINGPONG_3, 290 DPU_INTR_PING_PONG_3_WR_PTR, 0}, 291 /* irq_idx: 20-23 */ 292 { DPU_IRQ_TYPE_PING_PONG_AUTO_REF, PINGPONG_0, 293 DPU_INTR_PING_PONG_0_AUTOREFRESH_DONE, 0}, 294 { DPU_IRQ_TYPE_PING_PONG_AUTO_REF, PINGPONG_1, 295 DPU_INTR_PING_PONG_1_AUTOREFRESH_DONE, 0}, 296 { DPU_IRQ_TYPE_PING_PONG_AUTO_REF, PINGPONG_2, 297 DPU_INTR_PING_PONG_2_AUTOREFRESH_DONE, 0}, 298 { DPU_IRQ_TYPE_PING_PONG_AUTO_REF, PINGPONG_3, 299 DPU_INTR_PING_PONG_3_AUTOREFRESH_DONE, 0}, 300 /* irq_idx: 24-27 */ 301 { DPU_IRQ_TYPE_INTF_UNDER_RUN, INTF_0, DPU_INTR_INTF_0_UNDERRUN, 0}, 302 { DPU_IRQ_TYPE_INTF_VSYNC, INTF_0, DPU_INTR_INTF_0_VSYNC, 0}, 303 { DPU_IRQ_TYPE_INTF_UNDER_RUN, INTF_1, DPU_INTR_INTF_1_UNDERRUN, 0}, 304 { DPU_IRQ_TYPE_INTF_VSYNC, INTF_1, DPU_INTR_INTF_1_VSYNC, 0}, 305 /* irq_idx: 28-31 */ 306 { DPU_IRQ_TYPE_INTF_UNDER_RUN, INTF_2, DPU_INTR_INTF_2_UNDERRUN, 0}, 307 { DPU_IRQ_TYPE_INTF_VSYNC, INTF_2, DPU_INTR_INTF_2_VSYNC, 0}, 308 { DPU_IRQ_TYPE_INTF_UNDER_RUN, INTF_3, DPU_INTR_INTF_3_UNDERRUN, 0}, 309 { DPU_IRQ_TYPE_INTF_VSYNC, INTF_3, DPU_INTR_INTF_3_VSYNC, 0}, 310 311 /* BEGIN MAP_RANGE: 32-64, INTR2 */ 312 /* irq_idx: 32-35 */ 313 { DPU_IRQ_TYPE_PING_PONG_AUTO_REF, PINGPONG_S0, 314 DPU_INTR_PING_PONG_S0_AUTOREFRESH_DONE, 1}, 315 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 316 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 317 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 318 /* irq_idx: 36-39 */ 319 { DPU_IRQ_TYPE_PING_PONG_WR_PTR, PINGPONG_S0, 320 DPU_INTR_PING_PONG_S0_WR_PTR, 1}, 321 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 322 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 323 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 324 /* irq_idx: 40 */ 325 { DPU_IRQ_TYPE_PING_PONG_RD_PTR, PINGPONG_S0, 326 DPU_INTR_PING_PONG_S0_RD_PTR, 1}, 327 /* irq_idx: 41-45 */ 328 { DPU_IRQ_TYPE_CTL_START, CTL_0, 329 DPU_INTR_CTL_0_START, 1}, 330 { DPU_IRQ_TYPE_CTL_START, CTL_1, 331 DPU_INTR_CTL_1_START, 1}, 332 { DPU_IRQ_TYPE_CTL_START, CTL_2, 333 DPU_INTR_CTL_2_START, 1}, 334 { DPU_IRQ_TYPE_CTL_START, CTL_3, 335 DPU_INTR_CTL_3_START, 1}, 336 { DPU_IRQ_TYPE_CTL_START, CTL_4, 337 DPU_INTR_CTL_4_START, 1}, 338 /* irq_idx: 46-47 */ 339 { DPU_IRQ_TYPE_CWB_OVERFLOW, CWB_2, DPU_INTR_CWB_2_OVERFLOW, 1}, 340 { DPU_IRQ_TYPE_CWB_OVERFLOW, CWB_3, DPU_INTR_CWB_3_OVERFLOW, 1}, 341 /* irq_idx: 48-51 */ 342 { DPU_IRQ_TYPE_PING_PONG_TEAR_CHECK, PINGPONG_0, 343 DPU_INTR_PING_PONG_0_TEAR_DETECTED, 1}, 344 { DPU_IRQ_TYPE_PING_PONG_TEAR_CHECK, PINGPONG_1, 345 DPU_INTR_PING_PONG_1_TEAR_DETECTED, 1}, 346 { DPU_IRQ_TYPE_PING_PONG_TEAR_CHECK, PINGPONG_2, 347 DPU_INTR_PING_PONG_2_TEAR_DETECTED, 1}, 348 { DPU_IRQ_TYPE_PING_PONG_TEAR_CHECK, PINGPONG_3, 349 DPU_INTR_PING_PONG_3_TEAR_DETECTED, 1}, 350 /* irq_idx: 52-55 */ 351 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 352 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 353 { DPU_IRQ_TYPE_PING_PONG_TEAR_CHECK, PINGPONG_S0, 354 DPU_INTR_PING_PONG_S0_TEAR_DETECTED, 1}, 355 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 356 /* irq_idx: 56-59 */ 357 { DPU_IRQ_TYPE_PING_PONG_TE_CHECK, PINGPONG_0, 358 DPU_INTR_PING_PONG_0_TE_DETECTED, 1}, 359 { DPU_IRQ_TYPE_PING_PONG_TE_CHECK, PINGPONG_1, 360 DPU_INTR_PING_PONG_1_TE_DETECTED, 1}, 361 { DPU_IRQ_TYPE_PING_PONG_TE_CHECK, PINGPONG_2, 362 DPU_INTR_PING_PONG_2_TE_DETECTED, 1}, 363 { DPU_IRQ_TYPE_PING_PONG_TE_CHECK, PINGPONG_3, 364 DPU_INTR_PING_PONG_3_TE_DETECTED, 1}, 365 /* irq_idx: 60-63 */ 366 { DPU_IRQ_TYPE_PING_PONG_TE_CHECK, PINGPONG_S0, 367 DPU_INTR_PING_PONG_S0_TE_DETECTED, 1}, 368 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 369 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 370 { DPU_IRQ_TYPE_RESERVED, 0, 0, 1}, 371 372 /* BEGIN MAP_RANGE: 64-95 HIST */ 373 /* irq_idx: 64-67 */ 374 { DPU_IRQ_TYPE_HIST_VIG_DONE, SSPP_VIG0, DPU_INTR_HIST_VIG_0_DONE, 2}, 375 { DPU_IRQ_TYPE_HIST_VIG_RSTSEQ, SSPP_VIG0, 376 DPU_INTR_HIST_VIG_0_RSTSEQ_DONE, 2}, 377 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 378 