1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
54 static void dpu_crtc_destroy(struct drm_crtc *crtc)
55 {
56 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
57 
58 	if (!crtc)
59 		return;
60 
61 	drm_crtc_cleanup(crtc);
62 	kfree(dpu_crtc);
63 }
64 
65 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
66 {
67 	struct drm_device *dev = crtc->dev;
68 	struct drm_encoder *encoder;
69 
70 	drm_for_each_encoder(encoder, dev)
71 		if (encoder->crtc == crtc)
72 			return encoder;
73 
74 	return NULL;
75 }
76 
77 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
78 {
79 	if (!src_name ||
80 	    !strcmp(src_name, "none"))
81 		return DPU_CRTC_CRC_SOURCE_NONE;
82 	if (!strcmp(src_name, "auto") ||
83 	    !strcmp(src_name, "lm"))
84 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
85 	if (!strcmp(src_name, "encoder"))
86 		return DPU_CRTC_CRC_SOURCE_ENCODER;
87 
88 	return DPU_CRTC_CRC_SOURCE_INVALID;
89 }
90 
91 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
92 		const char *src_name, size_t *values_cnt)
93 {
94 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
95 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
96 
97 	if (source < 0) {
98 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
99 		return -EINVAL;
100 	}
101 
102 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
103 		*values_cnt = crtc_state->num_mixers;
104 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
105 		struct drm_encoder *drm_enc;
106 
107 		*values_cnt = 0;
108 
109 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
110 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
111 	}
112 
113 	return 0;
114 }
115 
116 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
117 {
118 	struct dpu_crtc_mixer *m;
119 	int i;
120 
121 	for (i = 0; i < crtc_state->num_mixers; ++i) {
122 		m = &crtc_state->mixers[i];
123 
124 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
125 			continue;
126 
127 		/* Calculate MISR over 1 frame */
128 		m->hw_lm->ops.setup_misr(m->hw_lm, true, 1);
129 	}
130 }
131 
132 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
133 {
134 	struct drm_encoder *drm_enc;
135 
136 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
137 		dpu_encoder_setup_misr(drm_enc);
138 }
139 
140 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
141 {
142 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
143 	enum dpu_crtc_crc_source current_source;
144 	struct dpu_crtc_state *crtc_state;
145 	struct drm_device *drm_dev = crtc->dev;
146 
147 	bool was_enabled;
148 	bool enable = false;
149 	int ret = 0;
150 
151 	if (source < 0) {
152 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
153 		return -EINVAL;
154 	}
155 
156 	ret = drm_modeset_lock(&crtc->mutex, NULL);
157 
158 	if (ret)
159 		return ret;
160 
161 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
162 	crtc_state = to_dpu_crtc_state(crtc->state);
163 
164 	spin_lock_irq(&drm_dev->event_lock);
165 	current_source = crtc_state->crc_source;
166 	spin_unlock_irq(&drm_dev->event_lock);
167 
168 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
169 
170 	if (!was_enabled && enable) {
171 		ret = drm_crtc_vblank_get(crtc);
172 
173 		if (ret)
174 			goto cleanup;
175 
176 	} else if (was_enabled && !enable) {
177 		drm_crtc_vblank_put(crtc);
178 	}
179 
180 	spin_lock_irq(&drm_dev->event_lock);
181 	crtc_state->crc_source = source;
182 	spin_unlock_irq(&drm_dev->event_lock);
183 
184 	crtc_state->crc_frame_skip_count = 0;
185 
186 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
187 		dpu_crtc_setup_lm_misr(crtc_state);
188 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
189 		dpu_crtc_setup_encoder_misr(crtc);
190 	else
191 		ret = -EINVAL;
192 
193 cleanup:
194 	drm_modeset_unlock(&crtc->mutex);
195 
196 	return ret;
197 }
198 
199 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
200 {
201 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
202 	if (!encoder) {
203 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
204 		return 0;
205 	}
206 
207 	return dpu_encoder_get_vsync_count(encoder);
208 }
209 
210 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
211 		struct dpu_crtc_state *crtc_state)
212 {
213 	struct dpu_crtc_mixer *m;
214 	u32 crcs[CRTC_DUAL_MIXERS];
215 
216 	int rc = 0;
217 	int i;
218 
219 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
220 
221 	for (i = 0; i < crtc_state->num_mixers; ++i) {
222 
223 		m = &crtc_state->mixers[i];
224 
225 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
226 			continue;
227 
228 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
