1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 34 #define DPU_DRM_BLEND_OP_OPAQUE 1 35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 36 #define DPU_DRM_BLEND_OP_COVERAGE 3 37 #define DPU_DRM_BLEND_OP_MAX 4 38 39 /* layer mixer index on dpu_crtc */ 40 #define LEFT_MIXER 0 41 #define RIGHT_MIXER 1 42 43 /* timeout in ms waiting for frame done */ 44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 45 46 #define CONVERT_S3_15(val) \ 47 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 48 49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 50 { 51 struct msm_drm_private *priv = crtc->dev->dev_private; 52 53 return to_dpu_kms(priv->kms); 54 } 55 56 static void dpu_crtc_destroy(struct drm_crtc *crtc) 57 { 58 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 59 60 DPU_DEBUG("\n"); 61 62 if (!crtc) 63 return; 64 65 drm_crtc_cleanup(crtc); 66 kfree(dpu_crtc); 67 } 68 69 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 70 struct dpu_plane_state *pstate, struct dpu_format *format) 71 { 72 struct dpu_hw_mixer *lm = mixer->hw_lm; 73 uint32_t blend_op; 74 struct drm_format_name_buf format_name; 75 76 /* default to opaque blending */ 77 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 78 DPU_BLEND_BG_ALPHA_BG_CONST; 79 80 if (format->alpha_enable) { 81 /* coverage blending */ 82 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 83 DPU_BLEND_BG_ALPHA_FG_PIXEL | 84 DPU_BLEND_BG_INV_ALPHA; 85 } 86 87 lm->ops.setup_blend_config(lm, pstate->stage, 88 0xFF, 0, blend_op); 89 90 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n", 91 drm_get_format_name(format->base.pixel_format, &format_name), 92 format->alpha_enable, blend_op); 93 } 94 95 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 96 { 97 struct dpu_crtc_state *crtc_state; 98 int lm_idx, lm_horiz_position; 99 100 crtc_state = to_dpu_crtc_state(crtc->state); 101 102 lm_horiz_position = 0; 103 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 104 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 105 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 106 struct dpu_hw_mixer_cfg cfg; 107 108 if (!lm_roi || !drm_rect_visible(lm_roi)) 109 continue; 110 111 cfg.out_width = drm_rect_width(lm_roi); 112 cfg.out_height = drm_rect_height(lm_roi); 113 cfg.right_mixer = lm_horiz_position++; 114 cfg.flags = 0; 115 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 116 } 117 } 118 119 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 120 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 121 { 122 struct drm_plane *plane; 123 struct drm_framebuffer *fb; 124 struct drm_plane_state *state; 125 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 126 struct dpu_plane_state *pstate = NULL; 127 struct dpu_format *format; 128 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 129 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 130 131 u32 flush_mask; 132 uint32_t stage_idx, lm_idx; 133 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 134 bool bg_alpha_enable = false; 135 136 drm_atomic_crtc_for_each_plane(plane, crtc) { 137 state = plane->state; 138 if (!state) 139 continue; 140 141 pstate = to_dpu_plane_state(state); 142 fb = state->fb; 143 144 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 145 146 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n", 147 crtc->base.id, 148 pstate->stage, 149 plane->base.id, 150 dpu_plane_pipe(plane) - SSPP_VIG0, 151 state->fb ? state->fb->base.id : -1); 152 153 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 154 155 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 156 bg_alpha_enable = true; 157 158 stage_idx = zpos_cnt[pstate->stage]++; 159 stage_cfg->stage[pstate->stage][stage_idx] = 160 dpu_plane_pipe(plane); 161 stage_cfg->multirect_index[pstate->stage][stage_idx] = 162 pstate->multirect_index; 163 164 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 165 state, pstate, stage_idx, 166 dpu_plane_pipe(plane) - SSPP_VIG0, 167 format->base.pixel_format, 168 fb ? fb->modifier : 0); 169 170 /* blend config update */ 171 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 172 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 173 pstate, format); 174 175 mixer[lm_idx].flush_mask |= flush_mask; 176 177 if (bg_alpha_enable && !format->alpha_enable) 178 mixer[lm_idx].mixer_op_mode = 0; 179 else 180 mixer[lm_idx].mixer_op_mode |= 181 1 << pstate->stage; 182 } 183 } 184 185 _dpu_crtc_program_lm_output_roi(crtc); 186 } 187 188 /** 189 * _dpu_crtc_blend_setup - configure crtc mixers 190 * @crtc: Pointer to drm crtc structure 191 */ 192 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 193 { 194 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 195 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 196 struct dpu_crtc_mixer *mixer = cstate->mixers; 197 struct dpu_hw_ctl *ctl; 198 struct dpu_hw_mixer *lm; 199 int i; 200 201 