1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 3 */ 4 5 #include <linux/delay.h> 6 #include "dpu_hwio.h" 7 #include "dpu_hw_ctl.h" 8 #include "dpu_kms.h" 9 #include "dpu_trace.h" 10 11 #define CTL_LAYER(lm) \ 12 (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004)) 13 #define CTL_LAYER_EXT(lm) \ 14 (0x40 + (((lm) - LM_0) * 0x004)) 15 #define CTL_LAYER_EXT2(lm) \ 16 (0x70 + (((lm) - LM_0) * 0x004)) 17 #define CTL_LAYER_EXT3(lm) \ 18 (0xA0 + (((lm) - LM_0) * 0x004)) 19 #define CTL_TOP 0x014 20 #define CTL_FLUSH 0x018 21 #define CTL_START 0x01C 22 #define CTL_PREPARE 0x0d0 23 #define CTL_SW_RESET 0x030 24 #define CTL_LAYER_EXTN_OFFSET 0x40 25 #define CTL_MERGE_3D_ACTIVE 0x0E4 26 #define CTL_INTF_ACTIVE 0x0F4 27 #define CTL_MERGE_3D_FLUSH 0x100 28 #define CTL_INTF_FLUSH 0x110 29 #define CTL_INTF_MASTER 0x134 30 #define CTL_FETCH_PIPE_ACTIVE 0x0FC 31 32 #define CTL_MIXER_BORDER_OUT BIT(24) 33 #define CTL_FLUSH_MASK_CTL BIT(17) 34 35 #define DPU_REG_RESET_TIMEOUT_US 2000 36 #define MERGE_3D_IDX 23 37 #define INTF_IDX 31 38 #define CTL_INVALID_BIT 0xffff 39 40 static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19, 41 CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0, 42 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT}; 43 44 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl, 45 const struct dpu_mdss_cfg *m, 46 void __iomem *addr, 47 struct dpu_hw_blk_reg_map *b) 48 { 49 int i; 50 51 for (i = 0; i < m->ctl_count; i++) { 52 if (ctl == m->ctl[i].id) { 53 b->base_off = addr; 54 b->blk_off = m->ctl[i].base; 55 b->length = m->ctl[i].len; 56 b->hwversion = m->hwversion; 57 b->log_mask = DPU_DBG_MASK_CTL; 58 return &m->ctl[i]; 59 } 60 } 61 return ERR_PTR(-ENOMEM); 62 } 63 64 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count, 65 enum dpu_lm lm) 66 { 67 int i; 68 int stages = -EINVAL; 69 70 for (i = 0; i < count; i++) { 71 if (lm == mixer[i].id) { 72 stages = mixer[i].sblk->maxblendstages; 73 break; 74 } 75 } 76 77 return stages; 78 } 79 80 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx) 81 { 82 struct dpu_hw_blk_reg_map *c = &ctx->hw; 83 84 return DPU_REG_READ(c, CTL_FLUSH); 85 } 86 87 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx) 88 { 89 trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask, 90 dpu_hw_ctl_get_flush_register(ctx)); 91 DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1); 92 } 93 94 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx) 95 { 96 trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask, 97 dpu_hw_ctl_get_flush_register(ctx)); 98 DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1); 99 } 100 101 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx) 102 { 103 trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask, 104 dpu_hw_ctl_get_flush_register(ctx)); 105 ctx->pending_flush_mask = 0x0; 106 } 107 108 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx, 109 u32 flushbits) 110 { 111 trace_dpu_hw_ctl_update_pending_flush(flushbits, 112 ctx->pending_flush_mask); 113 ctx->pending_flush_mask |= flushbits; 114 } 115 116 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx) 117 { 118 return ctx->pending_flush_mask; 119 } 120 121 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx) 122 { 123 124 if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX)) 125 DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH, 126 ctx->pending_merge_3d_flush_mask); 127 if (ctx->pending_flush_mask & BIT(INTF_IDX)) 128 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH, 129 ctx->pending_intf_flush_mask); 130 131 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask); 132 } 133 134 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx) 135 { 136 trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask, 137 dpu_hw_ctl_get_flush_register(ctx)); 138 DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask); 139 } 140 141 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx, 142 enum dpu_sspp sspp) 143 { 144 uint32_t flushbits = 