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 379 /* irq_idx: 68-71 */ 380 { DPU_IRQ_TYPE_HIST_VIG_DONE, SSPP_VIG1, DPU_INTR_HIST_VIG_1_DONE, 2}, 381 { DPU_IRQ_TYPE_HIST_VIG_RSTSEQ, SSPP_VIG1, 382 DPU_INTR_HIST_VIG_1_RSTSEQ_DONE, 2}, 383 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 384 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 385 /* irq_idx: 72-75 */ 386 { DPU_IRQ_TYPE_HIST_VIG_DONE, SSPP_VIG2, DPU_INTR_HIST_VIG_2_DONE, 2}, 387 { DPU_IRQ_TYPE_HIST_VIG_RSTSEQ, SSPP_VIG2, 388 DPU_INTR_HIST_VIG_2_RSTSEQ_DONE, 2}, 389 { DPU_IRQ_TYPE_HIST_VIG_DONE, SSPP_VIG3, DPU_INTR_HIST_VIG_3_DONE, 2}, 390 { DPU_IRQ_TYPE_HIST_VIG_RSTSEQ, SSPP_VIG3, 391 DPU_INTR_HIST_VIG_3_RSTSEQ_DONE, 2}, 392 /* irq_idx: 76-79 */ 393 { DPU_IRQ_TYPE_HIST_DSPP_DONE, DSPP_0, DPU_INTR_HIST_DSPP_0_DONE, 2}, 394 { DPU_IRQ_TYPE_HIST_DSPP_RSTSEQ, DSPP_0, 395 DPU_INTR_HIST_DSPP_0_RSTSEQ_DONE, 2}, 396 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 397 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 398 /* irq_idx: 80-83 */ 399 { DPU_IRQ_TYPE_HIST_DSPP_DONE, DSPP_1, DPU_INTR_HIST_DSPP_1_DONE, 2}, 400 { DPU_IRQ_TYPE_HIST_DSPP_RSTSEQ, DSPP_1, 401 DPU_INTR_HIST_DSPP_1_RSTSEQ_DONE, 2}, 402 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 403 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 404 /* irq_idx: 84-87 */ 405 { DPU_IRQ_TYPE_HIST_DSPP_DONE, DSPP_2, DPU_INTR_HIST_DSPP_2_DONE, 2}, 406 { DPU_IRQ_TYPE_HIST_DSPP_RSTSEQ, DSPP_2, 407 DPU_INTR_HIST_DSPP_2_RSTSEQ_DONE, 2}, 408 { DPU_IRQ_TYPE_HIST_DSPP_DONE, DSPP_3, DPU_INTR_HIST_DSPP_3_DONE, 2}, 409 { DPU_IRQ_TYPE_HIST_DSPP_RSTSEQ, DSPP_3, 410 DPU_INTR_HIST_DSPP_3_RSTSEQ_DONE, 2}, 411 /* irq_idx: 88-91 */ 412 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 413 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 414 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 415 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 416 /* irq_idx: 92-95 */ 417 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 418 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 419 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 420 { DPU_IRQ_TYPE_RESERVED, 0, 0, 2}, 421 422 /* BEGIN MAP_RANGE: 96-127 INTF_0_INTR */ 423 /* irq_idx: 96-99 */ 424 { DPU_IRQ_TYPE_SFI_VIDEO_IN, INTF_0, 425 DPU_INTR_VIDEO_INTO_STATIC, 3}, 426 { DPU_IRQ_TYPE_SFI_VIDEO_OUT, INTF_0, 427 DPU_INTR_VIDEO_OUTOF_STATIC, 3}, 428 { DPU_IRQ_TYPE_SFI_CMD_0_IN, INTF_0, 429 DPU_INTR_DSICMD_0_INTO_STATIC, 3}, 430 { DPU_IRQ_TYPE_SFI_CMD_0_OUT, INTF_0, 431 DPU_INTR_DSICMD_0_OUTOF_STATIC, 3}, 432 /* irq_idx: 100-103 */ 433 { DPU_IRQ_TYPE_SFI_CMD_1_IN, INTF_0, 434 DPU_INTR_DSICMD_1_INTO_STATIC, 3}, 435 { DPU_IRQ_TYPE_SFI_CMD_1_OUT, INTF_0, 436 DPU_INTR_DSICMD_1_OUTOF_STATIC, 3}, 437 { DPU_IRQ_TYPE_SFI_CMD_2_IN, INTF_0, 438 DPU_INTR_DSICMD_2_INTO_STATIC, 3}, 439 { DPU_IRQ_TYPE_SFI_CMD_2_OUT, INTF_0, 440 DPU_INTR_DSICMD_2_OUTOF_STATIC, 3}, 441 /* irq_idx: 104-107 */ 442 { DPU_IRQ_TYPE_PROG_LINE, INTF_0, DPU_INTR_PROG_LINE, 3}, 443 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 444 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 445 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 446 /* irq_idx: 108-111 */ 447 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 448 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 449 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 450 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 451 /* irq_idx: 112-115 */ 452 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 453 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 454 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 455 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 456 /* irq_idx: 116-119 */ 457 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 458 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 459 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 460 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 461 /* irq_idx: 120-123 */ 462 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 463 