1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
54 static void dpu_crtc_destroy(struct drm_crtc *crtc)
55 {
56 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
57 
58 	if (!crtc)
59 		return;
60 
61 	drm_crtc_cleanup(crtc);
62 	kfree(dpu_crtc);
63 }
64 
65 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
66 {
67 	struct drm_device *dev = crtc->dev;
68 	struct drm_encoder *encoder;
69 
70 	drm_for_each_encoder(encoder, dev)
71 		if (encoder->crtc == crtc)
72 			return encoder;
73 
74 	return NULL;
75 }
76 
77 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
78 {
79 	if (!src_name ||
80 	    !strcmp(src_name, "none"))
81 		return DPU_CRTC_CRC_SOURCE_NONE;
82 	if (!strcmp(src_name, "auto") ||
83 	    !strcmp(src_name, "lm"))
84 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
85 	if (!strcmp(src_name, "encoder"))
86 		return DPU_CRTC_CRC_SOURCE_ENCODER;
87 
88 	return DPU_CRTC_CRC_SOURCE_INVALID;
89 }
90 
91 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
92 		const char *src_name, size_t *values_cnt)
93 {
94 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
95 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
96 
97 	if (source < 0) {
98 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
99 		return -EINVAL;
100 	}
101 
102 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
103 		*values_cnt = crtc_state->num_mixers;
104 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
105 		struct drm_encoder *drm_enc;
106 
107 		*values_cnt = 0;
108 
109 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
110 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
111 	}
112 
113 	return 0;
114 }
115 
116 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
117 {
118 	struct dpu_crtc_mixer *m;
119 	int i;
120 
121 	for (i = 0; i < crtc_state->num_mixers; ++i) {
122 		m = &crtc_state->mixers[i];
123 
124 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
125 			continue;
126 
127 		/* Calculate MISR over 1 frame */
128 		m->hw_lm->ops.setup_misr(m->hw_lm, true, 1);
129 	}
130 }
131 
132 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
133 {
134 	struct drm_encoder *drm_enc;
135 
136 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
137 		dpu_encoder_setup_misr(drm_enc);
138 }
139 
140 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
141 {
142 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
143 	enum dpu_crtc_crc_source current_source;
144 	struct dpu_crtc_state *crtc_state;
145 	struct drm_device *drm_dev = crtc->dev;
146 
147 	bool was_enabled;
148 	bool enable = false;
149 	int ret = 0;
150 
151 	if (source < 0) {
152 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
153 		return -EINVAL;
154 	}
155 
156 	ret = drm_modeset_lock(&crtc->mutex, NULL);
157 
158 	if (ret)
159 		return ret;
160 
161 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
162 	crtc_state = to_dpu_crtc_state(crtc->state);
163 
164 	spin_lock_irq(&drm_dev->event_lock);
165 	current_source = crtc_state->crc_source;
166 	spin_unlock_irq(&drm_dev->event_lock);
167 
168 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
169 
170 	if (!was_enabled && enable) {
171 		ret = drm_crtc_vblank_get(crtc);
172 
173 		if (ret)
174 			goto cleanup;
175 
176 	} else if (was_enabled && !enable) {
177 		drm_crtc_vblank_put(crtc);
178 	}
179 
180 	spin_lock_irq(&drm_dev->event_lock);
181 	crtc_state->crc_source = source;
182 	spin_unlock_irq(&drm_dev->event_lock);
183 
184 	crtc_state->crc_frame_skip_count = 0;
185 
186 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
187 		dpu_crtc_setup_lm_misr(crtc_state);
188 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
189 		dpu_crtc_setup_encoder_misr(crtc);
190 	else
191 		ret = -EINVAL;
192 
193 cleanup:
194 	drm_modeset_unlock(&crtc->mutex);
195 
196 	return ret;
197 }
198 
199 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
200 {
201 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
202 	if (!encoder) {
203 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
204 		return 0;
205 	}
206 
207 	return dpu_encoder_get_vsync_count(encoder);
208 }
209 
210 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
211 		struct dpu_crtc_state *crtc_state)
212 {
213 	struct dpu_crtc_mixer *m;
214 	u32 crcs[CRTC_DUAL_MIXERS];
215 
216 	int rc = 0;
217 	int i;
218 
219 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
220 
221 	for (i = 0; i < crtc_state->num_mixers; ++i) {
222 
223 		m = &crtc_state->mixers[i];
224 
225 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
226 			continue;
227 
228 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
229 
230 		if (rc) {
231 			if (rc != -ENODATA)
232 				DRM_DEBUG_DRIVER("MISR read failed\n");
233 			return rc;
234 		}
235 	}
236 
237 	return drm_crtc_add_crc_entry(crtc, true,
238 			drm_crtc_accurate_vblank_count(crtc), crcs);
239 }
240 
241 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
242 {
243 	struct drm_encoder *drm_enc;
244 	int rc, pos = 0;
245 	u32 crcs[INTF_MAX];
246 
247 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
248 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
249 		if (rc < 0) {
250 			if (rc != -ENODATA)
251 				DRM_DEBUG_DRIVER("MISR read failed\n");
252 
253 			return rc;
254 		}
255 
256 		pos += rc;
257 	}
258 
259 	return drm_crtc_add_crc_entry(crtc, true,
260 			drm_crtc_accurate_vblank_count(crtc), crcs);
261 }
262 
263 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
264 {
265 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
266 
267 	/* Skip first 2 frames in case of "uncooked" CRCs */
268 	if (crtc_state->crc_frame_skip_count < 2) {
269 		crtc_state->crc_frame_skip_count++;
270 		return 0;
271 	}
272 
273 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
274 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
275 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
276 		return dpu_crtc_get_encoder_crc(crtc);
277 
278 	return -EINVAL;
279 }
280 
281 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
282 					   bool in_vblank_irq,
283 					   int *vpos, int *hpos,
284 					   ktime_t *stime, ktime_t *etime,
285 					   const struct drm_display_mode *mode)
286 {
287 	unsigned int pipe = crtc->index;
288 	struct drm_encoder *encoder;
289 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
290 
291 	encoder = get_encoder_from_crtc(crtc);
292 	if (!encoder) {
293 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
294 		return false;
295 	}
296 
297 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
298 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
299 
300 	/*
301 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
302 	 * the end of VFP. Translate the porch values relative to the line
303 	 * counter positions.