0; 145 146 switch (sspp) { 147 case SSPP_VIG0: 148 flushbits = BIT(0); 149 break; 150 case SSPP_VIG1: 151 flushbits = BIT(1); 152 break; 153 case SSPP_VIG2: 154 flushbits = BIT(2); 155 break; 156 case SSPP_VIG3: 157 flushbits = BIT(18); 158 break; 159 case SSPP_RGB0: 160 flushbits = BIT(3); 161 break; 162 case SSPP_RGB1: 163 flushbits = BIT(4); 164 break; 165 case SSPP_RGB2: 166 flushbits = BIT(5); 167 break; 168 case SSPP_RGB3: 169 flushbits = BIT(19); 170 break; 171 case SSPP_DMA0: 172 flushbits = BIT(11); 173 break; 174 case SSPP_DMA1: 175 flushbits = BIT(12); 176 break; 177 case SSPP_DMA2: 178 flushbits = BIT(24); 179 break; 180 case SSPP_DMA3: 181 flushbits = BIT(25); 182 break; 183 case SSPP_CURSOR0: 184 flushbits = BIT(22); 185 break; 186 case SSPP_CURSOR1: 187 flushbits = BIT(23); 188 break; 189 default: 190 break; 191 } 192 193 return flushbits; 194 } 195 196 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx, 197 enum dpu_lm lm) 198 { 199 uint32_t flushbits = 0; 200 201 switch (lm) { 202 case LM_0: 203 flushbits = BIT(6); 204 break; 205 case LM_1: 206 flushbits = BIT(7); 207 break; 208 case LM_2: 209 flushbits = BIT(8); 210 break; 211 case LM_3: 212 flushbits = BIT(9); 213 break; 214 case LM_4: 215 flushbits = BIT(10); 216 break; 217 case LM_5: 218 flushbits = BIT(20); 219 break; 220 default: 221 return -EINVAL; 222 } 223 224 flushbits |= CTL_FLUSH_MASK_CTL; 225 226 return flushbits; 227 } 228 229 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx, 230 enum dpu_intf intf) 231 { 232 switch (intf) { 233 case INTF_0: 234 ctx->pending_flush_mask |= BIT(31); 235 break; 236 case INTF_1: 237 ctx->pending_flush_mask |= BIT(30); 238 break; 239 case INTF_2: 240 ctx->pending_flush_mask |= BIT(29); 241 break; 242 case INTF_3: 243 ctx->pending_flush_mask |= BIT(28); 244 break; 245 default: 246 break; 247 } 248 } 249 250 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx, 251 enum dpu_intf intf) 252 { 253 ctx->pending_intf_flush_mask |= BIT(intf - INTF_0); 254 ctx->pending_flush_mask |= BIT(INTF_IDX); 255 } 256 257 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx, 258 enum dpu_merge_3d merge_3d) 259 { 260 ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0); 261 ctx->pending_flush_mask |= BIT(MERGE_3D_IDX); 262 } 263 264 static uint32_t dpu_hw_ctl_get_bitmask_dspp(struct dpu_hw_ctl *ctx, 265 enum dpu_dspp dspp) 266 { 267 uint32_t flushbits = 0; 268 269 switch (dspp) { 270 case DSPP_0: 271 flushbits = BIT(13); 272 break; 273 case DSPP_1: 274 flushbits = BIT(14); 275 break; 276 case DSPP_2: 277 flushbits = BIT(15); 278 break; 279 case DSPP_3: 280 flushbits = BIT(21); 281 break; 282 default: 283 return 0; 284 } 285 286 return flushbits; 287 } 288 289 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us) 290 { 291 struct dpu_hw_blk_reg_map *c = &ctx->hw; 292 ktime_t timeout; 293 u32 status; 294 295 timeout = ktime_add_us(ktime_get(), timeout_us); 296 297 /* 298 * it takes around 30us to have mdp finish resetting its ctl path 299 * poll every 50us so that reset should be completed at 1st poll 300 */ 301 do { 302 status = DPU_REG_READ(c, CTL_SW_RESET); 303 status &= 0x1; 304 if (status) 305 usleep_range(20, 50); 306 } while (status && ktime_compare_safe(ktime_get(), timeout) < 0); 307 308 return status; 309 } 310 311 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx) 312 { 313 struct dpu_hw_blk_reg_map *c = &ctx->hw; 314 315 pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx); 316 DPU_REG_WRITE(c, CTL_SW_RESET, 0x1); 317 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) 318 return -EINVAL; 319 320 return 0; 321 } 322 323 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx) 324 { 325 struct dpu_hw_blk_reg_map *c = &ctx->hw; 326 u32 status; 327 328 status = DPU_REG_READ(c, CTL_SW_RESET); 329 status &= 0x01; 330 if (!status) 331 return 0; 332 333 pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx); 334 if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) { 335 