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 464 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 465 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 466 /* irq_idx: 124-127 */ 467 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 468 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 469 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 470 { DPU_IRQ_TYPE_RESERVED, 0, 0, 3}, 471 472 /* BEGIN MAP_RANGE: 128-159 INTF_1_INTR */ 473 /* irq_idx: 128-131 */ 474 { DPU_IRQ_TYPE_SFI_VIDEO_IN, INTF_1, 475 DPU_INTR_VIDEO_INTO_STATIC, 4}, 476 { DPU_IRQ_TYPE_SFI_VIDEO_OUT, INTF_1, 477 DPU_INTR_VIDEO_OUTOF_STATIC, 4}, 478 { DPU_IRQ_TYPE_SFI_CMD_0_IN, INTF_1, 479 DPU_INTR_DSICMD_0_INTO_STATIC, 4}, 480 { DPU_IRQ_TYPE_SFI_CMD_0_OUT, INTF_1, 481 DPU_INTR_DSICMD_0_OUTOF_STATIC, 4}, 482 /* irq_idx: 132-135 */ 483 { DPU_IRQ_TYPE_SFI_CMD_1_IN, INTF_1, 484 DPU_INTR_DSICMD_1_INTO_STATIC, 4}, 485 { DPU_IRQ_TYPE_SFI_CMD_1_OUT, INTF_1, 486 DPU_INTR_DSICMD_1_OUTOF_STATIC, 4}, 487 { DPU_IRQ_TYPE_SFI_CMD_2_IN, INTF_1, 488 DPU_INTR_DSICMD_2_INTO_STATIC, 4}, 489 { DPU_IRQ_TYPE_SFI_CMD_2_OUT, INTF_1, 490 DPU_INTR_DSICMD_2_OUTOF_STATIC, 4}, 491 /* irq_idx: 136-139 */ 492 { DPU_IRQ_TYPE_PROG_LINE, INTF_1, DPU_INTR_PROG_LINE, 4}, 493 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 494 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 495 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 496 /* irq_idx: 140-143 */ 497 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 498 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 499 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 500 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 501 /* irq_idx: 144-147 */ 502 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 503 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 504 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 505 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 506 /* irq_idx: 148-151 */ 507 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 508 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 509 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 510 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 511 /* irq_idx: 152-155 */ 512 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 513 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 514 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 515 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 516 /* irq_idx: 156-159 */ 517 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 518 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 519 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 520 { DPU_IRQ_TYPE_RESERVED, 0, 0, 4}, 521 522 /* BEGIN MAP_RANGE: 160-191 INTF_2_INTR */ 523 /* irq_idx: 160-163 */ 524 { DPU_IRQ_TYPE_SFI_VIDEO_IN, INTF_2, 525 DPU_INTR_VIDEO_INTO_STATIC, 5}, 526 { DPU_IRQ_TYPE_SFI_VIDEO_OUT, INTF_2, 527 DPU_INTR_VIDEO_OUTOF_STATIC, 5}, 528 { DPU_IRQ_TYPE_SFI_CMD_0_IN, INTF_2, 529 DPU_INTR_DSICMD_0_INTO_STATIC, 5}, 530 { DPU_IRQ_TYPE_SFI_CMD_0_OUT, INTF_2, 531 DPU_INTR_DSICMD_0_OUTOF_STATIC, 5}, 532 /* irq_idx: 164-167 */ 533 { DPU_IRQ_TYPE_SFI_CMD_1_IN, INTF_2, 534 DPU_INTR_DSICMD_1_INTO_STATIC, 5}, 535 { DPU_IRQ_TYPE_SFI_CMD_1_OUT, INTF_2, 536 DPU_INTR_DSICMD_1_OUTOF_STATIC, 5}, 537 { DPU_IRQ_TYPE_SFI_CMD_2_IN, INTF_2, 538 DPU_INTR_DSICMD_2_INTO_STATIC, 5}, 539 { DPU_IRQ_TYPE_SFI_CMD_2_OUT, INTF_2, 540 DPU_INTR_DSICMD_2_OUTOF_STATIC, 5}, 541 /* irq_idx: 168-171 */ 542 { DPU_IRQ_TYPE_PROG_LINE, INTF_2, DPU_INTR_PROG_LINE, 5}, 543 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 544 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 545 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 546 /* irq_idx: 172-175 */ 547 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 548 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 549 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 550 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 551 /* irq_idx: 176-179 */ 552 