DPU_DEBUG("%s\n", dpu_crtc->name); 202 203 for (i = 0; i < cstate->num_mixers; i++) { 204 mixer[i].mixer_op_mode = 0; 205 mixer[i].flush_mask = 0; 206 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 207 mixer[i].lm_ctl->ops.clear_all_blendstages( 208 mixer[i].lm_ctl); 209 } 210 211 /* initialize stage cfg */ 212 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 213 214 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 215 216 for (i = 0; i < cstate->num_mixers; i++) { 217 ctl = mixer[i].lm_ctl; 218 lm = mixer[i].hw_lm; 219 220 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 221 222 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 223 mixer[i].hw_lm->idx); 224 225 /* stage config flush mask */ 226 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 227 228 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 229 mixer[i].hw_lm->idx - LM_0, 230 mixer[i].mixer_op_mode, 231 ctl->idx - CTL_0, 232 mixer[i].flush_mask); 233 234 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 235 &dpu_crtc->stage_cfg); 236 } 237 } 238 239 /** 240 * _dpu_crtc_complete_flip - signal pending page_flip events 241 * Any pending vblank events are added to the vblank_event_list 242 * so that the next vblank interrupt shall signal them. 243 * However PAGE_FLIP events are not handled through the vblank_event_list. 244 * This API signals any pending PAGE_FLIP events requested through 245 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 246 * @crtc: Pointer to drm crtc structure 247 */ 248 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 249 { 250 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 251 struct drm_device *dev = crtc->dev; 252 unsigned long flags; 253 254 spin_lock_irqsave(&dev->event_lock, flags); 255 if (dpu_crtc->event) { 256 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 257 dpu_crtc->event); 258 trace_dpu_crtc_complete_flip(DRMID(crtc)); 259 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 260 dpu_crtc->event = NULL; 261 } 262 spin_unlock_irqrestore(&dev->event_lock, flags); 263 } 264 265 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 266 { 267 struct drm_encoder *encoder; 268 269 /* 270 * TODO: This function is called from dpu debugfs and as part of atomic 271 * check. When called from debugfs, the crtc->mutex must be held to 272 * read crtc->state. However reading crtc->state from atomic check isn't 273 * allowed (unless you have a good reason, a big comment, and a deep 274 * understanding of how the atomic/modeset locks work (<- and this is 275 * probably not possible)). So we'll keep the WARN_ON here for now, but 276 * really we need to figure out a better way to track our operating mode 277 */ 278 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 279 280 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 281 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 282 return dpu_encoder_get_intf_mode(encoder); 283 284 return INTF_MODE_NONE; 285 } 286 287 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 288 { 289 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 290 291 /* keep statistics on vblank callback - with auto reset via debugfs */ 292 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 293 dpu_crtc->vblank_cb_time = ktime_get(); 294 else 295 dpu_crtc->vblank_cb_count++; 296 drm_crtc_handle_vblank(crtc); 297 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 298 } 299 300 static void dpu_crtc_frame_event_work(struct kthread_work *work) 301 { 302 struct dpu_crtc_frame_event *fevent = container_of(work, 303 struct dpu_crtc_frame_event, work); 304 struct drm_crtc *crtc = fevent->crtc; 305 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 306 unsigned long flags; 307 bool frame_done = false; 308 309 DPU_ATRACE_BEGIN("crtc_frame_event"); 310 311 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 312 ktime_to_ns(fevent->ts)); 313 314 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 315 | DPU_ENCODER_FRAME_EVENT_ERROR 316 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 317 318 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 319 /* ignore vblank when not pending */ 320 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 321 /* release bandwidth and other resources */ 322 trace_dpu_crtc_frame_event_done(DRMID(crtc), 323 fevent->event); 324 dpu_core_perf_crtc_release_bw(crtc); 325 } else { 326 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 327 fevent->event); 328 } 329 330 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE) 331 dpu_core_perf_crtc_update(crtc, 0, false); 332 333 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 334 | DPU_ENCODER_FRAME_EVENT_ERROR)) 335 frame_done = true; 336 } 337 338 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 339 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 340 crtc->base.id, ktime_to_ns(fevent->ts)); 341 342 if (frame_done) 343 complete_all(&dpu_crtc->frame_done_comp); 344 345 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 346 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 347 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 348 DPU_ATRACE_END("crtc_frame_event"); 349 } 350 351 /* 352 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 353 * registers this API to encoder for all frame event callbacks like 354 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 355 * from different context - IRQ, user thread, commit_thread, etc. Each event 356 * should be carefully reviewed and should be processed in proper task context 357 * to avoid schedulin delay or properly manage the irq context's bottom half 358 * processing. 