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx); 336 return -EINVAL; 337 } 338 339 return 0; 340 } 341 342 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx) 343 { 344 struct dpu_hw_blk_reg_map *c = &ctx->hw; 345 int i; 346 347 for (i = 0; i < ctx->mixer_count; i++) { 348 enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id; 349 350 DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0); 351 DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0); 352 DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0); 353 DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0); 354 } 355 356 DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0); 357 } 358 359 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx, 360 enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg) 361 { 362 struct dpu_hw_blk_reg_map *c = &ctx->hw; 363 u32 mixercfg = 0, mixercfg_ext = 0, mix, ext; 364 u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0; 365 int i, j; 366 int stages; 367 int pipes_per_stage; 368 369 stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm); 370 if (stages < 0) 371 return; 372 373 if (test_bit(DPU_MIXER_SOURCESPLIT, 374 &ctx->mixer_hw_caps->features)) 375 pipes_per_stage = PIPES_PER_STAGE; 376 else 377 pipes_per_stage = 1; 378 379 mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */ 380 381 if (!stage_cfg) 382 goto exit; 383 384 for (i = 0; i <= stages; i++) { 385 /* overflow to ext register if 'i + 1 > 7' */ 386 mix = (i + 1) & 0x7; 387 ext = i >= 7; 388 389 for (j = 0 ; j < pipes_per_stage; j++) { 390 enum dpu_sspp_multirect_index rect_index = 391 stage_cfg->multirect_index[i][j]; 392 393 switch (stage_cfg->stage[i][j]) { 394 case SSPP_VIG0: 395 if (rect_index == DPU_SSPP_RECT_1) { 396 mixercfg_ext3 |= ((i + 1) & 0xF) << 0; 397 } else { 398 mixercfg |= mix << 0; 399 mixercfg_ext |= ext << 0; 400 } 401 break; 402 case SSPP_VIG1: 403 if (rect_index == DPU_SSPP_RECT_1) { 404 mixercfg_ext3 |= ((i + 1) & 0xF) << 4; 405 } else { 406 mixercfg |= mix << 3; 407 mixercfg_ext |= ext << 2; 408 } 409 break; 410 case SSPP_VIG2: 411 if (rect_index == DPU_SSPP_RECT_1) { 412 mixercfg_ext3 |= ((i + 1) & 0xF) << 8; 413 } else { 414 mixercfg |= mix << 6; 415 mixercfg_ext |= ext << 4; 416 } 417 break; 418 case SSPP_VIG3: 419 if (rect_index == DPU_SSPP_RECT_1) { 420 mixercfg_ext3 |= ((i + 1) & 0xF) << 12; 421 } else { 422 mixercfg |= mix << 26; 423 mixercfg_ext |= ext << 6; 424 } 425 break; 426 case SSPP_RGB0: 427 mixercfg |= mix << 9; 428 mixercfg_ext |= ext << 8; 429 break; 430 case SSPP_RGB1: 431 mixercfg |= mix << 12; 432 mixercfg_ext |= ext << 10; 433 break; 434 case SSPP_RGB2: 435 mixercfg |= mix << 15; 436 mixercfg_ext |= ext << 12; 437 break; 438 case SSPP_RGB3: 439 mixercfg |= mix << 29; 440 mixercfg_ext |= ext << 14; 441 break; 442 case SSPP_DMA0: 443 if (rect_index == DPU_SSPP_RECT_1) { 444 mixercfg_ext2 |= ((i + 1) & 0xF) << 8; 445 } else { 446 mixercfg |= mix << 18; 447 mixercfg_ext |= ext << 16; 448 } 449 break; 450 case SSPP_DMA1: 451 if (rect_index == DPU_SSPP_RECT_1) { 452 mixercfg_ext2 |= ((i + 1) & 0xF) << 12; 453 } else { 454 mixercfg |= mix << 21; 455 mixercfg_ext |= ext << 18; 456 } 457 break; 458 case SSPP_DMA2: 459 if (rect_index == DPU_SSPP_RECT_1) { 460 mixercfg_ext2 |= ((i + 1) & 0xF) << 16; 461 } else { 462 mix |= (i + 1) & 0xF; 463 mixercfg_ext2 |= mix << 0; 464 } 465 break; 466 case SSPP_DMA3: 467 if (rect_index == DPU_SSPP_RECT_1) { 468 mixercfg_ext2 |= ((i + 1) & 0xF) << 20; 469 } else { 470 mix |= (i + 1) & 0xF; 471 mixercfg_ext2 |= mix << 4; 472 } 473 break; 474 case SSPP_CURSOR0: 475 mixercfg_ext |= ((i + 1) & 0xF) << 20; 476 break; 477 case SSPP_CURSOR1: 478 mixercfg_ext |= ((i + 1) & 0xF) << 26; 479 break; 480 default: 481 break; 482 } 483 } 484 } 485 486 exit: 487 DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg); 488 DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext); 489 DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2); 490 DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3); 