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 553 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 554 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 555 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 556 /* irq_idx: 180-183 */ 557 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 558 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 559 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 560 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 561 /* irq_idx: 184-187 */ 562 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 563 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 564 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 565 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 566 /* irq_idx: 188-191 */ 567 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 568 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 569 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 570 { DPU_IRQ_TYPE_RESERVED, 0, 0, 5}, 571 572 /* BEGIN MAP_RANGE: 192-223 INTF_3_INTR */ 573 /* irq_idx: 192-195 */ 574 { DPU_IRQ_TYPE_SFI_VIDEO_IN, INTF_3, 575 DPU_INTR_VIDEO_INTO_STATIC, 6}, 576 { DPU_IRQ_TYPE_SFI_VIDEO_OUT, INTF_3, 577 DPU_INTR_VIDEO_OUTOF_STATIC, 6}, 578 { DPU_IRQ_TYPE_SFI_CMD_0_IN, INTF_3, 579 DPU_INTR_DSICMD_0_INTO_STATIC, 6}, 580 { DPU_IRQ_TYPE_SFI_CMD_0_OUT, INTF_3, 581 DPU_INTR_DSICMD_0_OUTOF_STATIC, 6}, 582 /* irq_idx: 196-199 */ 583 { DPU_IRQ_TYPE_SFI_CMD_1_IN, INTF_3, 584 DPU_INTR_DSICMD_1_INTO_STATIC, 6}, 585 { DPU_IRQ_TYPE_SFI_CMD_1_OUT, INTF_3, 586 DPU_INTR_DSICMD_1_OUTOF_STATIC, 6}, 587 { DPU_IRQ_TYPE_SFI_CMD_2_IN, INTF_3, 588 DPU_INTR_DSICMD_2_INTO_STATIC, 6}, 589 { DPU_IRQ_TYPE_SFI_CMD_2_OUT, INTF_3, 590 DPU_INTR_DSICMD_2_OUTOF_STATIC, 6}, 591 /* irq_idx: 200-203 */ 592 { DPU_IRQ_TYPE_PROG_LINE, INTF_3, DPU_INTR_PROG_LINE, 6}, 593 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 594 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 595 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 596 /* irq_idx: 204-207 */ 597 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 598 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 599 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 600 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 601 /* irq_idx: 208-211 */ 602 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 603 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 604 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 605 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 606 /* irq_idx: 212-215 */ 607 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 608 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 609 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 610 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 611 /* irq_idx: 216-219 */ 612 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 613 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 614 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 615 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 616 /* irq_idx: 220-223 */ 617 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 618 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 619 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 620 { DPU_IRQ_TYPE_RESERVED, 0, 0, 6}, 621 622 /* BEGIN MAP_RANGE: 224-255 INTF_4_INTR */ 623 /* irq_idx: 224-227 */ 624 { DPU_IRQ_TYPE_SFI_VIDEO_IN, INTF_4, 625 DPU_INTR_VIDEO_INTO_STATIC, 7}, 626 { DPU_IRQ_TYPE_SFI_VIDEO_OUT, INTF_4, 627 DPU_INTR_VIDEO_OUTOF_STATIC, 7}, 628 { DPU_IRQ_TYPE_SFI_CMD_0_IN, INTF_4, 629 DPU_INTR_DSICMD_0_INTO_STATIC, 7}, 630 { DPU_IRQ_TYPE_SFI_CMD_0_OUT, INTF_4, 631 DPU_INTR_DSICMD_0_OUTOF_STATIC, 7}, 632 /* irq_idx: 228-231 */ 633 { DPU_IRQ_TYPE_SFI_CMD_1_IN, INTF_4, 634 DPU_INTR_DSICMD_1_INTO_STATIC, 7}, 635 { DPU_IRQ_TYPE_SFI_CMD_1_OUT, INTF_4, 636 DPU_INTR_DSICMD_1_OUTOF_STATIC, 7}, 637 { DPU_IRQ_TYPE_SFI_CMD_2_IN, INTF_4, 638 DPU_INTR_DSICMD_2_INTO_STATIC, 7}, 639 { DPU_IRQ_TYPE_SFI_CMD_2_OUT, INTF_4, 640 DPU_INTR_DSICMD_2_OUTOF_STATIC, 7}, 641 /* irq_idx: 