304 	 */
305 
306 	vactive_start = vsw + vbp + 1;
307 	vactive_end = vactive_start + mode->crtc_vdisplay;
308 
309 	/* last scan line before VSYNC */
310 	vfp_end = mode->crtc_vtotal;
311 
312 	if (stime)
313 		*stime = ktime_get();
314 
315 	line = dpu_encoder_get_linecount(encoder);
316 
317 	if (line < vactive_start)
318 		line -= vactive_start;
319 	else if (line > vactive_end)
320 		line = line - vfp_end - vactive_start;
321 	else
322 		line -= vactive_start;
323 
324 	*vpos = line;
325 	*hpos = 0;
326 
327 	if (etime)
328 		*etime = ktime_get();
329 
330 	return true;
331 }
332 
333 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
334 		struct dpu_plane_state *pstate, struct dpu_format *format)
335 {
336 	struct dpu_hw_mixer *lm = mixer->hw_lm;
337 	uint32_t blend_op;
338 	uint32_t fg_alpha, bg_alpha;
339 
340 	fg_alpha = pstate->base.alpha >> 8;
341 	bg_alpha = 0xff - fg_alpha;
342 
343 	/* default to opaque blending */
344 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
345 	    !format->alpha_enable) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_BG_CONST;
348 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
349 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
350 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 		if (fg_alpha != 0xff) {
352 			bg_alpha = fg_alpha;
353 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
354 				    DPU_BLEND_BG_INV_MOD_ALPHA;
355 		} else {
356 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
357 		}
358 	} else {
359 		/* coverage blending */
360 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
361 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
362 		if (fg_alpha != 0xff) {
363 			bg_alpha = fg_alpha;
364 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
365 				    DPU_BLEND_FG_INV_MOD_ALPHA |
366 				    DPU_BLEND_BG_MOD_ALPHA |
367 				    DPU_BLEND_BG_INV_MOD_ALPHA;
368 		} else {
369 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
370 		}
371 	}
372 
373 	lm->ops.setup_blend_config(lm, pstate->stage,
374 				fg_alpha, bg_alpha, blend_op);
375 
376 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
377 		  &format->base.pixel_format, format->alpha_enable, blend_op);
378 }
379 
380 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
381 {
382 	struct dpu_crtc_state *crtc_state;
383 	int lm_idx, lm_horiz_position;
384 
385 	crtc_state = to_dpu_crtc_state(crtc->state);
386 
387 	lm_horiz_position = 0;
388 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
389 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
390 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
391 		struct dpu_hw_mixer_cfg cfg;
392 
393 		if (!lm_roi || !drm_rect_visible(lm_roi))
394 			continue;
395 
396 		cfg.out_width = drm_rect_width(lm_roi);
397 		cfg.out_height = drm_rect_height(lm_roi);
398 		cfg.right_mixer = lm_horiz_position++;
399 		cfg.flags = 0;
400 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
401 	}
402 }
403 
404 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
405 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
406 	struct dpu_hw_stage_cfg *stage_cfg)
407 {
408 	struct drm_plane *plane;
409 	struct drm_framebuffer *fb;
410 	struct drm_plane_state *state;
411 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
412 	struct dpu_plane_state *pstate = NULL;
413 	struct dpu_format *format;
414 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
415 
416 	uint32_t stage_idx, lm_idx;
417 	int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
418 	bool bg_alpha_enable = false;
419 	DECLARE_BITMAP(fetch_active, SSPP_MAX);
420 
421 	memset(fetch_active, 0, sizeof(fetch_active));
422 	drm_atomic_crtc_for_each_plane(plane, crtc) {
423 		enum dpu_sspp sspp_idx;
424 
425 		state = plane->state;
426 		if (!state)
427 			continue;
428 
429 		if (!state->visible)
430 			continue;
431 
432 		pstate = to_dpu_plane_state(state);
433 		fb = state->fb;
434 
435 		sspp_idx = dpu_plane_pipe(plane);
436 		set_bit(sspp_idx, fetch_active);
437 
438 		DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
439 				crtc->base.id,
440 				pstate->stage,
441 				plane->base.id,
442 				sspp_idx - SSPP_VIG0,
443 				state->fb ? state->fb->base.id : -1);
444 
445 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
446 
447 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
448 			bg_alpha_enable = true;
449 
450 		stage_idx = zpos_cnt[pstate->stage]++;
451 		stage_cfg->stage[pstate->stage][stage_idx] =
452 					sspp_idx;
453 		stage_cfg->multirect_index[pstate->stage][stage_idx] =
454 					pstate->multirect_index;
455 
456 		trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
457 					   state, pstate, stage_idx,
458 					   sspp_idx - SSPP_VIG0,
459 					   format->base.pixel_format,
460 					   fb ? fb->modifier : 0);
461 
462 		/* blend config update */
463 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
464 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
465 						pstate, format);
466 
467 			mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl,
468 									    sspp_idx);
469 
470 			if (bg_alpha_enable && !format->alpha_enable)
471 				mixer[lm_idx].mixer_op_mode = 0;
472 			else
473 				mixer[lm_idx].mixer_op_mode |=
474 						1 << pstate->stage;
475 		}
476 	}
477 
478 	if (ctl->ops.set_active_pipes)
479 		ctl->ops.set_active_pipes(ctl, fetch_active);
480 
481 	_dpu_crtc_program_lm_output_roi(crtc);
482 }
483 
484 /**
485  * _dpu_crtc_blend_setup - configure crtc mixers
486  * @crtc: Pointer to drm crtc structure
487  */
488 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
489 {
490 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
491 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
492 	struct dpu_crtc_mixer *mixer = cstate->mixers;
493 	struct dpu_hw_ctl *ctl;
494 	struct dpu_hw_mixer *lm;
495 	struct dpu_hw_stage_cfg stage_cfg;
496 	int i;
497 
498 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
499 
500 	for (i = 0; i < cstate->num_mixers; i++) {
501 		mixer[i].mixer_op_mode = 0;
502 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
503 			mixer[i].lm_ctl->ops.clear_all_blendstages(
504 					mixer[i].lm_ctl);
505 	}
506 
507 	/* initialize stage cfg */
508 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
509 
510 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
511 
512 	for (i = 0; i < cstate->num_mixers; i++) {
513 		ctl = mixer[i].lm_ctl;
514 		lm = mixer[i].hw_lm;
515 
516 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
517 
518 		/* stage config flush mask */
519 		ctl->ops.update_pending_flush_mixer(ctl,
520 			mixer[i].hw_lm->idx);
521 
522 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
523 			mixer[i].hw_lm->idx - LM_0,
524 			mixer[i].mixer_op_mode,
525 			ctl->idx - CTL_0);
526 
527 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
528 			&stage_cfg);
529 	}
530 }
531 
532 /**
533  *  _dpu_crtc_complete_flip - signal pending page_flip events
534  * Any pending vblank events are added to the vblank_event_list
535  * so that the next vblank interrupt shall signal them.
