1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 /* layer mixer index on dpu_crtc */ 34 #define LEFT_MIXER 0 35 #define RIGHT_MIXER 1 36 37 /* timeout in ms waiting for frame done */ 38 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 39 40 #define CONVERT_S3_15(val) \ 41 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 42 43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 44 { 45 struct msm_drm_private *priv = crtc->dev->dev_private; 46 47 return to_dpu_kms(priv->kms); 48 } 49 50 static void dpu_crtc_destroy(struct drm_crtc *crtc) 51 { 52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 53 54 if (!crtc) 55 return; 56 57 drm_crtc_cleanup(crtc); 58 kfree(dpu_crtc); 59 } 60 61 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 62 { 63 struct drm_device *dev = crtc->dev; 64 struct drm_encoder *encoder; 65 66 drm_for_each_encoder(encoder, dev) 67 if (encoder->crtc == crtc) 68 return encoder; 69 70 return NULL; 71 } 72 73 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name) 74 { 75 if (!src_name || 76 !strcmp(src_name, "none")) 77 return DPU_CRTC_CRC_SOURCE_NONE; 78 if (!strcmp(src_name, "auto") || 79 !strcmp(src_name, "lm")) 80 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER; 81 82 return DPU_CRTC_CRC_SOURCE_INVALID; 83 } 84 85 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc, 86 const char *src_name, size_t *values_cnt) 87 { 88 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 89 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 90 91 if (source < 0) { 92 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index); 93 return -EINVAL; 94 } 95 96 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 97 *values_cnt = crtc_state->num_mixers; 98 99 return 0; 100 } 101 102 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name) 103 { 104 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 105 enum dpu_crtc_crc_source current_source; 106 struct dpu_crtc_state *crtc_state; 107 struct drm_device *drm_dev = crtc->dev; 108 struct dpu_crtc_mixer *m; 109 110 bool was_enabled; 111 bool enable = false; 112 int i, ret = 0; 113 114 if (source < 0) { 115 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index); 116 return -EINVAL; 117 } 118 119 ret = drm_modeset_lock(&crtc->mutex, NULL); 120 121 if (ret) 122 return ret; 123 124 enable = (source != DPU_CRTC_CRC_SOURCE_NONE); 125 crtc_state = to_dpu_crtc_state(crtc->state); 126 127 spin_lock_irq(&drm_dev->event_lock); 128 current_source = crtc_state->crc_source; 129 spin_unlock_irq(&drm_dev->event_lock); 130 131 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE); 132 133 if (!was_enabled && enable) { 134 ret = drm_crtc_vblank_get(crtc); 135 136 if (ret) 137 goto cleanup; 138 139 } else if (was_enabled && !enable) { 140 drm_crtc_vblank_put(crtc); 141 } 142 143 spin_lock_irq(&drm_dev->event_lock); 144 crtc_state->crc_source = source; 145 spin_unlock_irq(&drm_dev->event_lock); 146 147 crtc_state->crc_frame_skip_count = 0; 148 149 for (i = 0; i < crtc_state->num_mixers; ++i) { 150 m = &crtc_state->mixers[i]; 151 152 if (!m->hw_lm || !m->hw_lm->ops.setup_misr) 153 continue; 154 155 /* Calculate MISR over 1 frame */ 156 m->hw_lm->ops.setup_misr(m->hw_lm, true, 1); 157 } 158 159 160 cleanup: 161 drm_modeset_unlock(&crtc->mutex); 162 163 return ret; 164 } 165 166 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 167 { 168 struct drm_encoder *encoder = get_encoder_from_crtc(crtc); 169 if (!encoder) { 170 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 171 return 0; 172 } 173 174 return dpu_encoder_get_vsync_count(encoder); 175 } 176 177 178 static int dpu_crtc_get_crc(struct drm_crtc *crtc) 179 { 180 struct dpu_crtc_state *crtc_state; 181 struct dpu_crtc_mixer *m; 182 u32 crcs[CRTC_DUAL_MIXERS]; 183 184 int i = 0; 185 int rc = 0; 186 187 crtc_state = to_dpu_crtc_state(crtc->state); 188 189 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers)); 190 191 /* Skip first 2 frames in case of "uncooked" CRCs */ 192 if (crtc_state->crc_frame_skip_count < 2) { 193 crtc_state->crc_frame_skip_count++; 194 return 0; 195 } 196 197 for (i = 0; i < crtc_state->num_mixers; ++i) { 198 199 m = &crtc_state->mixers[i]; 200 201 if (!m->hw_lm || !m->hw_lm->ops.collect_misr) 202 continue; 203 204 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]); 205 206 if (rc) { 207 DRM_DEBUG_DRIVER("MISR read failed\n"); 208 return rc; 209 } 210 } 211 212 return drm_crtc_add_crc_entry(crtc, true, 213 drm_crtc_accurate_vblank_count(crtc), crcs); 214 } 215 216 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 217 bool in_vblank_irq, 218 int *vpos, int *hpos, 219 ktime_t *stime, ktime_t *etime, 220 const struct drm_display_mode *mode) 221 { 222 unsigned int pipe = crtc->index; 223 struct drm_encoder *encoder; 224 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 225 226 encoder = get_encoder_from_crtc(crtc); 227 if (!encoder) { 228 DRM_ERROR("no encoder found for crtc %d\n", pipe); 229 return false; 230 } 231 232 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 233 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 234 235 /* 236 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 237 * the end of VFP. Translate the porch values relative to the line 238 * counter positions. 