232-235 */ 642 { DPU_IRQ_TYPE_PROG_LINE, INTF_4, DPU_INTR_PROG_LINE, 7}, 643 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 644 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 645 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 646 /* irq_idx: 236-239 */ 647 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 648 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 649 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 650 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 651 /* irq_idx: 240-243 */ 652 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 653 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 654 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 655 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 656 /* irq_idx: 244-247 */ 657 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 658 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 659 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 660 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 661 /* irq_idx: 248-251 */ 662 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 663 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 664 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 665 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 666 /* irq_idx: 252-255 */ 667 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 668 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 669 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 670 { DPU_IRQ_TYPE_RESERVED, 0, 0, 7}, 671 672 /* BEGIN MAP_RANGE: 256-287 AD4_0_INTR */ 673 /* irq_idx: 256-259 */ 674 { DPU_IRQ_TYPE_AD4_BL_DONE, DSPP_0, DPU_INTR_BACKLIGHT_UPDATED, 8}, 675 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 676 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 677 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 678 /* irq_idx: 260-263 */ 679 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 680 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 681 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 682 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 683 /* irq_idx: 264-267 */ 684 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 685 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 686 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 687 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 688 /* irq_idx: 268-271 */ 689 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 690 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 691 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 692 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 693 /* irq_idx: 272-275 */ 694 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 695 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 696 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 697 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 698 /* irq_idx: 276-279 */ 699 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 700 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 701 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 702 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 703 /* irq_idx: 280-283 */ 704 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 705 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 706 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 707 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 708 /* irq_idx: 284-287 */ 709 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 710 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 711 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 712 { DPU_IRQ_TYPE_RESERVED, 0, 0, 8}, 713 714 /* BEGIN MAP_RANGE: 288-319 AD4_1_INTR */ 715 /* irq_idx: 288-291 */ 716 { DPU_IRQ_TYPE_AD4_BL_DONE, DSPP_1, DPU_INTR_BACKLIGHT_UPDATED, 9}, 717 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 718 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 719 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 720 /* irq_idx: 292-295 */ 721 