359 */ 360 static void dpu_crtc_frame_event_cb(void *data, u32 event) 361 { 362 struct drm_crtc *crtc = (struct drm_crtc *)data; 363 struct dpu_crtc *dpu_crtc; 364 struct msm_drm_private *priv; 365 struct dpu_crtc_frame_event *fevent; 366 unsigned long flags; 367 u32 crtc_id; 368 369 /* Nothing to do on idle event */ 370 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 371 return; 372 373 dpu_crtc = to_dpu_crtc(crtc); 374 priv = crtc->dev->dev_private; 375 crtc_id = drm_crtc_index(crtc); 376 377 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 378 379 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 380 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 381 struct dpu_crtc_frame_event, list); 382 if (fevent) 383 list_del_init(&fevent->list); 384 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 385 386 if (!fevent) { 387 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 388 return; 389 } 390 391 fevent->event = event; 392 fevent->crtc = crtc; 393 fevent->ts = ktime_get(); 394 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 395 } 396 397 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 398 { 399 trace_dpu_crtc_complete_commit(DRMID(crtc)); 400 _dpu_crtc_complete_flip(crtc); 401 } 402 403 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 404 struct drm_crtc_state *state) 405 { 406 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 407 struct drm_display_mode *adj_mode = &state->adjusted_mode; 408 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 409 int i; 410 411 for (i = 0; i < cstate->num_mixers; i++) { 412 struct drm_rect *r = &cstate->lm_bounds[i]; 413 r->x1 = crtc_split_width * i; 414 r->y1 = 0; 415 r->x2 = r->x1 + crtc_split_width; 416 r->y2 = adj_mode->vdisplay; 417 418 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 419 } 420 } 421 422 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 423 struct dpu_hw_pcc_cfg *cfg) 424 { 425 struct drm_color_ctm *ctm; 426 427 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 428 429 ctm = (struct drm_color_ctm *)state->ctm->data; 430 431 if (!ctm) 432 return; 433 434 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 435 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 436 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 437 438 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 439 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 440 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 441 442 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 443 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 444 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 445 } 446 447 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 448 { 449 struct drm_crtc_state *state = crtc->state; 450 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 451 struct dpu_crtc_mixer *mixer = cstate->mixers; 452 struct dpu_hw_pcc_cfg cfg; 453 struct dpu_hw_ctl *ctl; 454 struct dpu_hw_dspp *dspp; 455 int i; 456 457 458 if (!state->color_mgmt_changed) 459 return; 460 461 for (i = 0; i < cstate->num_mixers; i++) { 462 ctl = mixer[i].lm_ctl; 463 dspp = mixer[i].hw_dspp; 464 465 if (!dspp || !dspp->ops.setup_pcc) 466 continue; 467 468 if (!state->ctm) { 469 dspp->ops.setup_pcc(dspp, NULL); 470 } else { 471 _dpu_crtc_get_pcc_coeff(state, &cfg); 472 dspp->ops.setup_pcc(dspp, &cfg); 473 } 474 475 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 476 mixer[i].hw_dspp->idx); 477 478 /* stage config flush mask */ 479 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 480 481 DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n", 482 mixer[i].hw_lm->idx - DSPP_0, 483 ctl->idx - CTL_0, 484 mixer[i].flush_mask); 485 } 486 } 487 488 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 489 struct drm_atomic_state *state) 490 { 491 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 492 struct drm_encoder *encoder; 493 494 if (!crtc->state->enable) { 495 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n", 496 crtc->base.id, crtc->state->enable); 497 return; 498 } 499 500 DPU_DEBUG("crtc%d\n", crtc->base.id); 501 502 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 503 504 /* encoder will trigger pending mask now */ 505 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 506 dpu_encoder_trigger_kickoff_pending(encoder); 507 508 /* 509 * If no mixers have been allocated in dpu_crtc_atomic_check(), 510 * it means we are trying to flush a CRTC whose state is disabled: 511 * nothing else needs to be done. 512 */ 513 if (unlikely(!cstate->num_mixers)) 514 return; 515 516 _dpu_crtc_blend_setup(crtc); 517 518 _dpu_crtc_setup_cp_blocks(crtc); 519 520 /* 521 * PP_DONE irq is only used by command mode for now. 522 * It is better to request pending before FLUSH and START trigger 523 * to make sure no pp_done irq missed. 