239 */ 240 241 vactive_start = vsw + vbp + 1; 242 vactive_end = vactive_start + mode->crtc_vdisplay; 243 244 /* last scan line before VSYNC */ 245 vfp_end = mode->crtc_vtotal; 246 247 if (stime) 248 *stime = ktime_get(); 249 250 line = dpu_encoder_get_linecount(encoder); 251 252 if (line < vactive_start) 253 line -= vactive_start; 254 else if (line > vactive_end) 255 line = line - vfp_end - vactive_start; 256 else 257 line -= vactive_start; 258 259 *vpos = line; 260 *hpos = 0; 261 262 if (etime) 263 *etime = ktime_get(); 264 265 return true; 266 } 267 268 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 269 struct dpu_plane_state *pstate, struct dpu_format *format) 270 { 271 struct dpu_hw_mixer *lm = mixer->hw_lm; 272 uint32_t blend_op; 273 uint32_t fg_alpha, bg_alpha; 274 275 fg_alpha = pstate->base.alpha >> 8; 276 bg_alpha = 0xff - fg_alpha; 277 278 /* default to opaque blending */ 279 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || 280 !format->alpha_enable) { 281 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 282 DPU_BLEND_BG_ALPHA_BG_CONST; 283 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { 284 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 285 DPU_BLEND_BG_ALPHA_FG_PIXEL; 286 if (fg_alpha != 0xff) { 287 bg_alpha = fg_alpha; 288 blend_op |= DPU_BLEND_BG_MOD_ALPHA | 289 DPU_BLEND_BG_INV_MOD_ALPHA; 290 } else { 291 blend_op |= DPU_BLEND_BG_INV_ALPHA; 292 } 293 } else { 294 /* coverage blending */ 295 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 296 DPU_BLEND_BG_ALPHA_FG_PIXEL; 297 if (fg_alpha != 0xff) { 298 bg_alpha = fg_alpha; 299 blend_op |= DPU_BLEND_FG_MOD_ALPHA | 300 DPU_BLEND_FG_INV_MOD_ALPHA | 301 DPU_BLEND_BG_MOD_ALPHA | 302 DPU_BLEND_BG_INV_MOD_ALPHA; 303 } else { 304 blend_op |= DPU_BLEND_BG_INV_ALPHA; 305 } 306 } 307 308 lm->ops.setup_blend_config(lm, pstate->stage, 309 fg_alpha, bg_alpha, blend_op); 310 311 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 312 &format->base.pixel_format, format->alpha_enable, blend_op); 313 } 314 315 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 316 { 317 struct dpu_crtc_state *crtc_state; 318 int lm_idx, lm_horiz_position; 319 320 crtc_state = to_dpu_crtc_state(crtc->state); 321 322 lm_horiz_position = 0; 323 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 324 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 325 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 326 struct dpu_hw_mixer_cfg cfg; 327 328 if (!lm_roi || !drm_rect_visible(lm_roi)) 329 continue; 330 331 cfg.out_width = drm_rect_width(lm_roi); 332 cfg.out_height = drm_rect_height(lm_roi); 333 cfg.right_mixer = lm_horiz_position++; 334 cfg.flags = 0; 335 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 336 } 337 } 338 339 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 340 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 341 { 342 struct drm_plane *plane; 343 struct drm_framebuffer *fb; 344 struct drm_plane_state *state; 345 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 346 struct dpu_plane_state *pstate = NULL; 347 struct dpu_format *format; 348 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 349 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 350 351 u32 flush_mask; 352 uint32_t stage_idx, lm_idx; 353 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 354 bool bg_alpha_enable = false; 355 DECLARE_BITMAP(fetch_active, SSPP_MAX); 356 357 memset(fetch_active, 0, sizeof(fetch_active)); 358 drm_atomic_crtc_for_each_plane(plane, crtc) { 359 state = plane->state; 360 if (!state) 361 continue; 362 363 pstate = to_dpu_plane_state(state); 364 fb = state->fb; 365 366 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 367 set_bit(dpu_plane_pipe(plane), fetch_active); 368 369 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n", 370 crtc->base.id, 371 pstate->stage, 372 plane->base.id, 373 dpu_plane_pipe(plane) - SSPP_VIG0, 374 state->fb ? state->fb->base.id : -1); 375 376 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 377 378 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 379 bg_alpha_enable = true; 380 381 stage_idx = zpos_cnt[pstate->stage]++; 382 stage_cfg->stage[pstate->stage][stage_idx] = 383 dpu_plane_pipe(plane); 384 stage_cfg->multirect_index[pstate->stage][stage_idx] = 385 pstate->multirect_index; 386 387 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 388 state, pstate, stage_idx, 389 dpu_plane_pipe(plane) - SSPP_VIG0, 390 format->base.pixel_format, 391 fb ? fb->modifier : 0); 392 393 /* blend config update */ 394 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 395 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 396 pstate, format); 397 398 mixer[lm_idx].flush_mask |= flush_mask; 399 400 if (bg_alpha_enable && !format->alpha_enable) 401 mixer[lm_idx].mixer_op_mode = 0; 402 else 403 mixer[lm_idx].mixer_op_mode |= 404 1 << pstate->stage; 405 } 406 } 407 408 if (ctl->ops.set_active_pipes) 409 ctl->ops.set_active_pipes(ctl, fetch_active); 410 411 _dpu_crtc_program_lm_output_roi(crtc); 412 } 413 414 /** 415 * _dpu_crtc_blend_setup - configure crtc mixers 416 * @crtc: Pointer to drm crtc structure 417 */ 418 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 419 { 420 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 421 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 422 struct dpu_crtc_mixer *mixer = cstate->mixers; 423 struct dpu_hw_ctl *ctl; 424 struct dpu_hw_mixer *lm; 425 int i; 426 427 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 428 429 for (i = 0; i < cstate->num_mixers; i++) { 430 mixer[i].mixer_op_mode = 0; 431 mixer[i].flush_mask = 0; 432 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 433 mixer[i].lm_ctl->ops.clear_all_blendstages( 434 mixer[i].lm_ctl); 435 } 436 437 /* initialize stage cfg */ 438 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 439 440 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 441 442 for (i = 0; i < cstate->num_mixers; i++) { 443 ctl = mixer[i].lm_ctl; 444 lm = mixer[i].hw_lm; 