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 722 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 723 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 724 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 725 /* irq_idx: 296-299 */ 726 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 727 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 728 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 729 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 730 /* irq_idx: 300-303 */ 731 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 732 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 733 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 734 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 735 /* irq_idx: 304-307 */ 736 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 737 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 738 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 739 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 740 /* irq_idx: 308-311 */ 741 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 742 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 743 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 744 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 745 /* irq_idx: 312-315 */ 746 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 747 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 748 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 749 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 750 /* irq_idx: 315-319 */ 751 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 752 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 753 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 754 { DPU_IRQ_TYPE_RESERVED, 0, 0, 9}, 755 }; 756 757 static int dpu_hw_intr_irqidx_lookup(enum dpu_intr_type intr_type, 758 u32 instance_idx) 759 { 760 int i; 761 762 for (i = 0; i < ARRAY_SIZE(dpu_irq_map); i++) { 763 if (intr_type == dpu_irq_map[i].intr_type && 764 instance_idx == dpu_irq_map[i].instance_idx) 765 return i; 766 } 767 768 pr_debug("IRQ lookup fail!! intr_type=%d, instance_idx=%d\n", 769 intr_type, instance_idx); 770 return -EINVAL; 771 } 772 773 static void dpu_hw_intr_dispatch_irq(struct dpu_hw_intr *intr, 774 void (*cbfunc)(void *, int), 775 void *arg) 776 { 777 int reg_idx; 778 int irq_idx; 779 int start_idx; 780 int end_idx; 781 u32 irq_status; 782 unsigned long irq_flags; 783 784 if (!intr) 785 return; 786 787 /* 788 * The dispatcher will save the IRQ status before calling here. 789 * Now need to go through each IRQ status and find matching 790 * irq lookup index. 791 */ 792 spin_lock_irqsave(&intr->irq_lock, irq_flags); 793 for (reg_idx = 0; reg_idx < ARRAY_SIZE(dpu_intr_set); reg_idx++) { 794 irq_status = intr->save_irq_status[reg_idx]; 795 796 /* 797 * Each Interrupt register has a range of 32 indexes, and 798 * that is static for dpu_irq_map. 799 */ 800 start_idx = reg_idx * 32; 801 end_idx = start_idx + 32; 802 803 if (!test_bit(reg_idx, &intr->irq_mask) || 804 start_idx >= ARRAY_SIZE(dpu_irq_map)) 805 continue; 806 807 /* 808 * Search through matching intr status from irq map. 809 * start_idx and end_idx defined the search range in 810 * the dpu_irq_map. 811 */ 812 for (irq_idx = start_idx; 813 (irq_idx < end_idx) && irq_status; 814 irq_idx++) 815 if ((irq_status & dpu_irq_map[irq_idx].irq_mask) && 816 (dpu_irq_map[irq_idx].reg_idx == reg_idx)) { 817 /* 818 * Once a match on irq mask, perform a callback 819 * to the given cbfunc. cbfunc will take care 820 * the interrupt status clearing. If cbfunc is 821 * not provided, then the interrupt clearing 822 * is here. 823 */ 824 if (cbfunc) 825 cbfunc(arg, irq_idx); 826 else 827 intr->ops.clear_intr_status_nolock( 828 intr, irq_idx); 829 830 /* 831 * When callback finish, clear the irq_status 832 * with the matching mask. Once irq_status 833 * is all cleared, the search can be stopped. 