536  * However PAGE_FLIP events are not handled through the vblank_event_list.
537  * This API signals any pending PAGE_FLIP events requested through
538  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
539  * @crtc: Pointer to drm crtc structure
540  */
541 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
542 {
543 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
544 	struct drm_device *dev = crtc->dev;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&dev->event_lock, flags);
548 	if (dpu_crtc->event) {
549 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
550 			      dpu_crtc->event);
551 		trace_dpu_crtc_complete_flip(DRMID(crtc));
552 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
553 		dpu_crtc->event = NULL;
554 	}
555 	spin_unlock_irqrestore(&dev->event_lock, flags);
556 }
557 
558 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
559 {
560 	struct drm_encoder *encoder;
561 
562 	/*
563 	 * TODO: This function is called from dpu debugfs and as part of atomic
564 	 * check. When called from debugfs, the crtc->mutex must be held to
565 	 * read crtc->state. However reading crtc->state from atomic check isn't
566 	 * allowed (unless you have a good reason, a big comment, and a deep
567 	 * understanding of how the atomic/modeset locks work (<- and this is
568 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
569 	 * really we need to figure out a better way to track our operating mode
570 	 */
571 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
572 
573 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
574 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
575 		return dpu_encoder_get_intf_mode(encoder);
576 
577 	return INTF_MODE_NONE;
578 }
579 
580 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
581 {
582 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
583 
584 	/* keep statistics on vblank callback - with auto reset via debugfs */
585 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
586 		dpu_crtc->vblank_cb_time = ktime_get();
587 	else
588 		dpu_crtc->vblank_cb_count++;
589 
590 	dpu_crtc_get_crc(crtc);
591 
592 	drm_crtc_handle_vblank(crtc);
593 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
594 }
595 
596 static void dpu_crtc_frame_event_work(struct kthread_work *work)
597 {
598 	struct dpu_crtc_frame_event *fevent = container_of(work,
599 			struct dpu_crtc_frame_event, work);
600 	struct drm_crtc *crtc = fevent->crtc;
601 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
602 	unsigned long flags;
603 	bool frame_done = false;
604 
605 	DPU_ATRACE_BEGIN("crtc_frame_event");
606 
607 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
608 			ktime_to_ns(fevent->ts));
609 
610 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
611 				| DPU_ENCODER_FRAME_EVENT_ERROR
612 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
613 
614 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
615 			/* ignore vblank when not pending */
616 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
617 			/* release bandwidth and other resources */
618 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
619 							fevent->event);
620 			dpu_core_perf_crtc_release_bw(crtc);
621 		} else {
622 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
623 								fevent->event);
624 		}
625 
626 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
627 					| DPU_ENCODER_FRAME_EVENT_ERROR))
628 			frame_done = true;
629 	}
630 
631 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
632 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
633 				crtc->base.id, ktime_to_ns(fevent->ts));
634 
635 	if (frame_done)
636 		complete_all(&dpu_crtc->frame_done_comp);
637 
638 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
639 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
640 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
641 	DPU_ATRACE_END("crtc_frame_event");
642 }
643 
644 /*
645  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
646  * registers this API to encoder for all frame event callbacks like
647  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
648  * from different context - IRQ, user thread, commit_thread, etc. Each event
649  * should be carefully reviewed and should be processed in proper task context
650  * to avoid schedulin delay or properly manage the irq context's bottom half
651  * processing.