445 446 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 447 448 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 449 mixer[i].hw_lm->idx); 450 451 /* stage config flush mask */ 452 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 453 454 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 455 mixer[i].hw_lm->idx - LM_0, 456 mixer[i].mixer_op_mode, 457 ctl->idx - CTL_0, 458 mixer[i].flush_mask); 459 460 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 461 &dpu_crtc->stage_cfg); 462 } 463 } 464 465 /** 466 * _dpu_crtc_complete_flip - signal pending page_flip events 467 * Any pending vblank events are added to the vblank_event_list 468 * so that the next vblank interrupt shall signal them. 469 * However PAGE_FLIP events are not handled through the vblank_event_list. 470 * This API signals any pending PAGE_FLIP events requested through 471 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 472 * @crtc: Pointer to drm crtc structure 473 */ 474 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 475 { 476 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 477 struct drm_device *dev = crtc->dev; 478 unsigned long flags; 479 480 spin_lock_irqsave(&dev->event_lock, flags); 481 if (dpu_crtc->event) { 482 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 483 dpu_crtc->event); 484 trace_dpu_crtc_complete_flip(DRMID(crtc)); 485 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 486 dpu_crtc->event = NULL; 487 } 488 spin_unlock_irqrestore(&dev->event_lock, flags); 489 } 490 491 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 492 { 493 struct drm_encoder *encoder; 494 495 /* 496 * TODO: This function is called from dpu debugfs and as part of atomic 497 * check. When called from debugfs, the crtc->mutex must be held to 498 * read crtc->state. However reading crtc->state from atomic check isn't 499 * allowed (unless you have a good reason, a big comment, and a deep 500 * understanding of how the atomic/modeset locks work (<- and this is 501 * probably not possible)). So we'll keep the WARN_ON here for now, but 502 * really we need to figure out a better way to track our operating mode 503 */ 504 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 505 506 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 507 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 508 return dpu_encoder_get_intf_mode(encoder); 509 510 return INTF_MODE_NONE; 511 } 512 513 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 514 { 515 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 516 517 /* keep statistics on vblank callback - with auto reset via debugfs */ 518 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 519 dpu_crtc->vblank_cb_time = ktime_get(); 520 else 521 dpu_crtc->vblank_cb_count++; 522 523 dpu_crtc_get_crc(crtc); 524 525 drm_crtc_handle_vblank(crtc); 526 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 527 } 528 529 static void dpu_crtc_frame_event_work(struct kthread_work *work) 530 { 531 struct dpu_crtc_frame_event *fevent = container_of(work, 532 struct dpu_crtc_frame_event, work); 533 struct drm_crtc *crtc = fevent->crtc; 534 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 535 unsigned long flags; 536 bool frame_done = false; 537 538 DPU_ATRACE_BEGIN("crtc_frame_event"); 539 540 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 541 ktime_to_ns(fevent->ts)); 542 543 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 544 | DPU_ENCODER_FRAME_EVENT_ERROR 545 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 546 547 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 548 /* ignore vblank when not pending */ 549 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 550 /* release bandwidth and other resources */ 551 trace_dpu_crtc_frame_event_done(DRMID(crtc), 552 fevent->event); 553 dpu_core_perf_crtc_release_bw(crtc); 554 } else { 555 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 556 fevent->event); 557 } 558 559 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 560 | DPU_ENCODER_FRAME_EVENT_ERROR)) 561 frame_done = true; 562 } 563 564 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 565 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 566 crtc->base.id, ktime_to_ns(fevent->ts)); 567 568 if (frame_done) 569 complete_all(&dpu_crtc->frame_done_comp); 570 571 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 572 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 573 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 574 DPU_ATRACE_END("crtc_frame_event"); 575 } 576 577 /* 578 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 579 * registers this API to encoder for all frame event callbacks like 580 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 581 * from different context - IRQ, user thread, commit_thread, etc. Each event 582 * should be carefully reviewed and should be processed in proper task context 583 * to avoid schedulin delay or properly manage the irq context's bottom half 584 * processing. 