524 * This is safe because no pp_done will happen before SW trigger 525 * in command mode. 526 */ 527 } 528 529 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 530 struct drm_atomic_state *state) 531 { 532 struct dpu_crtc *dpu_crtc; 533 struct drm_device *dev; 534 struct drm_plane *plane; 535 struct msm_drm_private *priv; 536 unsigned long flags; 537 struct dpu_crtc_state *cstate; 538 539 if (!crtc->state->enable) { 540 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n", 541 crtc->base.id, crtc->state->enable); 542 return; 543 } 544 545 DPU_DEBUG("crtc%d\n", crtc->base.id); 546 547 dpu_crtc = to_dpu_crtc(crtc); 548 cstate = to_dpu_crtc_state(crtc->state); 549 dev = crtc->dev; 550 priv = dev->dev_private; 551 552 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 553 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 554 return; 555 } 556 557 WARN_ON(dpu_crtc->event); 558 spin_lock_irqsave(&dev->event_lock, flags); 559 dpu_crtc->event = crtc->state->event; 560 crtc->state->event = NULL; 561 spin_unlock_irqrestore(&dev->event_lock, flags); 562 563 /* 564 * If no mixers has been allocated in dpu_crtc_atomic_check(), 565 * it means we are trying to flush a CRTC whose state is disabled: 566 * nothing else needs to be done. 567 */ 568 if (unlikely(!cstate->num_mixers)) 569 return; 570 571 /* 572 * For planes without commit update, drm framework will not add 573 * those planes to current state since hardware update is not 574 * required. However, if those planes were power collapsed since 575 * last commit cycle, driver has to restore the hardware state 576 * of those planes explicitly here prior to plane flush. 577 */ 578 drm_atomic_crtc_for_each_plane(plane, crtc) 579 dpu_plane_restore(plane); 580 581 /* update performance setting before crtc kickoff */ 582 dpu_core_perf_crtc_update(crtc, 1, false); 583 584 /* 585 * Final plane updates: Give each plane a chance to complete all 586 * required writes/flushing before crtc's "flush 587 * everything" call below. 588 */ 589 drm_atomic_crtc_for_each_plane(plane, crtc) { 590 if (dpu_crtc->smmu_state.transition_error) 591 dpu_plane_set_error(plane, true); 592 dpu_plane_flush(plane); 593 } 594 595 /* Kickoff will be scheduled by outer layer */ 596 } 597 598 /** 599 * dpu_crtc_destroy_state - state destroy hook 600 * @crtc: drm CRTC 601 * @state: CRTC state object to release 602 */ 603 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 604 struct drm_crtc_state *state) 605 { 606 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 607 608 DPU_DEBUG("crtc%d\n", crtc->base.id); 609 610 __drm_atomic_helper_crtc_destroy_state(state); 611 612 kfree(cstate); 613 } 614 615 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 616 { 617 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 618 int ret, rc = 0; 619 620 if (!atomic_read(&dpu_crtc->frame_pending)) { 621 DPU_DEBUG("no frames pending\n"); 622 return 0; 623 } 624 625 DPU_ATRACE_BEGIN("frame done completion wait"); 626 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 627 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 628 if (!ret) { 629 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 630 rc = -ETIMEDOUT; 631 } 632 DPU_ATRACE_END("frame done completion wait"); 633 634 return rc; 635 } 636 637 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 638 { 639 struct drm_encoder *encoder; 640 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 641 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 642 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 643 644 /* 645 * If no mixers has been allocated in dpu_crtc_atomic_check(), 646 * it means we are trying to start a CRTC whose state is disabled: 647 * nothing else needs to be done. 648 */ 649 if (unlikely(!cstate->num_mixers)) 650 return; 651 652 DPU_ATRACE_BEGIN("crtc_commit"); 653 654 /* 655 * Encoder will flush/start now, unless it has a tx pending. If so, it 656 * may delay and flush at an irq event (e.g. ppdone) 657 */ 658 drm_for_each_encoder_mask(encoder, crtc->dev, 659 crtc->state->encoder_mask) 660 dpu_encoder_prepare_for_kickoff(encoder); 661 662 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 663 /* acquire bandwidth and other resources */ 664 DPU_DEBUG("crtc%d first