652  */
653 static void dpu_crtc_frame_event_cb(void *data, u32 event)
654 {
655 	struct drm_crtc *crtc = (struct drm_crtc *)data;
656 	struct dpu_crtc *dpu_crtc;
657 	struct msm_drm_private *priv;
658 	struct dpu_crtc_frame_event *fevent;
659 	unsigned long flags;
660 	u32 crtc_id;
661 
662 	/* Nothing to do on idle event */
663 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
664 		return;
665 
666 	dpu_crtc = to_dpu_crtc(crtc);
667 	priv = crtc->dev->dev_private;
668 	crtc_id = drm_crtc_index(crtc);
669 
670 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
671 
672 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
673 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
674 			struct dpu_crtc_frame_event, list);
675 	if (fevent)
676 		list_del_init(&fevent->list);
677 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
678 
679 	if (!fevent) {
680 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
681 		return;
682 	}
683 
684 	fevent->event = event;
685 	fevent->crtc = crtc;
686 	fevent->ts = ktime_get();
687 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
688 }
689 
690 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
691 {
692 	trace_dpu_crtc_complete_commit(DRMID(crtc));
693 	dpu_core_perf_crtc_update(crtc, 0, false);
694 	_dpu_crtc_complete_flip(crtc);
695 }
696 
697 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
698 		struct drm_crtc_state *state)
699 {
700 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
701 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
702 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
703 	int i;
704 
705 	for (i = 0; i < cstate->num_mixers; i++) {
706 		struct drm_rect *r = &cstate->lm_bounds[i];
707 		r->x1 = crtc_split_width * i;
708 		r->y1 = 0;
709 		r->x2 = r->x1 + crtc_split_width;
710 		r->y2 = adj_mode->vdisplay;
711 
712 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
713 	}
714 }
715 
716 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
717 		struct dpu_hw_pcc_cfg *cfg)
718 {
719 	struct drm_color_ctm *ctm;
720 
721 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
722 
723 	ctm = (struct drm_color_ctm *)state->ctm->data;
724 
725 	if (!ctm)
726 		return;
727 
728 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
729 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
730 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
731 
732 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
733 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
734 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
735 
736 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
737 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
738 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
739 }
740 
741 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
742 {
743 	struct drm_crtc_state *state = crtc->state;
744 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
745 	struct dpu_crtc_mixer *mixer = cstate->mixers;
746 	struct dpu_hw_pcc_cfg cfg;
747 	struct dpu_hw_ctl *ctl;
748 	struct dpu_hw_dspp *dspp;
749 	int i;
750 
751 
752 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
753 		return;
754 
755 	for (i = 0; i < cstate->num_mixers; i++) {
756 		ctl = mixer[i].lm_ctl;
757 		dspp = mixer[i].hw_dspp;
758 
759 		if (!dspp || !dspp->ops.setup_pcc)
760 			continue;
761 
762 		if (!state->ctm) {
763 			dspp->ops.setup_pcc(dspp, NULL);
764 		} else {
765 			_dpu_crtc_get_pcc_coeff(state, &cfg);
766 			dspp->ops.setup_pcc(dspp, &cfg);
767 		}
768 
769 		/* stage config flush mask */
770 		ctl->ops.update_pending_flush_dspp(ctl,
771 			mixer[i].hw_dspp->idx);
772 	}
773 }
774 
775 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
776 		struct drm_atomic_state *state)
777 {
778 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
779 	struct drm_encoder *encoder;
780 
781 	if (!crtc->state->enable) {
782 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
783 				crtc->base.id, crtc->state->enable);
784 		return;
785 	}
786 
787 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
788 
789 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
790 
791 	/* encoder will trigger pending mask now */
792 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
793 		dpu_encoder_trigger_kickoff_pending(encoder);
794 
795 	/*
796 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
797 	 * it means we are trying to flush a CRTC whose state is disabled:
798 	 * nothing else needs to be done.
799 	 */
800 	if (unlikely(!cstate->num_mixers))
801 		return;
802 
803 	_dpu_crtc_blend_setup(crtc);
804 
805 	_dpu_crtc_setup_cp_blocks(crtc);
806 
807 	/*
808 	 * PP_DONE irq is only used by command mode for now.
809 	 * It is better to request pending before FLUSH and START trigger
810 	 * to make sure no pp_done irq missed.
811 	 * This is safe because no pp_done will happen before SW trigger
812 	 * in command mode.
813 	 */
814 }
815 
816 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
817 		struct drm_atomic_state *state)
818 {
819 	struct dpu_crtc *dpu_crtc;
820 	struct drm_device *dev;
821 	struct drm_plane *plane;
822 	struct msm_drm_private *priv;
823 	unsigned long flags;
824 	struct dpu_crtc_state *cstate;
825 
826 	if (!crtc->state->enable) {
827 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
828 				crtc->base.id, crtc->state->enable);
829 		return;
830 	}
831 
832 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
833 
834 	dpu_crtc = to_dpu_crtc(crtc);
835 	cstate = to_dpu_crtc_state(crtc->state);
836 	dev = crtc->dev;
837 	priv = dev->dev_private;
838 
839 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
840 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
841 		return;
842 	}
843 
844 	WARN_ON(dpu_crtc->event);
845 	spin_lock_irqsave(&dev->event_lock, flags);
846 	dpu_crtc->event = crtc->state->event;
847 	crtc->state->event = NULL;
848 	spin_unlock_irqrestore(&dev->event_lock, flags);
849 
850 	/*
851 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
852 	 * it means we are trying to flush a CRTC whose state is disabled:
853 	 * nothing else needs to be done.
854 	 */
855 	if (unlikely(!cstate->num_mixers))
856 		return;
857 
858 	/* update performance setting before crtc kickoff */
859 	dpu_core_perf_crtc_update(crtc, 1, false);
860 
861 	/*
862 	 * Final plane updates: Give each plane a chance to complete all
863 	 *                      required writes/flushing before crtc's "flush
864 	 *                      everything" call below.
865 	 */
866 	drm_atomic_crtc_for_each_plane(plane, crtc) {
867 		if (dpu_crtc->smmu_state.transition_error)
868 			dpu_plane_set_error(plane, true);
869 		dpu_plane_flush(plane);
870 	}
871 
872 	/* Kickoff will be scheduled by outer layer */
873 }
874 
875 /**
876  * dpu_crtc_destroy_state - state destroy hook
877  * @crtc: drm CRTC
878  * @state: CRTC state object to release
879  */
880 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
881 		struct drm_crtc_state *state)
882 {
883 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
884 
885 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
886 
887 	__drm_atomic_helper_crtc_destroy_state(state);
888 
889 	kfree(cstate);
890 }
891 
892 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
893 {
894 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
895 	int ret, rc = 0;
896 
897 	if (!atomic_read(&dpu_crtc->frame_pending)) {
898 		DRM_DEBUG_ATOMIC("no frames pending\n");
899 		return 0;
900 	}
901 
902 	DPU_ATRACE_BEGIN("frame done completion wait");
903 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
904 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
905 	if (!ret) {
906 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
907 		rc = -ETIMEDOUT;
908 	}
909 	DPU_ATRACE_END("frame done completion wait");
910 
911 	return rc;
912 }
913 
914 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
915 {
916 	struct drm_encoder *encoder;
917 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
918 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
919 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
920 
921 	/*
922 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
923 	 * it means we are trying to start a CRTC whose state is disabled:
924 	 * nothing else needs to be done.