229 
230 		if (rc) {
231 			if (rc != -ENODATA)
232 				DRM_DEBUG_DRIVER("MISR read failed\n");
233 			return rc;
234 		}
235 	}
236 
237 	return drm_crtc_add_crc_entry(crtc, true,
238 			drm_crtc_accurate_vblank_count(crtc), crcs);
239 }
240 
241 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
242 {
243 	struct drm_encoder *drm_enc;
244 	int rc, pos = 0;
245 	u32 crcs[INTF_MAX];
246 
247 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
248 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
249 		if (rc < 0) {
250 			if (rc != -ENODATA)
251 				DRM_DEBUG_DRIVER("MISR read failed\n");
252 
253 			return rc;
254 		}
255 
256 		pos += rc;
257 	}
258 
259 	return drm_crtc_add_crc_entry(crtc, true,
260 			drm_crtc_accurate_vblank_count(crtc), crcs);
261 }
262 
263 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
264 {
265 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
266 
267 	/* Skip first 2 frames in case of "uncooked" CRCs */
268 	if (crtc_state->crc_frame_skip_count < 2) {
269 		crtc_state->crc_frame_skip_count++;
270 		return 0;
271 	}
272 
273 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
274 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
275 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
276 		return dpu_crtc_get_encoder_crc(crtc);
277 
278 	return -EINVAL;
279 }
280 
281 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
282 					   bool in_vblank_irq,
283 					   int *vpos, int *hpos,
284 					   ktime_t *stime, ktime_t *etime,
285 					   const struct drm_display_mode *mode)
286 {
287 	unsigned int pipe = crtc->index;
288 	struct drm_encoder *encoder;
289 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
290 
291 	encoder = get_encoder_from_crtc(crtc);
292 	if (!encoder) {
293 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
294 		return false;
295 	}
296 
297 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
298 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
299 
300 	/*
301 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
302 	 * the end of VFP. Translate the porch values relative to the line
303 	 * counter positions.
304 	 */
305 
306 	vactive_start = vsw + vbp + 1;
307 	vactive_end = vactive_start + mode->crtc_vdisplay;
308 
309 	/* last scan line before VSYNC */
310 	vfp_end = mode->crtc_vtotal;
311 
312 	if (stime)
313 		*stime = ktime_get();
314 
315 	line = dpu_encoder_get_linecount(encoder);
316 
317 	if (line < vactive_start)
318 		line -= vactive_start;
319 	else if (line > vactive_end)
320 		line = line - vfp_end - vactive_start;
321 	else
322 		line -= vactive_start;
323 
324 	*vpos = line;
325 	*hpos = 0;
326 
327 	if (etime)
328 		*etime = ktime_get();
329 
330 	return true;
331 }
332 
333 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
334 		struct dpu_plane_state *pstate, struct dpu_format *format)
335 {
336 	struct dpu_hw_mixer *lm = mixer->hw_lm;
337 	uint32_t blend_op;
338 	uint32_t fg_alpha, bg_alpha;
339 
340 	fg_alpha = pstate->base.alpha >> 8;
341 	bg_alpha = 0xff - fg_alpha;
342 
343 	/* default to opaque blending */
344 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
345 	    !format->alpha_enable) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_BG_CONST;
348 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
349 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
350 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 		if (fg_alpha != 0xff) {
352 			bg_alpha = fg_alpha;
353 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
354 				    DPU_BLEND_BG_INV_MOD_ALPHA;
355 		} else {
356 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
357 		}
358 	} else {
359 		/* coverage blending */
360 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
361 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
362 		if (fg_alpha != 0xff) {
363 			bg_alpha = fg_alpha;
364 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
365 				    DPU_BLEND_FG_INV_MOD_ALPHA |
366 				    DPU_BLEND_BG_MOD_ALPHA |
367 				    DPU_BLEND_BG_INV_MOD_ALPHA;
368 		} else {
369 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
370 		}
371 	}
372 
373 	lm->ops.setup_blend_config(lm, pstate->stage,
374 				fg_alpha, bg_alpha, blend_op);
375 
376 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
377 		  &format->base.pixel_format, format->alpha_enable, blend_op);
378 }
379 
380 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
381 {
382 	struct dpu_crtc_state *crtc_state;
383 	int lm_idx, lm_horiz_position;
384 
385 	crtc_state = to_dpu_crtc_state(crtc->state);
386 
387 	lm_horiz_position = 0;