commit\n", crtc->base.id); 665 } else 666 DPU_DEBUG("crtc%d commit\n", crtc->base.id); 667 668 dpu_crtc->play_count++; 669 670 dpu_vbif_clear_errors(dpu_kms); 671 672 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 673 dpu_encoder_kickoff(encoder); 674 675 reinit_completion(&dpu_crtc->frame_done_comp); 676 DPU_ATRACE_END("crtc_commit"); 677 } 678 679 static void dpu_crtc_reset(struct drm_crtc *crtc) 680 { 681 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 682 683 if (crtc->state) 684 dpu_crtc_destroy_state(crtc, crtc->state); 685 686 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 687 } 688 689 /** 690 * dpu_crtc_duplicate_state - state duplicate hook 691 * @crtc: Pointer to drm crtc structure 692 */ 693 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 694 { 695 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 696 697 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 698 if (!cstate) { 699 DPU_ERROR("failed to allocate state\n"); 700 return NULL; 701 } 702 703 /* duplicate base helper */ 704 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 705 706 return &cstate->base; 707 } 708 709 static void dpu_crtc_disable(struct drm_crtc *crtc, 710 struct drm_atomic_state *state) 711 { 712 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 713 crtc); 714 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 715 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 716 struct drm_encoder *encoder; 717 unsigned long flags; 718 bool release_bandwidth = false; 719 720 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 721 722 /* Disable/save vblank irq handling */ 723 drm_crtc_vblank_off(crtc); 724 725 drm_for_each_encoder_mask(encoder, crtc->dev, 726 old_crtc_state->encoder_mask) { 727 /* in video mode, we hold an extra bandwidth reference 728 * as we cannot drop bandwidth at frame-done if any 729 * crtc is being used in video mode. 730 */ 731 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 732 release_bandwidth = true; 733 dpu_encoder_assign_crtc(encoder, NULL); 734 } 735 736 /* wait for frame_event_done completion */ 737 if (_dpu_crtc_wait_for_frame_done(crtc)) 738 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 739 crtc->base.id, 740 atomic_read(&dpu_crtc->frame_pending)); 741 742 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 743 dpu_crtc->enabled = false; 744 745 if (atomic_read(&dpu_crtc->frame_pending)) { 746 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 747 atomic_read(&dpu_crtc->frame_pending)); 748 if (release_bandwidth) 749 dpu_core_perf_crtc_release_bw(crtc); 750 atomic_set(&dpu_crtc->frame_pending, 0); 751 } 752 753 dpu_core_perf_crtc_update(crtc, 0, true); 754 755 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 756 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 757 758 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 759 cstate->num_mixers = 0; 760 761 /* disable clk & bw control until clk & bw properties are set */ 762 cstate->bw_control = false; 763 cstate->bw_split_vote = false; 764 765 if (crtc->state->event && !crtc->state->active) { 766 spin_lock_irqsave(&crtc->dev->event_lock, flags); 767 drm_crtc_send_vblank_event(crtc, crtc->state->event); 768 crtc->state->event = NULL; 769 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 770 } 771 772 pm_runtime_put_sync(crtc->dev->dev); 773 } 774 775 static void dpu_crtc_enable(struct drm_crtc *crtc, 776 struct drm_atomic_state *state) 777 { 778 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 779 struct drm_encoder *encoder; 780 bool request_bandwidth = false; 781 782 pm_runtime_get_sync(crtc->dev->dev); 783 784 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 785 786 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 787 /* in video mode, we hold an extra bandwidth reference 788 * as we cannot drop bandwidth at frame-done if any 789 * crtc is being used in video mode. 790 */ 791 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 792 request_bandwidth = true; 793 dpu_encoder_register_frame_event_callback(encoder, 794 dpu_crtc_frame_event_cb, (void *)crtc); 795 } 796 797 if (request_bandwidth) 798 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 799 800 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 801 dpu_crtc->enabled = true; 802 803 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 804 dpu_encoder_assign_crtc(encoder, crtc); 805 806 /* Enable/restore vblank irq handling */ 807 drm_crtc_vblank_on(crtc); 808 } 809 810 struct plane_state { 811 struct dpu_plane_state *dpu_pstate; 812 const struct drm_plane_state *drm_pstate; 813 int stage; 814 u32 pipe_id; 815 }; 816 817 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 818 struct drm_atomic_state *state) 819 { 820 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 821 crtc); 822 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 823 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 