925 	 */
926 	if (unlikely(!cstate->num_mixers))
927 		return;
928 
929 	DPU_ATRACE_BEGIN("crtc_commit");
930 
931 	drm_for_each_encoder_mask(encoder, crtc->dev,
932 			crtc->state->encoder_mask) {
933 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
934 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
935 			goto end;
936 		}
937 	}
938 	/*
939 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
940 	 * may delay and flush at an irq event (e.g. ppdone)
941 	 */
942 	drm_for_each_encoder_mask(encoder, crtc->dev,
943 				  crtc->state->encoder_mask)
944 		dpu_encoder_prepare_for_kickoff(encoder);
945 
946 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
947 		/* acquire bandwidth and other resources */
948 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
949 	} else
950 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
951 
952 	dpu_crtc->play_count++;
953 
954 	dpu_vbif_clear_errors(dpu_kms);
955 
956 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
957 		dpu_encoder_kickoff(encoder);
958 
959 	reinit_completion(&dpu_crtc->frame_done_comp);
960 
961 end:
962 	DPU_ATRACE_END("crtc_commit");
963 }
964 
965 static void dpu_crtc_reset(struct drm_crtc *crtc)
966 {
967 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
968 
969 	if (crtc->state)
970 		dpu_crtc_destroy_state(crtc, crtc->state);
971 
972 	if (cstate)
973 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
974 	else
975 		__drm_atomic_helper_crtc_reset(crtc, NULL);
976 }
977 
978 /**
979  * dpu_crtc_duplicate_state - state duplicate hook
980  * @crtc: Pointer to drm crtc structure
981  */
982 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
983 {
984 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
985 
986 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
987 	if (!cstate) {
988 		DPU_ERROR("failed to allocate state\n");
989 		return NULL;
990 	}
991 
992 	/* duplicate base helper */
993 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
994 
995 	return &cstate->base;
996 }
997 
998 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
999 					const struct drm_crtc_state *state)
1000 {
1001 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1002 	int i;
1003 
1004 	for (i = 0; i < cstate->num_mixers; i++) {
1005 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1006 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1007 		if (cstate->mixers[i].hw_dspp)
1008 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1009 	}
1010 }
1011 
1012 static void dpu_crtc_disable(struct drm_crtc *crtc,
1013 			     struct drm_atomic_state *state)
1014 {
1015 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1016 									      crtc);
1017 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1018 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1019 	struct drm_encoder *encoder;
1020 	unsigned long flags;
1021 	bool release_bandwidth = false;
1022 
1023 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1024 
1025 	/* If disable is triggered while in self refresh mode,
1026 	 * reset the encoder software state so that in enable
1027 	 * it won't trigger a warn while assigning crtc.
1028 	 */
1029 	if (old_crtc_state->self_refresh_active) {
1030 		drm_for_each_encoder_mask(encoder, crtc->dev,
1031 					old_crtc_state->encoder_mask) {
1032 			dpu_encoder_assign_crtc(encoder, NULL);
1033 		}
1034 		return;
1035 	}
1036 
1037 	/* Disable/save vblank irq handling */
1038 	drm_crtc_vblank_off(crtc);
1039 
1040 	drm_for_each_encoder_mask(encoder, crtc->dev,
1041 				  old_crtc_state->encoder_mask) {
1042 		/* in video mode, we hold an extra bandwidth reference
1043 		 * as we cannot drop bandwidth at frame-done if any
1044 		 * crtc is being used in video mode.
1045 		 */
1046 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1047 			release_bandwidth = true;
1048 
1049 		/*
1050 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1051 		 * we will need encoder->crtc connection to process the device sleep &
1052 		 * preserve it during psr sequence.
1053 		 */
1054 		if (!crtc->state->self_refresh_active)
1055 			dpu_encoder_assign_crtc(encoder, NULL);
1056 	}
1057 
1058 	/* wait for frame_event_done completion */
1059 	if (_dpu_crtc_wait_for_frame_done(crtc))
1060 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1061 				crtc->base.id,
1062 				atomic_read(&dpu_crtc->frame_pending));
1063 
1064 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1065 	dpu_crtc->enabled = false;
1066 
1067 	if (atomic_read(&dpu_crtc->frame_pending)) {
1068 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1069 				     atomic_read(&dpu_crtc->frame_pending));
1070 		if (release_bandwidth)
1071 			dpu_core_perf_crtc_release_bw(crtc);
1072 		atomic_set(&dpu_crtc->frame_pending, 0);
1073 	}
1074 
1075 	dpu_core_perf_crtc_update(crtc, 0, true);
1076 
1077 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1078 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1079 
1080 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
1081 	cstate->num_mixers = 0;
1082 
1083 	/* disable clk & bw control until clk & bw properties are set */
1084 	cstate->bw_control = false;
1085 	cstate->bw_split_vote = false;
1086 
1087 	if (crtc->state->event && !crtc->state->active) {
1088 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1089 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1090 		crtc->state->event = NULL;
1091 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1092 	}
1093 
1094 	pm_runtime_put_sync(crtc->dev->dev);
1095 }
1096 
1097 static void dpu_crtc_enable(struct drm_crtc *crtc,
1098 		struct drm_atomic_state *state)
1099 {
1100 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1101 	struct drm_encoder *encoder;
1102 	bool request_bandwidth = false;
1103 	struct drm_crtc_state *old_crtc_state;
1104 
1105 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1106 
1107 	pm_runtime_get_sync(crtc->dev->dev);
1108 
1109 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1110 
1111 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1112 		/* in video mode, we hold an extra bandwidth reference
1113 		 * as we cannot drop bandwidth at frame-done if any
1114 		 * crtc is being used in video mode.