585 */ 586 static void dpu_crtc_frame_event_cb(void *data, u32 event) 587 { 588 struct drm_crtc *crtc = (struct drm_crtc *)data; 589 struct dpu_crtc *dpu_crtc; 590 struct msm_drm_private *priv; 591 struct dpu_crtc_frame_event *fevent; 592 unsigned long flags; 593 u32 crtc_id; 594 595 /* Nothing to do on idle event */ 596 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 597 return; 598 599 dpu_crtc = to_dpu_crtc(crtc); 600 priv = crtc->dev->dev_private; 601 crtc_id = drm_crtc_index(crtc); 602 603 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 604 605 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 606 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 607 struct dpu_crtc_frame_event, list); 608 if (fevent) 609 list_del_init(&fevent->list); 610 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 611 612 if (!fevent) { 613 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 614 return; 615 } 616 617 fevent->event = event; 618 fevent->crtc = crtc; 619 fevent->ts = ktime_get(); 620 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 621 } 622 623 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 624 { 625 trace_dpu_crtc_complete_commit(DRMID(crtc)); 626 dpu_core_perf_crtc_update(crtc, 0, false); 627 _dpu_crtc_complete_flip(crtc); 628 } 629 630 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 631 struct drm_crtc_state *state) 632 { 633 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 634 struct drm_display_mode *adj_mode = &state->adjusted_mode; 635 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 636 int i; 637 638 for (i = 0; i < cstate->num_mixers; i++) { 639 struct drm_rect *r = &cstate->lm_bounds[i]; 640 r->x1 = crtc_split_width * i; 641 r->y1 = 0; 642 r->x2 = r->x1 + crtc_split_width; 643 r->y2 = adj_mode->vdisplay; 644 645 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 646 } 647 } 648 649 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 650 struct dpu_hw_pcc_cfg *cfg) 651 { 652 struct drm_color_ctm *ctm; 653 654 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 655 656 ctm = (struct drm_color_ctm *)state->ctm->data; 657 658 if (!ctm) 659 return; 660 661 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 662 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 663 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 664 665 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 666 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 667 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 668 669 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 670 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 671 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 672 } 673 674 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 675 { 676 struct drm_crtc_state *state = crtc->state; 677 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 678 struct dpu_crtc_mixer *mixer = cstate->mixers; 679 struct dpu_hw_pcc_cfg cfg; 680 struct dpu_hw_ctl *ctl; 681 struct dpu_hw_dspp *dspp; 682 int i; 683 684 685 if (!state->color_mgmt_changed) 686 return; 687 688 for (i = 0; i < cstate->num_mixers; i++) { 689 ctl = mixer[i].lm_ctl; 690 dspp = mixer[i].hw_dspp; 691 692 if (!dspp || !dspp->ops.setup_pcc) 693 continue; 694 695 if (!state->ctm) { 696 dspp->ops.setup_pcc(dspp, NULL); 697 } else { 698 _dpu_crtc_get_pcc_coeff(state, &cfg); 699 dspp->ops.setup_pcc(dspp, &cfg); 700 } 701 702 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 703 mixer[i].hw_dspp->idx); 704 705 /* stage config flush mask */ 706 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 707 708 DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n", 709 mixer[i].hw_lm->idx - DSPP_0, 710 ctl->idx - CTL_0, 711 mixer[i].flush_mask); 712 } 713 } 714 715 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 716 struct drm_atomic_state *state) 717 { 718 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 719 struct drm_encoder *encoder; 720 721 if (!crtc->state->enable) { 722 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 723 crtc->base.id, crtc->state->enable); 724 return; 725 } 726 727 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 728 729 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 730 731 /* encoder will trigger pending mask now */ 732 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 733 dpu_encoder_trigger_kickoff_pending(encoder); 734 735 /* 736 * If no mixers have been allocated in dpu_crtc_atomic_check(), 737 * it means we are trying to flush a CRTC whose state is disabled: 738 * nothing else needs to be done. 739 */ 740 if (unlikely(!cstate->num_mixers)) 741 return; 742 743 _dpu_crtc_blend_setup(crtc); 744 745 _dpu_crtc_setup_cp_blocks(crtc); 746 747 /* 748 * PP_DONE irq is only used by command mode for now. 749 * It is better to request pending before FLUSH and START trigger 750 * to make sure no pp_done irq missed. 751 * This is safe because no pp_done will happen before SW trigger 752 * in command mode. 753 */ 754 } 755 756 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 757 struct drm_atomic_state *state) 758 { 759 struct dpu_crtc *dpu_crtc; 760 struct drm_device *dev; 761 struct drm_plane *plane; 762 struct msm_drm_private *priv; 763 unsigned long flags; 764 struct dpu_crtc_state *cstate; 765 766 if (!crtc->state->enable) { 767 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 768 crtc->base.id, crtc->state->enable); 769 return; 770 } 771 772 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 773 774 dpu_crtc = to_dpu_crtc(crtc); 775 cstate = to_dpu_crtc_state(crtc->state); 776 dev = crtc->dev; 777 priv = dev->dev_private; 778 779 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 780 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 781 return; 782 } 783 784 WARN_ON(dpu_crtc->event); 785 spin_lock_irqsave(&dev->event_lock, flags); 786 dpu_crtc->event = crtc->state->event; 787 crtc->state->event = NULL; 788 spin_unlock_irqrestore(&dev->event_lock, flags); 789 790 /* 791 * If no mixers has been allocated in dpu_crtc_atomic_check(), 792 * it means we are trying to flush a CRTC whose state is disabled: 793 * nothing else needs to be done. 794 */ 795 if (unlikely(!cstate->num_mixers)) 796 return; 797 798 /* update performance setting before crtc kickoff */ 799 dpu_core_perf_crtc_update(crtc, 1, false); 800 801 /* 802 * Final plane updates: Give each plane a chance to complete all 803 * required writes/flushing before crtc's "flush 804 * everything" call below. 