388 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
389 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
390 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
391 		struct dpu_hw_mixer_cfg cfg;
392 
393 		if (!lm_roi || !drm_rect_visible(lm_roi))
394 			continue;
395 
396 		cfg.out_width = drm_rect_width(lm_roi);
397 		cfg.out_height = drm_rect_height(lm_roi);
398 		cfg.right_mixer = lm_horiz_position++;
399 		cfg.flags = 0;
400 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
401 	}
402 }
403 
404 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
405 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
406 	struct dpu_hw_stage_cfg *stage_cfg)
407 {
408 	struct drm_plane *plane;
409 	struct drm_framebuffer *fb;
410 	struct drm_plane_state *state;
411 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
412 	struct dpu_plane_state *pstate = NULL;
413 	struct dpu_format *format;
414 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
415 
416 	uint32_t stage_idx, lm_idx;
417 	int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
418 	bool bg_alpha_enable = false;
419 	DECLARE_BITMAP(fetch_active, SSPP_MAX);
420 
421 	memset(fetch_active, 0, sizeof(fetch_active));
422 	drm_atomic_crtc_for_each_plane(plane, crtc) {
423 		enum dpu_sspp sspp_idx;
424 
425 		state = plane->state;
426 		if (!state)
427 			continue;
428 
429 		if (!state->visible)
430 			continue;
431 
432 		pstate = to_dpu_plane_state(state);
433 		fb = state->fb;
434 
435 		sspp_idx = pstate->pipe.sspp->idx;
436 		set_bit(sspp_idx, fetch_active);
437 
438 		DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
439 				crtc->base.id,
440 				pstate->stage,
441 				plane->base.id,
442 				sspp_idx - SSPP_VIG0,
443 				state->fb ? state->fb->base.id : -1);
444 
445 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
446 
447 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
448 			bg_alpha_enable = true;
449 
450 		stage_idx = zpos_cnt[pstate->stage]++;
451 		stage_cfg->stage[pstate->stage][stage_idx] =
452 					sspp_idx;
453 		stage_cfg->multirect_index[pstate->stage][stage_idx] =
454 					pstate->pipe.multirect_index;
455 
456 		trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
457 					   state, pstate, stage_idx,
458 					   format->base.pixel_format,
459 					   fb ? fb->modifier : 0);
460 
461 		/* blend config update */
462 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
463 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
464 						pstate, format);
465 
466 			mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl,
467 									    sspp_idx);
468 
469 			if (bg_alpha_enable && !format->alpha_enable)
470 				mixer[lm_idx].mixer_op_mode = 0;
471 			else
472 				mixer[lm_idx].mixer_op_mode |=
473 						1 << pstate->stage;
474 		}
475 	}
476 
477 	if (ctl->ops.set_active_pipes)
478 		ctl->ops.set_active_pipes(ctl, fetch_active);
479 
480 	_dpu_crtc_program_lm_output_roi(crtc);
481 }
482 
483 /**
484  * _dpu_crtc_blend_setup - configure crtc mixers
485  * @crtc: Pointer to drm crtc structure
486  */
487 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
488 {
489 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
490 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
491 	struct dpu_crtc_mixer *mixer = cstate->mixers;
492 	struct dpu_hw_ctl *ctl;
493 	struct dpu_hw_mixer *lm;
494 	struct dpu_hw_stage_cfg stage_cfg;
495 	int i;
496 
497 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
498 
499 	for (i = 0; i < cstate->num_mixers; i++) {
500 		mixer[i].mixer_op_mode = 0;
501 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
502 			mixer[i].lm_ctl->ops.clear_all_blendstages(
503 					mixer[i].lm_ctl);
504 	}
505 
506 	/* initialize stage cfg */
507 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
508 
509 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
510 
511 	for (i = 0; i < cstate->num_mixers; i++) {
512 		ctl = mixer[i].lm_ctl;
513 		lm = mixer[i].hw_lm;
514 
515 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
516 
517 		/* stage config flush mask */
518 		ctl->ops.update_pending_flush_mixer(ctl,
519 			mixer[i].hw_lm->idx);
520 
521 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
522 			mixer[i].hw_lm->idx - LM_0,
523 			mixer[i].mixer_op_mode,
524 			ctl->idx - CTL_0);
525 
526 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
527 			&stage_cfg);
528 	}
529 }
530 
531 /**
532  *  _dpu_crtc_complete_flip - signal pending page_flip events
533  * Any pending vblank events are added to the vblank_event_list
534  * so that the next vblank interrupt shall signal them.