1115 		 */
1116 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1117 			request_bandwidth = true;
1118 		dpu_encoder_register_frame_event_callback(encoder,
1119 				dpu_crtc_frame_event_cb, (void *)crtc);
1120 	}
1121 
1122 	if (request_bandwidth)
1123 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1124 
1125 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1126 	dpu_crtc->enabled = true;
1127 
1128 	if (!old_crtc_state->self_refresh_active) {
1129 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1130 			dpu_encoder_assign_crtc(encoder, crtc);
1131 	}
1132 
1133 	/* Enable/restore vblank irq handling */
1134 	drm_crtc_vblank_on(crtc);
1135 }
1136 
1137 struct plane_state {
1138 	struct dpu_plane_state *dpu_pstate;
1139 	const struct drm_plane_state *drm_pstate;
1140 	int stage;
1141 	u32 pipe_id;
1142 };
1143 
1144 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1145 {
1146 	struct drm_crtc *crtc = cstate->crtc;
1147 	struct drm_encoder *encoder;
1148 
1149 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1150 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1151 			return true;
1152 		}
1153 	}
1154 
1155 	return false;
1156 }
1157 
1158 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1159 		struct drm_atomic_state *state)
1160 {
1161 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1162 									  crtc);
1163 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1164 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1165 	struct plane_state *pstates;
1166 
1167 	const struct drm_plane_state *pstate;
1168 	struct drm_plane *plane;
1169 	struct drm_display_mode *mode;
1170 
1171 	int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
1172 
1173 	struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
1174 	int multirect_count = 0;
1175 	const struct drm_plane_state *pipe_staged[SSPP_MAX];
1176 	int left_zpos_cnt = 0, right_zpos_cnt = 0;
1177 	struct drm_rect crtc_rect = { 0 };
1178 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1179 
1180 	pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
1181 	if (!pstates)
1182 		return -ENOMEM;
1183 
1184 	if (!crtc_state->enable || !crtc_state->active) {
1185 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1186 				crtc->base.id, crtc_state->enable,
1187 				crtc_state->active);
1188 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1189 		goto end;
1190 	}
1191 
1192 	mode = &crtc_state->adjusted_mode;
1193 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1194 
1195 	/* force a full mode set if active state changed */
1196 	if (crtc_state->active_changed)
1197 		crtc_state->mode_changed = true;
1198 
1199 	memset(pipe_staged, 0, sizeof(pipe_staged));
1200 
1201 	if (cstate->num_mixers) {
1202 		mixer_width = mode->hdisplay / cstate->num_mixers;
1203 
1204 		_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
1205 	}
1206 
1207 	crtc_rect.x2 = mode->hdisplay;
1208 	crtc_rect.y2 = mode->vdisplay;
1209 
1210 	 /* get plane state for all drm planes associated with crtc state */
1211 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1212 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1213 		struct drm_rect dst, clip = crtc_rect;
1214 
1215 		if (IS_ERR_OR_NULL(pstate)) {
1216 			rc = PTR_ERR(pstate);
1217 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1218 					dpu_crtc->name, plane->base.id, rc);
1219 			goto end;
1220 		}
1221 		if (cnt >= DPU_STAGE_MAX * 4)
1222 			continue;
1223 
1224 		if (!pstate->visible)
1225 			continue;
1226 
1227 		pstates[cnt].dpu_pstate = dpu_pstate;
1228 		pstates[cnt].drm_pstate = pstate;
1229 		pstates[cnt].stage = pstate->normalized_zpos;
1230 		pstates[cnt].pipe_id = dpu_plane_pipe(plane);
1231 
1232 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1233 
1234 		if (pipe_staged[pstates[cnt].pipe_id]) {
1235 			multirect_plane[multirect_count].r0 =
1236 				pipe_staged[pstates[cnt].pipe_id];
1237 			multirect_plane[multirect_count].r1 = pstate;
1238 			multirect_count++;
1239 
1240 			pipe_staged[pstates[cnt].pipe_id] = NULL;
1241 		} else {
1242 			pipe_staged[pstates[cnt].pipe_id] = pstate;
1243 		}
1244 
1245 		cnt++;
1246 
1247 		dst = drm_plane_state_dest(pstate);
1248 		if (!drm_rect_intersect(&clip, &dst)) {
1249 			DPU_ERROR("invalid vertical/horizontal destination\n");
1250 			DPU_ERROR("display: " DRM_RECT_FMT " plane: "
1251 				  DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
1252 				  DRM_RECT_ARG(&dst));
1253 			rc = -E2BIG;
1254 			goto end;
1255 		}
1256 	}
1257 
1258 	for (i = 1; i < SSPP_MAX; i++) {
1259 		if (pipe_staged[i])
1260 			dpu_plane_clear_multirect(pipe_staged[i]);
1261 	}
1262 
1263 	z_pos = -1;
1264 	for (i = 0; i < cnt; i++) {
1265 		/* reset counts at every new blend stage */
1266 		if (pstates[i].stage != z_pos) {
1267 			left_zpos_cnt = 0;
1268 			right_zpos_cnt = 0;