834 */ 835 irq_status &= ~dpu_irq_map[irq_idx].irq_mask; 836 } 837 } 838 spin_unlock_irqrestore(&intr->irq_lock, irq_flags); 839 } 840 841 static int dpu_hw_intr_enable_irq(struct dpu_hw_intr *intr, int irq_idx) 842 { 843 int reg_idx; 844 unsigned long irq_flags; 845 const struct dpu_intr_reg *reg; 846 const struct dpu_irq_type *irq; 847 const char *dbgstr = NULL; 848 uint32_t cache_irq_mask; 849 850 if (!intr) 851 return -EINVAL; 852 853 if (irq_idx < 0 || irq_idx >= ARRAY_SIZE(dpu_irq_map)) { 854 pr_err("invalid IRQ index: [%d]\n", irq_idx); 855 return -EINVAL; 856 } 857 858 irq = &dpu_irq_map[irq_idx]; 859 reg_idx = irq->reg_idx; 860 reg = &dpu_intr_set[reg_idx]; 861 862 spin_lock_irqsave(&intr->irq_lock, irq_flags); 863 cache_irq_mask = intr->cache_irq_mask[reg_idx]; 864 if (cache_irq_mask & irq->irq_mask) { 865 dbgstr = "DPU IRQ already set:"; 866 } else { 867 dbgstr = "DPU IRQ enabled:"; 868 869 cache_irq_mask |= irq->irq_mask; 870 /* Cleaning any pending interrupt */ 871 DPU_REG_WRITE(&intr->hw, reg->clr_off, irq->irq_mask); 872 /* Enabling interrupts with the new mask */ 873 DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); 874 875 /* ensure register write goes through */ 876 wmb(); 877 878 intr->cache_irq_mask[reg_idx] = cache_irq_mask; 879 } 880 spin_unlock_irqrestore(&intr->irq_lock, irq_flags); 881 882 pr_debug("%s MASK:0x%.8x, CACHE-MASK:0x%.8x\n", dbgstr, 883 irq->irq_mask, cache_irq_mask); 884 885 return 0; 886 } 887 888 static int dpu_hw_intr_disable_irq_nolock(struct dpu_hw_intr *intr, int irq_idx) 889 { 890 int reg_idx; 891 const struct dpu_intr_reg *reg; 892 const struct dpu_irq_type *irq; 893 const char *dbgstr = NULL; 894 uint32_t cache_irq_mask; 895 896 if (!intr) 897 return -EINVAL; 898 899 if (irq_idx < 0 || irq_idx >= ARRAY_SIZE(dpu_irq_map)) { 900 pr_err("invalid IRQ index: [%d]\n", irq_idx); 901 return -EINVAL; 902 } 903 904 irq = &dpu_irq_map[irq_idx]; 905 reg_idx = irq->reg_idx; 906 reg = &dpu_intr_set[reg_idx]; 907 908 cache_irq_mask = intr->cache_irq_mask[reg_idx]; 909 if ((cache_irq_mask & irq->irq_mask) == 0) { 910 dbgstr = "DPU IRQ is already cleared:"; 911 } else { 912 dbgstr = "DPU IRQ mask disable:"; 913 914 cache_irq_mask &= ~irq->irq_mask; 915 /* Disable interrupts based on the new mask */ 916 DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); 917 /* Cleaning any pending interrupt */ 918 DPU_REG_WRITE(&intr->hw, reg->clr_off, irq->irq_mask); 919 920 /* ensure register write goes through */ 921 wmb(); 922 923 intr->cache_irq_mask[reg_idx] = cache_irq_mask; 924 } 925 926 pr_debug("%s MASK:0x%.8x, CACHE-MASK:0x%.8x\n", dbgstr, 927 irq->irq_mask, cache_irq_mask); 928 929 return 0; 930 } 931 932 static int dpu_hw_intr_disable_irq(struct dpu_hw_intr *intr, int irq_idx) 933 { 934 unsigned long irq_flags; 935 936 if (!intr) 937 return -EINVAL; 938 939 if (irq_idx < 0 || irq_idx >= ARRAY_SIZE(dpu_irq_map)) { 940 pr_err("invalid IRQ index: [%d]\n", irq_idx); 941 return -EINVAL; 942 } 943 944 spin_lock_irqsave(&intr->irq_lock, irq_flags); 945 dpu_hw_intr_disable_irq_nolock(intr, irq_idx); 946 spin_unlock_irqrestore(&intr->irq_lock, irq_flags); 947 948 return 0; 949 } 950 951 static int dpu_hw_intr_clear_irqs(struct dpu_hw_intr *intr) 952 { 953 int i; 954 955 if (!intr) 956 return -EINVAL; 957 958 for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { 959 if (test_bit(i, &intr->irq_mask)) 960 DPU_REG_WRITE(&intr->hw, 961 dpu_intr_set[i].clr_off, 0xffffffff); 962 } 963 964 /* ensure register writes go through */ 965 wmb(); 966 967 return 0; 968 } 969 970 static int dpu_hw_intr_disable_irqs(struct dpu_hw_intr *intr) 971 { 972 int i; 973 974 if (!intr) 975 return -EINVAL; 976 977 for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { 978 if (test_bit(i, &intr->irq_mask)) 979 DPU_REG_WRITE(&intr->hw, 980 dpu_intr_set[i].en_off, 0x00000000); 981 } 982 983 /* ensure register writes go through */ 984 wmb(); 985 986 return 0; 987 } 988 989 static void dpu_hw_intr_get_interrupt_statuses(struct dpu_hw_intr *intr) 990 { 991 int i; 992 u32 enable_mask; 993 unsigned long irq_flags; 994 995 if (!intr) 996 return; 997 998 