535  * However PAGE_FLIP events are not handled through the vblank_event_list.
536  * This API signals any pending PAGE_FLIP events requested through
537  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
538  * @crtc: Pointer to drm crtc structure
539  */
540 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
541 {
542 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
543 	struct drm_device *dev = crtc->dev;
544 	unsigned long flags;
545 
546 	spin_lock_irqsave(&dev->event_lock, flags);
547 	if (dpu_crtc->event) {
548 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
549 			      dpu_crtc->event);
550 		trace_dpu_crtc_complete_flip(DRMID(crtc));
551 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
552 		dpu_crtc->event = NULL;
553 	}
554 	spin_unlock_irqrestore(&dev->event_lock, flags);
555 }
556 
557 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
558 {
559 	struct drm_encoder *encoder;
560 
561 	/*
562 	 * TODO: This function is called from dpu debugfs and as part of atomic
563 	 * check. When called from debugfs, the crtc->mutex must be held to
564 	 * read crtc->state. However reading crtc->state from atomic check isn't
565 	 * allowed (unless you have a good reason, a big comment, and a deep
566 	 * understanding of how the atomic/modeset locks work (<- and this is
567 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
568 	 * really we need to figure out a better way to track our operating mode
569 	 */
570 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
571 
572 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
573 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
574 		return dpu_encoder_get_intf_mode(encoder);
575 
576 	return INTF_MODE_NONE;
577 }
578 
579 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
580 {
581 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
582 
583 	/* keep statistics on vblank callback - with auto reset via debugfs */
584 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
585 		dpu_crtc->vblank_cb_time = ktime_get();
586 	else
587 		dpu_crtc->vblank_cb_count++;
588 
589 	dpu_crtc_get_crc(crtc);
590 
591 	drm_crtc_handle_vblank(crtc);
592 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
593 }
594 
595 static void dpu_crtc_frame_event_work(struct kthread_work *work)
596 {
597 	struct dpu_crtc_frame_event *fevent = container_of(work,
598 			struct dpu_crtc_frame_event, work);
599 	struct drm_crtc *crtc = fevent->crtc;
600 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
601 	unsigned long flags;
602 	bool frame_done = false;
603 
604 	DPU_ATRACE_BEGIN("crtc_frame_event");
605 
606 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
607 			ktime_to_ns(fevent->ts));
608 
609 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
610 				| DPU_ENCODER_FRAME_EVENT_ERROR
611 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
612 
613 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
614 			/* ignore vblank when not pending */
615 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
616 			/* release bandwidth and other resources */
617 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
618 							fevent->event);
619 			dpu_core_perf_crtc_release_bw(crtc);
620 		} else {
621 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
622 								fevent->event);
623 		}
624 
625 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
626 					| DPU_ENCODER_FRAME_EVENT_ERROR))
627 			frame_done = true;
628 	}
629 
630 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
631 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
632 				crtc->base.id, ktime_to_ns(fevent->ts));
633 
634 	if (frame_done)
635 		complete_all(&dpu_crtc->frame_done_comp);
636 
637 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
638 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
639 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
640 	DPU_ATRACE_END("crtc_frame_event");
641 }
642 
643 /*
644  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
645  * registers this API to encoder for all frame event callbacks like
646  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
647  * from different context - IRQ, user thread, commit_thread, etc. Each event
648  * should be carefully reviewed and should be processed in proper task context
649  * to avoid schedulin delay or properly manage the irq context's bottom half
650  * processing.