491 } 492 493 494 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx, 495 struct dpu_hw_intf_cfg *cfg) 496 { 497 struct dpu_hw_blk_reg_map *c = &ctx->hw; 498 u32 intf_active = 0; 499 u32 mode_sel = 0; 500 501 if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD) 502 mode_sel |= BIT(17); 503 504 intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE); 505 intf_active |= BIT(cfg->intf - INTF_0); 506 507 DPU_REG_WRITE(c, CTL_TOP, mode_sel); 508 DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active); 509 if (cfg->merge_3d) 510 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, 511 BIT(cfg->merge_3d - MERGE_3D_0)); 512 } 513 514 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx, 515 struct dpu_hw_intf_cfg *cfg) 516 { 517 struct dpu_hw_blk_reg_map *c = &ctx->hw; 518 u32 intf_cfg = 0; 519 520 intf_cfg |= (cfg->intf & 0xF) << 4; 521 522 if (cfg->mode_3d) { 523 intf_cfg |= BIT(19); 524 intf_cfg |= (cfg->mode_3d - 0x1) << 20; 525 } 526 527 switch (cfg->intf_mode_sel) { 528 case DPU_CTL_MODE_SEL_VID: 529 intf_cfg &= ~BIT(17); 530 intf_cfg &= ~(0x3 << 15); 531 break; 532 case DPU_CTL_MODE_SEL_CMD: 533 intf_cfg |= BIT(17); 534 intf_cfg |= ((cfg->stream_sel & 0x3) << 15); 535 break; 536 default: 537 pr_err("unknown interface type %d\n", cfg->intf_mode_sel); 538 return; 539 } 540 541 DPU_REG_WRITE(c, CTL_TOP, intf_cfg); 542 } 543 544 static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx, 545 unsigned long *fetch_active) 546 { 547 int i; 548 u32 val = 0; 549 550 if (fetch_active) { 551 for (i = 0; i < SSPP_MAX; i++) { 552 if (test_bit(i, fetch_active) && 553 fetch_tbl[i] != CTL_INVALID_BIT) 554 val |= BIT(fetch_tbl[i]); 555 } 556 } 557 558 DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val); 559 } 560 561 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops, 562 unsigned long cap) 563 { 564 if (cap & BIT(DPU_CTL_ACTIVE_CFG)) { 565 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1; 566 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1; 567 ops->update_pending_flush_intf = 568 dpu_hw_ctl_update_pending_flush_intf_v1; 569 ops->update_pending_flush_merge_3d = 570 dpu_hw_ctl_update_pending_flush_merge_3d_v1; 571 } else { 572 ops->trigger_flush = dpu_hw_ctl_trigger_flush; 573 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg; 574 ops->update_pending_flush_intf = 575 dpu_hw_ctl_update_pending_flush_intf; 576 } 577 ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush; 578 ops->update_pending_flush = dpu_hw_ctl_update_pending_flush; 579 ops->get_pending_flush = dpu_hw_ctl_get_pending_flush; 580 ops->get_flush_register = dpu_hw_ctl_get_flush_register; 581 ops->trigger_start = dpu_hw_ctl_trigger_start; 582 ops->trigger_pending = dpu_hw_ctl_trigger_pending; 583 ops->reset = dpu_hw_ctl_reset_control; 584 ops->wait_reset_status = dpu_hw_ctl_wait_reset_status; 585 ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages; 586 ops->setup_blendstage = dpu_hw_ctl_setup_blendstage; 587 ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp; 588 ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer; 589 ops->get_bitmask_dspp = dpu_hw_ctl_get_bitmask_dspp; 590 if (cap & BIT(DPU_CTL_FETCH_ACTIVE)) 591 ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active; 592 }; 593 594 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx, 595 void __iomem *addr, 596 const struct dpu_mdss_cfg *m) 597 { 598 struct dpu_hw_ctl *c; 599 const struct dpu_ctl_cfg *cfg; 600 601 c = kzalloc(sizeof(*c), GFP_KERNEL); 602 if (!c) 603 return ERR_PTR(-ENOMEM); 604 605 cfg = _ctl_offset(idx, m, addr, &c->hw); 606 if (IS_ERR_OR_NULL(cfg)) { 607 kfree(c); 608 pr_err("failed to create dpu_hw_ctl %d\n", idx); 609 return ERR_PTR(-EINVAL); 610 } 611 612 c->caps = cfg; 613 _setup_ctl_ops(&c->ops, c->caps->features); 614 c->idx = idx; 615 c->mixer_count = m->mixer_count; 616 c->mixer_hw_caps = m->mixer; 617 618 return c; 619 } 620 621 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx) 622 { 623 kfree(ctx); 624 } 625