805 */ 806 drm_atomic_crtc_for_each_plane(plane, crtc) { 807 if (dpu_crtc->smmu_state.transition_error) 808 dpu_plane_set_error(plane, true); 809 dpu_plane_flush(plane); 810 } 811 812 /* Kickoff will be scheduled by outer layer */ 813 } 814 815 /** 816 * dpu_crtc_destroy_state - state destroy hook 817 * @crtc: drm CRTC 818 * @state: CRTC state object to release 819 */ 820 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 821 struct drm_crtc_state *state) 822 { 823 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 824 825 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 826 827 __drm_atomic_helper_crtc_destroy_state(state); 828 829 kfree(cstate); 830 } 831 832 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 833 { 834 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 835 int ret, rc = 0; 836 837 if (!atomic_read(&dpu_crtc->frame_pending)) { 838 DRM_DEBUG_ATOMIC("no frames pending\n"); 839 return 0; 840 } 841 842 DPU_ATRACE_BEGIN("frame done completion wait"); 843 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 844 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 845 if (!ret) { 846 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 847 rc = -ETIMEDOUT; 848 } 849 DPU_ATRACE_END("frame done completion wait"); 850 851 return rc; 852 } 853 854 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 855 { 856 struct drm_encoder *encoder; 857 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 858 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 859 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 860 861 /* 862 * If no mixers has been allocated in dpu_crtc_atomic_check(), 863 * it means we are trying to start a CRTC whose state is disabled: 864 * nothing else needs to be done. 865 */ 866 if (unlikely(!cstate->num_mixers)) 867 return; 868 869 DPU_ATRACE_BEGIN("crtc_commit"); 870 871 /* 872 * Encoder will flush/start now, unless it has a tx pending. If so, it 873 * may delay and flush at an irq event (e.g. ppdone) 874 */ 875 drm_for_each_encoder_mask(encoder, crtc->dev, 876 crtc->state->encoder_mask) 877 dpu_encoder_prepare_for_kickoff(encoder); 878 879 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 880 /* acquire bandwidth and other resources */ 881 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 882 } else 883 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 884 885 dpu_crtc->play_count++; 886 887 dpu_vbif_clear_errors(dpu_kms); 888 889 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 890 dpu_encoder_kickoff(encoder); 891 892 reinit_completion(&dpu_crtc->frame_done_comp); 893 DPU_ATRACE_END("crtc_commit"); 894 } 895 896 static void dpu_crtc_reset(struct drm_crtc *crtc) 897 { 898 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 899 900 if (crtc->state) 901 dpu_crtc_destroy_state(crtc, crtc->state); 902 903 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 904 } 905 906 /** 907 * dpu_crtc_duplicate_state - state duplicate hook 908 * @crtc: Pointer to drm crtc structure 909 */ 910 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 911 { 912 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 913 914 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 915 if (!cstate) { 916 DPU_ERROR("failed to allocate state\n"); 917 return NULL; 918 } 919 920 /* duplicate base helper */ 921 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 922 923 return &cstate->base; 924 } 925 926 static void dpu_crtc_disable(struct drm_crtc *crtc, 927 struct drm_atomic_state *state) 928 { 929 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 930 crtc); 931 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 932 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 933 struct drm_encoder *encoder; 934 unsigned long flags; 935 bool release_bandwidth = false; 936 937 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 938 939 /* Disable/save vblank irq handling */ 940 drm_crtc_vblank_off(crtc); 941 942 drm_for_each_encoder_mask(encoder, crtc->dev, 943 old_crtc_state->encoder_mask) { 944 /* in video mode, we hold an extra bandwidth reference 945 * as we cannot drop bandwidth at frame-done if any 946 * crtc is being used in video mode. 947 */ 948 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 949 release_bandwidth = true; 950 dpu_encoder_assign_crtc(encoder, NULL); 951 } 952 953 /* wait for frame_event_done completion */ 954 if (_dpu_crtc_wait_for_frame_done(crtc)) 955 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 956 crtc->base.id, 957 atomic_read(&dpu_crtc->frame_pending)); 958 959 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 960 dpu_crtc->enabled = false; 961 962 if (atomic_read(&dpu_crtc->frame_pending)) { 963 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 964 atomic_read(&dpu_crtc->frame_pending)); 965 if (release_bandwidth) 966 dpu_core_perf_crtc_release_bw(crtc); 967 atomic_set(&dpu_crtc->frame_pending, 0); 968 } 969 970 dpu_core_perf_crtc_update(crtc, 0, true); 971 972 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 973 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 974 975 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 976 cstate->num_mixers = 0; 977 978 /* disable clk & bw control until clk & bw properties are set */ 979 cstate->bw_control = false; 980 cstate->bw_split_vote = false; 981 982 if (crtc->state->event && !crtc->state->active) { 983 spin_lock_irqsave(&crtc->dev->event_lock, flags); 984 drm_crtc_send_vblank_event(crtc, crtc->state->event); 