spin_lock_irqsave(&intr->irq_lock, irq_flags); 999 for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { 1000 if (!test_bit(i, &intr->irq_mask)) 1001 continue; 1002 1003 /* Read interrupt status */ 1004 intr->save_irq_status[i] = DPU_REG_READ(&intr->hw, 1005 dpu_intr_set[i].status_off); 1006 1007 /* Read enable mask */ 1008 enable_mask = DPU_REG_READ(&intr->hw, dpu_intr_set[i].en_off); 1009 1010 /* and clear the interrupt */ 1011 if (intr->save_irq_status[i]) 1012 DPU_REG_WRITE(&intr->hw, dpu_intr_set[i].clr_off, 1013 intr->save_irq_status[i]); 1014 1015 /* Finally update IRQ status based on enable mask */ 1016 intr->save_irq_status[i] &= enable_mask; 1017 } 1018 1019 /* ensure register writes go through */ 1020 wmb(); 1021 1022 spin_unlock_irqrestore(&intr->irq_lock, irq_flags); 1023 } 1024 1025 static void dpu_hw_intr_clear_intr_status_nolock(struct dpu_hw_intr *intr, 1026 int irq_idx) 1027 { 1028 int reg_idx; 1029 1030 if (!intr) 1031 return; 1032 1033 reg_idx = dpu_irq_map[irq_idx].reg_idx; 1034 DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, 1035 dpu_irq_map[irq_idx].irq_mask); 1036 1037 /* ensure register writes go through */ 1038 wmb(); 1039 } 1040 1041 static u32 dpu_hw_intr_get_interrupt_status(struct dpu_hw_intr *intr, 1042 int irq_idx, bool clear) 1043 { 1044 int reg_idx; 1045 unsigned long irq_flags; 1046 u32 intr_status; 1047 1048 if (!intr) 1049 return 0; 1050 1051 if (irq_idx >= ARRAY_SIZE(dpu_irq_map) || irq_idx < 0) { 1052 pr_err("invalid IRQ index: [%d]\n", irq_idx); 1053 return 0; 1054 } 1055 1056 spin_lock_irqsave(&intr->irq_lock, irq_flags); 1057 1058 reg_idx = dpu_irq_map[irq_idx].reg_idx; 1059 intr_status = DPU_REG_READ(&intr->hw, 1060 dpu_intr_set[reg_idx].status_off) & 1061 dpu_irq_map[irq_idx].irq_mask; 1062 if (intr_status && clear) 1063 DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, 1064 intr_status); 1065 1066 /* ensure register writes go through */ 1067 wmb(); 1068 1069 spin_unlock_irqrestore(&intr->irq_lock, irq_flags); 1070 1071 return intr_status; 1072 } 1073 1074 static void __setup_intr_ops(struct dpu_hw_intr_ops *ops) 1075 { 1076 ops->irq_idx_lookup = dpu_hw_intr_irqidx_lookup; 1077 ops->enable_irq = dpu_hw_intr_enable_irq; 1078 ops->disable_irq = dpu_hw_intr_disable_irq; 1079 ops->dispatch_irqs = dpu_hw_intr_dispatch_irq; 1080 ops->clear_all_irqs = dpu_hw_intr_clear_irqs; 1081 ops->disable_all_irqs = dpu_hw_intr_disable_irqs; 1082 ops->get_interrupt_statuses = dpu_hw_intr_get_interrupt_statuses; 1083 ops->clear_intr_status_nolock = dpu_hw_intr_clear_intr_status_nolock; 1084 ops->get_interrupt_status = dpu_hw_intr_get_interrupt_status; 1085 } 1086 1087 static void __intr_offset(struct dpu_mdss_cfg *m, 1088 void __iomem *addr, struct dpu_hw_blk_reg_map *hw) 1089 { 1090 hw->base_off = addr; 1091 hw->blk_off = m->mdp[0].base; 1092 hw->hwversion = m->hwversion; 1093 } 1094 1095 struct dpu_hw_intr *dpu_hw_intr_init(void __iomem *addr, 1096 struct dpu_mdss_cfg *m) 1097 { 1098 struct dpu_hw_intr *intr; 1099 1100 if (!addr || !m) 1101 return ERR_PTR(-EINVAL); 1102 1103 intr = kzalloc(sizeof(*intr), GFP_KERNEL); 1104 if (!intr) 1105 return ERR_PTR(-ENOMEM); 1106 1107 __intr_offset(m, addr, &intr->hw); 1108 __setup_intr_ops(&intr->ops); 1109 1110 intr->irq_idx_tbl_size = ARRAY_SIZE(dpu_irq_map); 1111 1112 intr->cache_irq_mask = kcalloc(ARRAY_SIZE(dpu_intr_set), sizeof(u32), 1113 GFP_KERNEL); 1114 if (intr->cache_irq_mask == NULL) { 1115 kfree(intr); 1116 return ERR_PTR(-ENOMEM); 1117 } 1118 1119 intr->save_irq_status = kcalloc(ARRAY_SIZE(dpu_intr_set), sizeof(u32), 1120 GFP_KERNEL); 1121 if (intr->save_irq_status == NULL) { 1122 kfree(intr->cache_irq_mask); 1123 kfree(intr); 1124 return ERR_PTR(-ENOMEM); 1125 } 1126 1127 intr->irq_mask = m->mdss_irqs; 1128 spin_lock_init(&intr->irq_lock); 1129 1130 return intr; 1131 } 1132 1133 void dpu_hw_intr_destroy(struct dpu_hw_intr *intr) 1134 { 1135 if (intr) { 1136 kfree(intr->cache_irq_mask); 1137 kfree(intr->save_irq_status); 1138 kfree(intr); 1139 } 1140 } 1141 1142