824 struct plane_state *pstates; 825 826 const struct drm_plane_state *pstate; 827 struct drm_plane *plane; 828 struct drm_display_mode *mode; 829 830 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 831 832 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 833 int multirect_count = 0; 834 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 835 int left_zpos_cnt = 0, right_zpos_cnt = 0; 836 struct drm_rect crtc_rect = { 0 }; 837 838 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 839 840 if (!crtc_state->enable || !crtc_state->active) { 841 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n", 842 crtc->base.id, crtc_state->enable, 843 crtc_state->active); 844 goto end; 845 } 846 847 mode = &crtc_state->adjusted_mode; 848 DPU_DEBUG("%s: check\n", dpu_crtc->name); 849 850 /* force a full mode set if active state changed */ 851 if (crtc_state->active_changed) 852 crtc_state->mode_changed = true; 853 854 memset(pipe_staged, 0, sizeof(pipe_staged)); 855 856 if (cstate->num_mixers) { 857 mixer_width = mode->hdisplay / cstate->num_mixers; 858 859 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 860 } 861 862 crtc_rect.x2 = mode->hdisplay; 863 crtc_rect.y2 = mode->vdisplay; 864 865 /* get plane state for all drm planes associated with crtc state */ 866 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 867 struct drm_rect dst, clip = crtc_rect; 868 869 if (IS_ERR_OR_NULL(pstate)) { 870 rc = PTR_ERR(pstate); 871 DPU_ERROR("%s: failed to get plane%d state, %d\n", 872 dpu_crtc->name, plane->base.id, rc); 873 goto end; 874 } 875 if (cnt >= DPU_STAGE_MAX * 4) 876 continue; 877 878 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 879 pstates[cnt].drm_pstate = pstate; 880 pstates[cnt].stage = pstate->normalized_zpos; 881 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 882 883 if (pipe_staged[pstates[cnt].pipe_id]) { 884 multirect_plane[multirect_count].r0 = 885 pipe_staged[pstates[cnt].pipe_id]; 886 multirect_plane[multirect_count].r1 = pstate; 887 multirect_count++; 888 889 pipe_staged[pstates[cnt].pipe_id] = NULL; 890 } else { 891 pipe_staged[pstates[cnt].pipe_id] = pstate; 892 } 893 894 cnt++; 895 896 dst = drm_plane_state_dest(pstate); 897 if (!drm_rect_intersect(&clip, &dst)) { 898 DPU_ERROR("invalid vertical/horizontal destination\n"); 899 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 900 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 901 DRM_RECT_ARG(&dst)); 902 rc = -E2BIG; 903 goto end; 904 } 905 } 906 907 for (i = 1; i < SSPP_MAX; i++) { 908 if (pipe_staged[i]) { 909 dpu_plane_clear_multirect(pipe_staged[i]); 910 911 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 912 DPU_ERROR( 913 "r1 only virt plane:%d not supported\n", 914 pipe_staged[i]->plane->base.id); 915 rc = -EINVAL; 916 goto end; 917 } 918 } 919 } 920 921 z_pos = -1; 922 for (i = 0; i < cnt; i++) { 923 /* reset counts at every new blend stage */ 924 if (pstates[i].stage != z_pos) { 925 left_zpos_cnt = 0; 926 right_zpos_cnt = 0; 927 z_pos = pstates[i].stage; 928 } 929 930 /* verify z_pos setting before using it */ 931 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 932 DPU_ERROR("> %d plane stages assigned\n", 933 DPU_STAGE_MAX - DPU_STAGE_0); 934 rc = -EINVAL; 935 goto end; 936 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 937 if (left_zpos_cnt == 2) { 938 DPU_ERROR("> 2 planes @ stage %d on left\n", 939 z_pos); 940 rc = -EINVAL; 941 goto end; 942 } 943 left_zpos_cnt++; 944 945 } else { 946 if (right_zpos_cnt == 2) { 947 DPU_ERROR("> 2 planes @ stage %d on right\n", 948 z_pos); 949 rc = -EINVAL; 950 goto end; 951 } 952 right_zpos_cnt++; 953 } 954 955 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 956 DPU_DEBUG("%s: zpos %d\n", dpu_crtc->name, z_pos); 957 } 958 959 for (i = 0; i < multirect_count; i++) { 960 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 961 DPU_ERROR( 962 "multirect validation failed for planes (%d - %d)\n", 963 multirect_plane[i].r0->plane->base.id, 964 multirect_plane[i].r1->plane->base.id); 965 rc = -EINVAL; 966 goto end; 967 } 968 } 969 970 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 971 972 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 973 if (rc) { 974 DPU_ERROR("crtc%d failed performance check %d\n", 975 crtc->base.id, rc); 976 goto end; 977 } 978 979 /* validate source split: 980 * use pstates sorted by stage to check planes on same stage 981 * we assume that all pipes are in source split so its valid to compare 982 * without taking into account left/right mixer placement 983 */ 984 for (i = 1; i < cnt; i++) { 985 struct plane_state *prv_pstate, *cur_pstate; 986 struct drm_rect left_rect, right_rect; 987 int32_t left_pid, right_pid; 988 int32_t stage; 989 990 prv_pstate = &pstates[i - 1]; 991 cur_pstate = &pstates[i]; 992 if (prv_pstate->stage != cur_pstate->stage) 993 continue; 994 995 stage = cur_pstate->stage; 996 997 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 998 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 999 1000 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1001 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1002 1003 if (right_rect.x1 < left_rect.x1) { 1004 swap(left_pid, right_pid); 1005 swap(left_rect, right_rect); 1006 } 1007 1008 /** 1009 * - planes are enumerated in pipe-priority order such that 1010 * planes with lower drm_id must be left-most in a shared 1011 * blend-stage when using source split. 