985 crtc->state->event = NULL; 986 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 987 } 988 989 pm_runtime_put_sync(crtc->dev->dev); 990 } 991 992 static void dpu_crtc_enable(struct drm_crtc *crtc, 993 struct drm_atomic_state *state) 994 { 995 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 996 struct drm_encoder *encoder; 997 bool request_bandwidth = false; 998 999 pm_runtime_get_sync(crtc->dev->dev); 1000 1001 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1002 1003 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 1004 /* in video mode, we hold an extra bandwidth reference 1005 * as we cannot drop bandwidth at frame-done if any 1006 * crtc is being used in video mode. 1007 */ 1008 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1009 request_bandwidth = true; 1010 dpu_encoder_register_frame_event_callback(encoder, 1011 dpu_crtc_frame_event_cb, (void *)crtc); 1012 } 1013 1014 if (request_bandwidth) 1015 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1016 1017 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 1018 dpu_crtc->enabled = true; 1019 1020 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1021 dpu_encoder_assign_crtc(encoder, crtc); 1022 1023 /* Enable/restore vblank irq handling */ 1024 drm_crtc_vblank_on(crtc); 1025 } 1026 1027 struct plane_state { 1028 struct dpu_plane_state *dpu_pstate; 1029 const struct drm_plane_state *drm_pstate; 1030 int stage; 1031 u32 pipe_id; 1032 }; 1033 1034 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 1035 struct drm_atomic_state *state) 1036 { 1037 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1038 crtc); 1039 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1040 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 1041 struct plane_state *pstates; 1042 1043 const struct drm_plane_state *pstate; 1044 struct drm_plane *plane; 1045 struct drm_display_mode *mode; 1046 1047 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 1048 1049 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 1050 int multirect_count = 0; 1051 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 1052 int left_zpos_cnt = 0, right_zpos_cnt = 0; 1053 struct drm_rect crtc_rect = { 0 }; 1054 1055 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 1056 1057 if (!crtc_state->enable || !crtc_state->active) { 1058 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 1059 crtc->base.id, crtc_state->enable, 1060 crtc_state->active); 1061 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 1062 goto end; 1063 } 1064 1065 mode = &crtc_state->adjusted_mode; 1066 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 1067 1068 /* force a full mode set if active state changed */ 1069 if (crtc_state->active_changed) 1070 crtc_state->mode_changed = true; 1071 1072 memset(pipe_staged, 0, sizeof(pipe_staged)); 1073 1074 if (cstate->num_mixers) { 1075 mixer_width = mode->hdisplay / cstate->num_mixers; 1076 1077 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 1078 } 1079 1080 crtc_rect.x2 = mode->hdisplay; 1081 crtc_rect.y2 = mode->vdisplay; 1082 1083 /* get plane state for all drm planes associated with crtc state */ 1084 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 1085 struct drm_rect dst, clip = crtc_rect; 1086 1087 if (IS_ERR_OR_NULL(pstate)) { 1088 rc = PTR_ERR(pstate); 1089 DPU_ERROR("%s: failed to get plane%d state, %d\n", 1090 dpu_crtc->name, plane->base.id, rc); 1091 goto end; 1092 } 1093 if (cnt >= DPU_STAGE_MAX * 4) 1094 continue; 1095 1096 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 1097 pstates[cnt].drm_pstate = pstate; 1098 pstates[cnt].stage = pstate->normalized_zpos; 1099 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 1100 1101 if (pipe_staged[pstates[cnt].pipe_id]) { 1102 multirect_plane[multirect_count].r0 = 1103 pipe_staged[pstates[cnt].pipe_id]; 1104 multirect_plane[multirect_count].r1 = pstate; 1105 multirect_count++; 1106 1107 pipe_staged[pstates[cnt].pipe_id] = NULL; 1108 } else { 1109 pipe_staged[pstates[cnt].pipe_id] = pstate; 1110 } 1111 1112 cnt++; 1113 1114 dst = drm_plane_state_dest(pstate); 1115 if (!drm_rect_intersect(&clip, &dst)) { 1116 DPU_ERROR("invalid vertical/horizontal destination\n"); 1117 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 1118 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 1119 DRM_RECT_ARG(&dst)); 1120 rc = -E2BIG; 1121 goto end; 1122 } 1123 } 1124 1125 for (i = 1; i < SSPP_MAX; i++) { 1126 if (pipe_staged[i]) { 1127 dpu_plane_clear_multirect(pipe_staged[i]); 1128 1129 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 1130 DPU_ERROR( 1131 "r1 only virt plane:%d not supported\n", 1132 pipe_staged[i]->plane->base.id); 1133 rc = -EINVAL; 1134 goto end; 1135 } 1136 } 1137 } 1138 1139 z_pos = -1; 1140 for (i = 0; i < cnt; i++) { 1141 /* reset counts at every new blend stage */ 1142 if (pstates[i].stage != z_pos) { 1143 left_zpos_cnt = 0; 1144 right_zpos_cnt = 0; 1145 z_pos = pstates[i].stage; 1146 } 1147 1148 /* verify z_pos setting before using it */ 1149 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1150 DPU_ERROR("> %d plane stages assigned\n", 1151 DPU_STAGE_MAX - DPU_STAGE_0); 1152 rc = -EINVAL; 1153 goto end; 1154 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1155 if (left_zpos_cnt == 2) { 1156 DPU_ERROR("> 2 planes @ stage %d on left\n", 1157 z_pos); 1158 rc = -EINVAL; 1159 goto end; 1160 } 1161 left_zpos_cnt++; 1162 1163 } else { 1164 if (right_zpos_cnt == 2) { 1165 DPU_ERROR("> 2 planes @ stage %d on right\n", 1166 z_pos); 1167 rc = -EINVAL; 1168 goto end; 1169 } 1170 right_zpos_cnt++; 1171 } 1172 1173 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1174 