651  */
652 static void dpu_crtc_frame_event_cb(void *data, u32 event)
653 {
654 	struct drm_crtc *crtc = (struct drm_crtc *)data;
655 	struct dpu_crtc *dpu_crtc;
656 	struct msm_drm_private *priv;
657 	struct dpu_crtc_frame_event *fevent;
658 	unsigned long flags;
659 	u32 crtc_id;
660 
661 	/* Nothing to do on idle event */
662 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
663 		return;
664 
665 	dpu_crtc = to_dpu_crtc(crtc);
666 	priv = crtc->dev->dev_private;
667 	crtc_id = drm_crtc_index(crtc);
668 
669 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
670 
671 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
672 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
673 			struct dpu_crtc_frame_event, list);
674 	if (fevent)
675 		list_del_init(&fevent->list);
676 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
677 
678 	if (!fevent) {
679 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
680 		return;
681 	}
682 
683 	fevent->event = event;
684 	fevent->crtc = crtc;
685 	fevent->ts = ktime_get();
686 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
687 }
688 
689 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
690 {
691 	trace_dpu_crtc_complete_commit(DRMID(crtc));
692 	dpu_core_perf_crtc_update(crtc, 0, false);
693 	_dpu_crtc_complete_flip(crtc);
694 }
695 
696 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
697 		struct drm_crtc_state *state)
698 {
699 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
700 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
701 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
702 	int i;
703 
704 	for (i = 0; i < cstate->num_mixers; i++) {
705 		struct drm_rect *r = &cstate->lm_bounds[i];
706 		r->x1 = crtc_split_width * i;
707 		r->y1 = 0;
708 		r->x2 = r->x1 + crtc_split_width;
709 		r->y2 = adj_mode->vdisplay;
710 
711 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
712 	}
713 }
714 
715 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
716 		struct dpu_hw_pcc_cfg *cfg)
717 {
718 	struct drm_color_ctm *ctm;
719 
720 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
721 
722 	ctm = (struct drm_color_ctm *)state->ctm->data;
723 
724 	if (!ctm)
725 		return;
726 
727 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
728 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
729 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
730 
731 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
732 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
733 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
734 
735 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
736 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
737 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
738 }
739 
740 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
741 {
742 	struct drm_crtc_state *state = crtc->state;
743 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
744 	struct dpu_crtc_mixer *mixer = cstate->mixers;
745 	struct dpu_hw_pcc_cfg cfg;
746 	struct dpu_hw_ctl *ctl;
747 	struct dpu_hw_dspp *dspp;
748 	int i;
749 
750 
751 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
752 		return;
753 
754 	for (i = 0; i < cstate->num_mixers; i++) {
755 		ctl = mixer[i].lm_ctl;
756 		dspp = mixer[i].hw_dspp;
757 
758 		if (!dspp || !dspp->ops.setup_pcc)
759 			continue;
760 
761 		if (!state->ctm) {
762 			dspp->ops.setup_pcc(dspp, NULL);
763 		} else {
764 			_dpu_crtc_get_pcc_coeff(state, &cfg);
765 			dspp->ops.setup_pcc(dspp, &cfg);
766 		}
767 
768 		/* stage config flush mask */
769 		ctl->ops.update_pending_flush_dspp(ctl,
770 			mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
771 	}
772 }
773 
774 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
775 		struct drm_atomic_state *state)
776 {
777 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
778 	struct drm_encoder *encoder;
779 
780 	if (!crtc->state->enable) {
781 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
782 				crtc->base.id, crtc->state->enable);
783 		return;
784 	}
785 
786 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
787 
788 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
789 
790 	/* encoder will trigger pending mask now */
791 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
792 		dpu_encoder_trigger_kickoff_pending(encoder);
793 
794 	/*
795 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
796 	 * it means we are trying to flush a CRTC whose state is disabled:
797 	 * nothing else needs to be done.