1012 * - planes in source split must be contiguous in width 1013 * - planes in source split must have same dest yoff and height 1014 */ 1015 if (right_pid < left_pid) { 1016 DPU_ERROR( 1017 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1018 stage, left_pid, right_pid); 1019 rc = -EINVAL; 1020 goto end; 1021 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1022 DPU_ERROR("non-contiguous coordinates for src split. " 1023 "stage: %d left: " DRM_RECT_FMT " right: " 1024 DRM_RECT_FMT "\n", stage, 1025 DRM_RECT_ARG(&left_rect), 1026 DRM_RECT_ARG(&right_rect)); 1027 rc = -EINVAL; 1028 goto end; 1029 } else if (left_rect.y1 != right_rect.y1 || 1030 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1031 DPU_ERROR("source split at stage: %d. invalid " 1032 "yoff/height: left: " DRM_RECT_FMT " right: " 1033 DRM_RECT_FMT "\n", stage, 1034 DRM_RECT_ARG(&left_rect), 1035 DRM_RECT_ARG(&right_rect)); 1036 rc = -EINVAL; 1037 goto end; 1038 } 1039 } 1040 1041 end: 1042 kfree(pstates); 1043 return rc; 1044 } 1045 1046 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1047 { 1048 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1049 struct drm_encoder *enc; 1050 1051 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1052 1053 /* 1054 * Normally we would iterate through encoder_mask in crtc state to find 1055 * attached encoders. In this case, we might be disabling vblank _after_ 1056 * encoder_mask has been cleared. 1057 * 1058 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1059 * disable (which is also after encoder_mask is cleared). So instead of 1060 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1061 * currently assigned to our crtc. 1062 * 1063 * Note also that this function cannot be called while crtc is disabled 1064 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1065 * about the assigned crtcs being inconsistent with the current state 1066 * (which means no need to worry about modeset locks). 1067 */ 1068 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1069 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1070 dpu_crtc); 1071 1072 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1073 } 1074 1075 return 0; 1076 } 1077 1078 #ifdef CONFIG_DEBUG_FS 1079 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1080 { 1081 struct dpu_crtc *dpu_crtc; 1082 struct dpu_plane_state *pstate = NULL; 1083 struct dpu_crtc_mixer *m; 1084 1085 struct drm_crtc *crtc; 1086 struct drm_plane *plane; 1087 struct drm_display_mode *mode; 1088 struct drm_framebuffer *fb; 1089 struct drm_plane_state *state; 1090 struct dpu_crtc_state *cstate; 1091 1092 int i, out_width; 1093 1094 dpu_crtc = s->private; 1095 crtc = &dpu_crtc->base; 1096 1097 drm_modeset_lock_all(crtc->dev); 1098 cstate = to_dpu_crtc_state(crtc->state); 1099 1100 mode = &crtc->state->adjusted_mode; 1101 out_width = mode->hdisplay / cstate->num_mixers; 1102 1103 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1104 mode->hdisplay, mode->vdisplay); 1105 1106 seq_puts(s, "\n"); 1107 1108 for (i = 0; i < cstate->num_mixers; ++i) { 1109 m = &cstate->mixers[i]; 1110 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1111 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1112 out_width, mode->vdisplay); 1113 } 1114 1115 seq_puts(s, "\n"); 1116 1117 drm_atomic_crtc_for_each_plane(plane, crtc) { 1118 pstate = to_dpu_plane_state(plane->state); 1119 state = plane->state; 1120 1121 if (!pstate || !state) 1122 continue; 1123 1124 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1125 pstate->stage); 1126 1127 if (plane->state->fb) { 1128 fb = plane->state->fb; 1129 1130 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1131 fb->base.id, (char *) &fb->format->format, 1132 fb->width, fb->height); 1133 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1134 seq_printf(s, "cpp[%d]:%u ", 1135 i, fb->format->cpp[i]); 1136 seq_puts(s, "\n\t"); 1137 1138 seq_printf(s, "modifier:%8llu ", fb->modifier); 1139 seq_puts(s, "\n"); 1140 1141 seq_puts(s, "\t"); 1142 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1143 seq_printf(s, "pitches[%d]:%8u ", i, 1144 fb->pitches[i]); 1145 seq_puts(s, "\n"); 1146 1147 seq_puts(s, "\t"); 1148 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1149 seq_printf(s, "offsets[%d]:%8u ", i, 1150 fb->offsets[i]); 1151 seq_puts(s, "\n"); 