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos); 1175 } 1176 1177 for (i = 0; i < multirect_count; i++) { 1178 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1179 DPU_ERROR( 1180 "multirect validation failed for planes (%d - %d)\n", 1181 multirect_plane[i].r0->plane->base.id, 1182 multirect_plane[i].r1->plane->base.id); 1183 rc = -EINVAL; 1184 goto end; 1185 } 1186 } 1187 1188 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1189 1190 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1191 if (rc) { 1192 DPU_ERROR("crtc%d failed performance check %d\n", 1193 crtc->base.id, rc); 1194 goto end; 1195 } 1196 1197 /* validate source split: 1198 * use pstates sorted by stage to check planes on same stage 1199 * we assume that all pipes are in source split so its valid to compare 1200 * without taking into account left/right mixer placement 1201 */ 1202 for (i = 1; i < cnt; i++) { 1203 struct plane_state *prv_pstate, *cur_pstate; 1204 struct drm_rect left_rect, right_rect; 1205 int32_t left_pid, right_pid; 1206 int32_t stage; 1207 1208 prv_pstate = &pstates[i - 1]; 1209 cur_pstate = &pstates[i]; 1210 if (prv_pstate->stage != cur_pstate->stage) 1211 continue; 1212 1213 stage = cur_pstate->stage; 1214 1215 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1216 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1217 1218 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1219 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1220 1221 if (right_rect.x1 < left_rect.x1) { 1222 swap(left_pid, right_pid); 1223 swap(left_rect, right_rect); 1224 } 1225 1226 /** 1227 * - planes are enumerated in pipe-priority order such that 1228 * planes with lower drm_id must be left-most in a shared 1229 * blend-stage when using source split. 1230 * - planes in source split must be contiguous in width 1231 * - planes in source split must have same dest yoff and height 1232 */ 1233 if (right_pid < left_pid) { 1234 DPU_ERROR( 1235 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1236 stage, left_pid, right_pid); 1237 rc = -EINVAL; 1238 goto end; 1239 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1240 DPU_ERROR("non-contiguous coordinates for src split. " 1241 "stage: %d left: " DRM_RECT_FMT " right: " 1242 DRM_RECT_FMT "\n", stage, 1243 DRM_RECT_ARG(&left_rect), 1244 DRM_RECT_ARG(&right_rect)); 1245 rc = -EINVAL; 1246 goto end; 1247 } else if (left_rect.y1 != right_rect.y1 || 1248 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1249 DPU_ERROR("source split at stage: %d. invalid " 1250 "yoff/height: left: " DRM_RECT_FMT " right: " 1251 DRM_RECT_FMT "\n", stage, 1252 DRM_RECT_ARG(&left_rect), 1253 DRM_RECT_ARG(&right_rect)); 1254 rc = -EINVAL; 1255 goto end; 1256 } 1257 } 1258 1259 end: 1260 kfree(pstates); 1261 return rc; 1262 } 1263 1264 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1265 { 1266 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1267 struct drm_encoder *enc; 1268 1269 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1270 1271 /* 1272 * Normally we would iterate through encoder_mask in crtc state to find 1273 * attached encoders. In this case, we might be disabling vblank _after_ 1274 * encoder_mask has been cleared. 1275 * 1276 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1277 * disable (which is also after encoder_mask is cleared). So instead of 1278 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1279 * currently assigned to our crtc. 1280 * 1281 * Note also that this function cannot be called while crtc is disabled 1282 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1283 * about the assigned crtcs being inconsistent with the current state 1284 * (which means no need to worry about modeset locks). 1285 */ 1286 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1287 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1288 dpu_crtc); 1289 1290 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1291 } 1292 1293 return 0; 1294 } 1295 1296 #ifdef CONFIG_DEBUG_FS 1297 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1298 { 1299 struct dpu_crtc *dpu_crtc; 1300 struct dpu_plane_state *pstate = NULL; 1301 struct dpu_crtc_mixer *m; 1302 1303 struct drm_crtc *crtc; 1304 struct drm_plane *plane; 1305 struct drm_display_mode *mode; 1306 struct drm_framebuffer *fb; 1307 struct drm_plane_state *state; 1308 struct dpu_crtc_state *cstate; 1309 1310 int i, out_width; 1311 1312 dpu_crtc = s->private; 1313 crtc = &dpu_crtc->base; 1314 1315 drm_modeset_lock_all(crtc->dev); 1316 cstate = to_dpu_crtc_state(crtc->state); 1317 1318 mode = &crtc->state->adjusted_mode; 1319 out_width = mode->hdisplay / cstate->num_mixers; 1320 1321 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1322 mode->hdisplay, mode->vdisplay); 1323 1324 seq_puts(s, "\n"); 1325 1326 for (i = 0; i < cstate->num_mixers; ++i) { 1327 m = &cstate->mixers[i]; 1328 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1329 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1330 out_width, mode->vdisplay); 1331 } 1332 1333 seq_puts(s, "\n"); 1334 1335 drm_atomic_crtc_for_each_plane(plane, crtc) { 1336 pstate = to_dpu_plane_state(plane->state); 1337 state = plane->state; 1338 1339 if (!pstate || !state) 1340 continue; 1341 1342 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1343 pstate->stage); 1344 1345 if (plane->state->fb) { 1346 fb = plane->state->fb; 1347 1348 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1349 fb->base.id, (char *) &fb->format->format, 1350 fb->width, fb->height); 1351 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1352 seq_printf(s, "cpp[%d]:%u ", 1353 