798 	 */
799 	if (unlikely(!cstate->num_mixers))
800 		return;
801 
802 	_dpu_crtc_blend_setup(crtc);
803 
804 	_dpu_crtc_setup_cp_blocks(crtc);
805 
806 	/*
807 	 * PP_DONE irq is only used by command mode for now.
808 	 * It is better to request pending before FLUSH and START trigger
809 	 * to make sure no pp_done irq missed.
810 	 * This is safe because no pp_done will happen before SW trigger
811 	 * in command mode.
812 	 */
813 }
814 
815 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
816 		struct drm_atomic_state *state)
817 {
818 	struct dpu_crtc *dpu_crtc;
819 	struct drm_device *dev;
820 	struct drm_plane *plane;
821 	struct msm_drm_private *priv;
822 	unsigned long flags;
823 	struct dpu_crtc_state *cstate;
824 
825 	if (!crtc->state->enable) {
826 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
827 				crtc->base.id, crtc->state->enable);
828 		return;
829 	}
830 
831 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
832 
833 	dpu_crtc = to_dpu_crtc(crtc);
834 	cstate = to_dpu_crtc_state(crtc->state);
835 	dev = crtc->dev;
836 	priv = dev->dev_private;
837 
838 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
839 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
840 		return;
841 	}
842 
843 	WARN_ON(dpu_crtc->event);
844 	spin_lock_irqsave(&dev->event_lock, flags);
845 	dpu_crtc->event = crtc->state->event;
846 	crtc->state->event = NULL;
847 	spin_unlock_irqrestore(&dev->event_lock, flags);
848 
849 	/*
850 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
851 	 * it means we are trying to flush a CRTC whose state is disabled:
852 	 * nothing else needs to be done.
853 	 */
854 	if (unlikely(!cstate->num_mixers))
855 		return;
856 
857 	/* update performance setting before crtc kickoff */
858 	dpu_core_perf_crtc_update(crtc, 1, false);
859 
860 	/*
861 	 * Final plane updates: Give each plane a chance to complete all
862 	 *                      required writes/flushing before crtc's "flush
863 	 *                      everything" call below.
864 	 */
865 	drm_atomic_crtc_for_each_plane(plane, crtc) {
866 		if (dpu_crtc->smmu_state.transition_error)
867 			dpu_plane_set_error(plane, true);
868 		dpu_plane_flush(plane);
869 	}
870 
871 	/* Kickoff will be scheduled by outer layer */
872 }
873 
874 /**
875  * dpu_crtc_destroy_state - state destroy hook
876  * @crtc: drm CRTC
877  * @state: CRTC state object to release
878  */
879 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
880 		struct drm_crtc_state *state)
881 {
882 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
883 
884 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
885 
886 	__drm_atomic_helper_crtc_destroy_state(state);
887 
888 	kfree(cstate);
889 }
890 
891 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
892 {
893 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
894 	int ret, rc = 0;
895 
896 	if (!atomic_read(&dpu_crtc->frame_pending)) {
897 		DRM_DEBUG_ATOMIC("no frames pending\n");
898 		return 0;
899 	}
900 
901 	DPU_ATRACE_BEGIN("frame done completion wait");
902 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
903 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
904 	if (!ret) {
905 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
906 		rc = -ETIMEDOUT;
907 	}
908 	DPU_ATRACE_END("frame done completion wait");
909 
910 	return rc;
911 }
912 
913 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
914 {
915 	struct drm_encoder *encoder;
916 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
917 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
918 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
919 
920 	/*
921 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
922 	 * it means we are trying to start a CRTC whose state is disabled:
923 	 * nothing else needs to be done.