1152 } 1153 1154 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1155 state->src_x, state->src_y, state->src_w, state->src_h); 1156 1157 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1158 state->crtc_x, state->crtc_y, state->crtc_w, 1159 state->crtc_h); 1160 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1161 pstate->multirect_mode, pstate->multirect_index); 1162 1163 seq_puts(s, "\n"); 1164 } 1165 if (dpu_crtc->vblank_cb_count) { 1166 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1167 s64 diff_ms = ktime_to_ms(diff); 1168 s64 fps = diff_ms ? div_s64( 1169 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1170 1171 seq_printf(s, 1172 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1173 fps, dpu_crtc->vblank_cb_count, 1174 ktime_to_ms(diff), dpu_crtc->play_count); 1175 1176 /* reset time & count for next measurement */ 1177 dpu_crtc->vblank_cb_count = 0; 1178 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1179 } 1180 1181 drm_modeset_unlock_all(crtc->dev); 1182 1183 return 0; 1184 } 1185 1186 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1187 1188 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1189 { 1190 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1191 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1192 1193 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1194 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1195 seq_printf(s, "core_clk_rate: %llu\n", 1196 dpu_crtc->cur_perf.core_clk_rate); 1197 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1198 seq_printf(s, "max_per_pipe_ib: %llu\n", 1199 dpu_crtc->cur_perf.max_per_pipe_ib); 1200 1201 return 0; 1202 } 1203 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1204 1205 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1206 { 1207 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1208 1209 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1210 crtc->dev->primary->debugfs_root); 1211 1212 debugfs_create_file("status", 0400, 1213 dpu_crtc->debugfs_root, 1214 dpu_crtc, &_dpu_debugfs_status_fops); 1215 debugfs_create_file("state", 0600, 1216 dpu_crtc->debugfs_root, 1217 &dpu_crtc->base, 1218 &dpu_crtc_debugfs_state_fops); 1219 1220 return 0; 1221 } 1222 #else 1223 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1224 { 1225 return 0; 1226 } 1227 #endif /* CONFIG_DEBUG_FS */ 1228 1229 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1230 { 1231 return _dpu_crtc_init_debugfs(crtc); 1232 } 1233 1234 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1235 { 1236 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1237 1238 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1239 } 1240 1241 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1242 .set_config = drm_atomic_helper_set_config, 1243 .destroy = dpu_crtc_destroy, 1244 .page_flip = drm_atomic_helper_page_flip, 1245 .reset = dpu_crtc_reset, 1246 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1247 .atomic_destroy_state = dpu_crtc_destroy_state, 1248 .late_register = dpu_crtc_late_register, 1249 .early_unregister = dpu_crtc_early_unregister, 1250 .enable_vblank = msm_crtc_enable_vblank, 1251 .disable_vblank = msm_crtc_disable_vblank, 1252 }; 1253 1254 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1255 .atomic_disable = dpu_crtc_disable, 1256 .atomic_enable = dpu_crtc_enable, 1257 .atomic_check = dpu_crtc_atomic_check, 1258 .atomic_begin = dpu_crtc_atomic_begin, 1259 .atomic_flush = dpu_crtc_atomic_flush, 1260 }; 1261 1262 /* initialize crtc */ 1263 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1264 struct drm_plane *cursor) 1265 { 1266 struct drm_crtc *crtc = NULL; 1267 struct dpu_crtc *dpu_crtc = NULL; 1268 int i; 1269 1270 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1271 if (!dpu_crtc) 1272 return ERR_PTR(-ENOMEM); 1273 1274 crtc = &dpu_crtc->base; 1275 crtc->dev = dev; 1276 1277 spin_lock_init(&dpu_crtc->spin_lock); 1278 atomic_set(&dpu_crtc->frame_pending, 0); 1279 1280 init_completion(&dpu_crtc->frame_done_comp); 1281 1282 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1283 1284 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1285 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1286 list_add(&dpu_crtc->frame_events[i].list, 1287 &dpu_crtc->frame_event_list); 1288 kthread_init_work(&dpu_crtc->frame_events[i].work, 1289 dpu_crtc_frame_event_work); 1290 } 1291 1292 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1293 NULL); 1294 1295 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1296 1297 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1298 1299 /* save user friendly CRTC name for later */ 1300 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1301 1302 /* initialize event handling */ 1303 spin_lock_init(&dpu_crtc->event_lock); 1304 1305 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name); 1306 return crtc; 1307 } 1308