i, fb->format->cpp[i]); 1354 seq_puts(s, "\n\t"); 1355 1356 seq_printf(s, "modifier:%8llu ", fb->modifier); 1357 seq_puts(s, "\n"); 1358 1359 seq_puts(s, "\t"); 1360 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1361 seq_printf(s, "pitches[%d]:%8u ", i, 1362 fb->pitches[i]); 1363 seq_puts(s, "\n"); 1364 1365 seq_puts(s, "\t"); 1366 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1367 seq_printf(s, "offsets[%d]:%8u ", i, 1368 fb->offsets[i]); 1369 seq_puts(s, "\n"); 1370 } 1371 1372 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1373 state->src_x, state->src_y, state->src_w, state->src_h); 1374 1375 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1376 state->crtc_x, state->crtc_y, state->crtc_w, 1377 state->crtc_h); 1378 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1379 pstate->multirect_mode, pstate->multirect_index); 1380 1381 seq_puts(s, "\n"); 1382 } 1383 if (dpu_crtc->vblank_cb_count) { 1384 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1385 s64 diff_ms = ktime_to_ms(diff); 1386 s64 fps = diff_ms ? div_s64( 1387 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1388 1389 seq_printf(s, 1390 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1391 fps, dpu_crtc->vblank_cb_count, 1392 ktime_to_ms(diff), dpu_crtc->play_count); 1393 1394 /* reset time & count for next measurement */ 1395 dpu_crtc->vblank_cb_count = 0; 1396 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1397 } 1398 1399 drm_modeset_unlock_all(crtc->dev); 1400 1401 return 0; 1402 } 1403 1404 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1405 1406 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1407 { 1408 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1409 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1410 1411 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1412 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1413 seq_printf(s, "core_clk_rate: %llu\n", 1414 dpu_crtc->cur_perf.core_clk_rate); 1415 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1416 seq_printf(s, "max_per_pipe_ib: %llu\n", 1417 dpu_crtc->cur_perf.max_per_pipe_ib); 1418 1419 return 0; 1420 } 1421 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1422 1423 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1424 { 1425 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1426 1427 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1428 crtc->dev->primary->debugfs_root); 1429 1430 debugfs_create_file("status", 0400, 1431 dpu_crtc->debugfs_root, 1432 dpu_crtc, &_dpu_debugfs_status_fops); 1433 debugfs_create_file("state", 0600, 1434 dpu_crtc->debugfs_root, 1435 &dpu_crtc->base, 1436 &dpu_crtc_debugfs_state_fops); 1437 1438 return 0; 1439 } 1440 #else 1441 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1442 { 1443 return 0; 1444 } 1445 #endif /* CONFIG_DEBUG_FS */ 1446 1447 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1448 { 1449 return _dpu_crtc_init_debugfs(crtc); 1450 } 1451 1452 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1453 { 1454 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1455 1456 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1457 } 1458 1459 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1460 .set_config = drm_atomic_helper_set_config, 1461 .destroy = dpu_crtc_destroy, 1462 .page_flip = drm_atomic_helper_page_flip, 1463 .reset = dpu_crtc_reset, 1464 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1465 .atomic_destroy_state = dpu_crtc_destroy_state, 1466 .late_register = dpu_crtc_late_register, 1467 .early_unregister = dpu_crtc_early_unregister, 1468 .verify_crc_source = dpu_crtc_verify_crc_source, 1469 .set_crc_source = dpu_crtc_set_crc_source, 1470 .enable_vblank = msm_crtc_enable_vblank, 1471 .disable_vblank = msm_crtc_disable_vblank, 1472 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1473 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1474 }; 1475 1476 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1477 .atomic_disable = dpu_crtc_disable, 1478 .atomic_enable = dpu_crtc_enable, 1479 .atomic_check = dpu_crtc_atomic_check, 1480 .atomic_begin = dpu_crtc_atomic_begin, 1481 .atomic_flush = dpu_crtc_atomic_flush, 1482 .get_scanout_position = dpu_crtc_get_scanout_position, 1483 }; 1484 1485 /* initialize crtc */ 1486 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1487 struct drm_plane *cursor) 1488 { 1489 struct drm_crtc *crtc = NULL; 1490 struct dpu_crtc *dpu_crtc = NULL; 1491 int i; 1492 1493 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1494 if (!dpu_crtc) 1495 return ERR_PTR(-ENOMEM); 1496 1497 crtc = &dpu_crtc->base; 1498 crtc->dev = dev; 1499 1500 spin_lock_init(&dpu_crtc->spin_lock); 1501 atomic_set(&dpu_crtc->frame_pending, 0); 1502 1503 init_completion(&dpu_crtc->frame_done_comp); 1504 1505 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1506 1507 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1508 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1509 list_add(&dpu_crtc->frame_events[i].list, 1510 &dpu_crtc->frame_event_list); 1511 kthread_init_work(&dpu_crtc->frame_events[i].work, 1512 dpu_crtc_frame_event_work); 1513 } 1514 1515 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1516 NULL); 1517 1518 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1519 1520 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1521 1522 /* save user friendly CRTC name for later */ 1523 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1524 1525 /* initialize event handling */ 1526 spin_lock_init(&dpu_crtc->event_lock); 1527 1528 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1529 return crtc; 1530 } 1531