1269 			z_pos = pstates[i].stage;
1270 		}
1271 
1272 		/* verify z_pos setting before using it */
1273 		if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1274 			DPU_ERROR("> %d plane stages assigned\n",
1275 					DPU_STAGE_MAX - DPU_STAGE_0);
1276 			rc = -EINVAL;
1277 			goto end;
1278 		} else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
1279 			if (left_zpos_cnt == 2) {
1280 				DPU_ERROR("> 2 planes @ stage %d on left\n",
1281 					z_pos);
1282 				rc = -EINVAL;
1283 				goto end;
1284 			}
1285 			left_zpos_cnt++;
1286 
1287 		} else {
1288 			if (right_zpos_cnt == 2) {
1289 				DPU_ERROR("> 2 planes @ stage %d on right\n",
1290 					z_pos);
1291 				rc = -EINVAL;
1292 				goto end;
1293 			}
1294 			right_zpos_cnt++;
1295 		}
1296 
1297 		pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1298 		DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1299 	}
1300 
1301 	for (i = 0; i < multirect_count; i++) {
1302 		if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1303 			DPU_ERROR(
1304 			"multirect validation failed for planes (%d - %d)\n",
1305 					multirect_plane[i].r0->plane->base.id,
1306 					multirect_plane[i].r1->plane->base.id);
1307 			rc = -EINVAL;
1308 			goto end;
1309 		}
1310 	}
1311 
1312 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1313 
1314 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1315 	if (rc) {
1316 		DPU_ERROR("crtc%d failed performance check %d\n",
1317 				crtc->base.id, rc);
1318 		goto end;
1319 	}
1320 
1321 	/* validate source split:
1322 	 * use pstates sorted by stage to check planes on same stage
1323 	 * we assume that all pipes are in source split so its valid to compare
1324 	 * without taking into account left/right mixer placement
1325 	 */
1326 	for (i = 1; i < cnt; i++) {
1327 		struct plane_state *prv_pstate, *cur_pstate;
1328 		struct drm_rect left_rect, right_rect;
1329 		int32_t left_pid, right_pid;
1330 		int32_t stage;
1331 
1332 		prv_pstate = &pstates[i - 1];
1333 		cur_pstate = &pstates[i];
1334 		if (prv_pstate->stage != cur_pstate->stage)
1335 			continue;
1336 
1337 		stage = cur_pstate->stage;
1338 
1339 		left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1340 		left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1341 
1342 		right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1343 		right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1344 
1345 		if (right_rect.x1 < left_rect.x1) {
1346 			swap(left_pid, right_pid);
1347 			swap(left_rect, right_rect);
1348 		}
1349 
1350 		/**
1351 		 * - planes are enumerated in pipe-priority order such that
1352 		 *   planes with lower drm_id must be left-most in a shared
1353 		 *   blend-stage when using source split.
1354 		 * - planes in source split must be contiguous in width
1355 		 * - planes in source split must have same dest yoff and height
1356 		 */
1357 		if (right_pid < left_pid) {
1358 			DPU_ERROR(
1359 				"invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1360 				stage, left_pid, right_pid);
1361 			rc = -EINVAL;
1362 			goto end;
1363 		} else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1364 			DPU_ERROR("non-contiguous coordinates for src split. "
1365 				  "stage: %d left: " DRM_RECT_FMT " right: "
1366 				  DRM_RECT_FMT "\n", stage,
1367 				  DRM_RECT_ARG(&left_rect),
1368 				  DRM_RECT_ARG(&right_rect));
1369 			rc = -EINVAL;
1370 			goto end;
1371 		} else if (left_rect.y1 != right_rect.y1 ||
1372 			   drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1373 			DPU_ERROR("source split at stage: %d. invalid "
1374 				  "yoff/height: left: " DRM_RECT_FMT " right: "
1375 				  DRM_RECT_FMT "\n", stage,
1376 				  DRM_RECT_ARG(&left_rect),
1377 				  DRM_RECT_ARG(&right_rect));
1378 			rc = -EINVAL;
1379 			goto end;
1380 		}
1381 	}
1382 
1383 end:
1384 	kfree(pstates);
1385 	return rc;
1386 }
1387 
1388 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1389 {
1390 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1391 	struct drm_encoder *enc;
1392 
1393 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1394 
1395 	/*
1396 	 * Normally we would iterate through encoder_mask in crtc state to find
1397 	 * attached encoders. In this case, we might be disabling vblank _after_
1398 	 * encoder_mask has been cleared.
1399 	 *
1400 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1401 	 * disable (which is also after encoder_mask is cleared). So instead of
1402 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1403 	 * currently assigned to our crtc.
1404 	 *
1405 	 * Note also that this function cannot be called while crtc is disabled
1406 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1407 	 * about the assigned crtcs being inconsistent with the current state
1408 	 * (which means no need to worry about modeset locks).
1409 	 */
1410 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1411 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1412 					     dpu_crtc);
1413 
1414 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 #ifdef CONFIG_DEBUG_FS
1421 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1422 {
1423 	struct dpu_crtc *dpu_crtc;
1424 	struct dpu_plane_state *pstate = NULL;
1425 	struct dpu_crtc_mixer *m;
1426 
1427 	struct drm_crtc *crtc;
1428 	struct drm_plane *plane;
1429 	struct drm_display_mode *mode;
1430 	struct drm_framebuffer *fb;
1431 	struct drm_plane_state *state;
1432 	struct dpu_crtc_state *cstate;
1433 
1434 	int i, out_width;
1435 
1436 	dpu_crtc = s->private;
1437 	crtc = &dpu_crtc->base;
1438 
1439 	drm_modeset_lock_all(crtc->dev);
1440 	cstate = to_dpu_crtc_state(crtc->state);
1441 
1442 	mode = &crtc->state->adjusted_mode;
1443 	out_width = mode->hdisplay / cstate->num_mixers;
1444 
1445 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1446 				mode->hdisplay, mode->vdisplay);
1447 
1448 	seq_puts(s, "\n");
1449 
1450 	for (i = 0; i < cstate->num_mixers; ++i) {
1451 		m = &cstate->mixers[i];
1452 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1453 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1454 			out_width, mode->vdisplay);
1455 	}
1456 
1457 	seq_puts(s, "\n");
1458 
1459 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1460 		pstate = to_dpu_plane_state(plane->state);
1461 		state = plane->state;
1462 
1463 		if (!pstate || !state)
1464 			continue;
1465 
1466 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1467 			pstate->stage);
1468 
1469 		if (plane->state->fb) {
1470 			fb = plane->state->fb;
1471 
1472 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1473 				fb->base.id, (char *) &fb->format->format,
1474 				fb->width, fb->height);
1475 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1476 				seq_printf(s, "cpp[%d]:%u ",
1477 						i, fb->format->cpp[i]);
1478 			seq_puts(s, "\n\t");
1479 
1480 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1481 			seq_puts(s, "\n");
1482 
1483 			seq_puts(s, "\t");
1484 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1485 				seq_printf(s, "pitches[%d]:%8u ", i,
1486 							fb->pitches[i]);
1487 			seq_puts(s, "\n");
1488 
1489 			seq_puts(s, "\t");
1490 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1491 				seq_printf(s, "offsets[%d]:%8u ", i,
1492 							fb->offsets[i]);
1493 			seq_puts(s, "\n");
1494 		}
1495 
1496 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1497 			state->src_x, state->src_y, state->src_w, state->src_h);
1498 
1499 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1500 			state->crtc_x, state->crtc_y, state->crtc_w,
1501 			state->crtc_h);
1502 		seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1503 			pstate->multirect_mode, pstate->multirect_index);
1504 
1505 		seq_puts(s, "\n");
1506 	}
1507 	if (dpu_crtc->vblank_cb_count) {
1508 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1509 		s64 diff_ms = ktime_to_ms(diff);
1510 		s64 fps = diff_ms ? div_s64(
1511 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1512 
1513 		seq_printf(s,
1514 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1515 				fps, dpu_crtc->vblank_cb_count,
1516 				ktime_to_ms(diff), dpu_crtc->play_count);
1517 
1518 		/* reset time & count for next measurement */
1519 		dpu_crtc->vblank_cb_count = 0;
1520 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1521 	}
1522 
1523 	drm_modeset_unlock_all(crtc->dev);
1524 
1525 	return 0;
1526 }
1527 
1528 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1529 
1530 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1531 {
1532 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1533 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1534 
1535 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1536 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1537 	seq_printf(s, "core_clk_rate: %llu\n",
1538 			dpu_crtc->cur_perf.core_clk_rate);
1539 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1540 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1541 				dpu_crtc->cur_perf.max_per_pipe_ib);
1542 
1543 	return 0;
1544 }
1545 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1546 
1547 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1548 {
1549 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1550 
1551 	debugfs_create_file("status", 0400,
1552 			crtc->debugfs_entry,
1553 			dpu_crtc, &_dpu_debugfs_status_fops);
1554 	debugfs_create_file("state", 0600,
1555 			crtc->debugfs_entry,
1556 			&dpu_crtc->base,
1557 			&dpu_crtc_debugfs_state_fops);
1558 
1559 	return 0;
1560 }
1561 #else
1562 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1563 {
1564 	return 0;
1565 }
1566 #endif /* CONFIG_DEBUG_FS */
1567 
1568 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1569 {
1570 	return _dpu_crtc_init_debugfs(crtc);
1571 }
1572 
1573 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1574 	.set_config = drm_atomic_helper_set_config,
1575 	.destroy = dpu_crtc_destroy,
1576 	.page_flip = drm_atomic_helper_page_flip,
1577 	.reset = dpu_crtc_reset,
1578 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1579 	.atomic_destroy_state = dpu_crtc_destroy_state,
1580 	.atomic_print_state = dpu_crtc_atomic_print_state,
1581 	.late_register = dpu_crtc_late_register,
1582 	.verify_crc_source = dpu_crtc_verify_crc_source,
1583 	.set_crc_source = dpu_crtc_set_crc_source,
1584 	.enable_vblank  = msm_crtc_enable_vblank,
1585 	.disable_vblank = msm_crtc_disable_vblank,
1586 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1587 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1588 };
1589 
1590 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1591 	.atomic_disable = dpu_crtc_disable,
1592 	.atomic_enable = dpu_crtc_enable,
1593 	.atomic_check = dpu_crtc_atomic_check,
1594 	.atomic_begin = dpu_crtc_atomic_begin,
1595 	.atomic_flush = dpu_crtc_atomic_flush,
1596 	.get_scanout_position = dpu_crtc_get_scanout_position,
1597 };
1598 
1599 /* initialize crtc */
1600 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1601 				struct drm_plane *cursor)
1602 {
1603 	struct drm_crtc *crtc = NULL;
1604 	struct dpu_crtc *dpu_crtc = NULL;
1605 	int i, ret;
1606 
1607 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1608 	if (!dpu_crtc)
1609 		return ERR_PTR(-ENOMEM);
1610 
1611 	crtc = &dpu_crtc->base;
1612 	crtc->dev = dev;
1613 
1614 	spin_lock_init(&dpu_crtc->spin_lock);
1615 	atomic_set(&dpu_crtc->frame_pending, 0);
1616 
1617 	init_completion(&dpu_crtc->frame_done_comp);
1618 
1619 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1620 
1621 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1622 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1623 		list_add(&dpu_crtc->frame_events[i].list,
1624 				&dpu_crtc->frame_event_list);
1625 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1626 				dpu_crtc_frame_event_work);
1627 	}
1628 
1629 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1630 				NULL);
1631 
1632 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1633 
1634 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1635 
1636 	/* save user friendly CRTC name for later */
1637 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1638 
1639 	/* initialize event handling */
1640 	spin_lock_init(&dpu_crtc->event_lock);
1641 
1642 	ret = drm_self_refresh_helper_init(crtc);
1643 	if (ret) {
1644 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1645 			crtc->name, ret);
1646 		return ERR_PTR(ret);
1647 	}
1648 
1649 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1650 	return crtc;
1651 }
1652