924 	 */
925 	if (unlikely(!cstate->num_mixers))
926 		return;
927 
928 	DPU_ATRACE_BEGIN("crtc_commit");
929 
930 	drm_for_each_encoder_mask(encoder, crtc->dev,
931 			crtc->state->encoder_mask) {
932 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
933 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
934 			goto end;
935 		}
936 	}
937 	/*
938 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
939 	 * may delay and flush at an irq event (e.g. ppdone)
940 	 */
941 	drm_for_each_encoder_mask(encoder, crtc->dev,
942 				  crtc->state->encoder_mask)
943 		dpu_encoder_prepare_for_kickoff(encoder);
944 
945 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
946 		/* acquire bandwidth and other resources */
947 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
948 	} else
949 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
950 
951 	dpu_crtc->play_count++;
952 
953 	dpu_vbif_clear_errors(dpu_kms);
954 
955 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
956 		dpu_encoder_kickoff(encoder);
957 
958 	reinit_completion(&dpu_crtc->frame_done_comp);
959 
960 end:
961 	DPU_ATRACE_END("crtc_commit");
962 }
963 
964 static void dpu_crtc_reset(struct drm_crtc *crtc)
965 {
966 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
967 
968 	if (crtc->state)
969 		dpu_crtc_destroy_state(crtc, crtc->state);
970 
971 	if (cstate)
972 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
973 	else
974 		__drm_atomic_helper_crtc_reset(crtc, NULL);
975 }
976 
977 /**
978  * dpu_crtc_duplicate_state - state duplicate hook
979  * @crtc: Pointer to drm crtc structure
980  */
981 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
982 {
983 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
984 
985 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
986 	if (!cstate) {
987 		DPU_ERROR("failed to allocate state\n");
988 		return NULL;
989 	}
990 
991 	/* duplicate base helper */
992 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
993 
994 	return &cstate->base;
995 }
996 
997 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
998 					const struct drm_crtc_state *state)
999 {
1000 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1001 	int i;
1002 
1003 	for (i = 0; i < cstate->num_mixers; i++) {
1004 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1005 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1006 		if (cstate->mixers[i].hw_dspp)
1007 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1008 	}
1009 }
1010 
1011 static void dpu_crtc_disable(struct drm_crtc *crtc,
1012 			     struct drm_atomic_state *state)
1013 {
1014 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1015 									      crtc);
1016 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1017 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1018 	struct drm_encoder *encoder;
1019 	unsigned long flags;
1020 	bool release_bandwidth = false;
1021 
1022 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1023 
1024 	/* If disable is triggered while in self refresh mode,
1025 	 * reset the encoder software state so that in enable
1026 	 * it won't trigger a warn while assigning crtc.
1027 	 */
1028 	if (old_crtc_state->self_refresh_active) {
1029 		drm_for_each_encoder_mask(encoder, crtc->dev,
1030 					old_crtc_state->encoder_mask) {
1031 			dpu_encoder_assign_crtc(encoder, NULL);
1032 		}
1033 		return;
1034 	}
1035 
1036 	/* Disable/save vblank irq handling */
1037 	drm_crtc_vblank_off(crtc);
1038 
1039 	drm_for_each_encoder_mask(encoder, crtc->dev,
1040 				  old_crtc_state->encoder_mask) {
1041 		/* in video mode, we hold an extra bandwidth reference
1042 		 * as we cannot drop bandwidth at frame-done if any
1043 		 * crtc is being used in video mode.
1044 		 */
1045 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1046 			release_bandwidth = true;
1047 
1048 		/*
1049 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1050 		 * we will need encoder->crtc connection to process the device sleep &
1051 		 * preserve it during psr sequence.
1052 		 */
1053 		if (!crtc->state->self_refresh_active)
1054 			dpu_encoder_assign_crtc(encoder, NULL);
1055 	}
1056 
1057 	/* wait for frame_event_done completion */
1058 	if (_dpu_crtc_wait_for_frame_done(crtc))
1059 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1060 				crtc->base.id,
1061 				atomic_read(&dpu_crtc->frame_pending));
1062 
1063 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1064 	dpu_crtc->enabled = false;
1065 
1066 	if (atomic_read(&dpu_crtc->frame_pending)) {
1067 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1068 				     atomic_read(&dpu_crtc->frame_pending));
1069 		if (release_bandwidth)
1070 			dpu_core_perf_crtc_release_bw(crtc);
1071 		atomic_set(&dpu_crtc->frame_pending, 0);
1072 	}
1073 
1074 	dpu_core_perf_crtc_update(crtc, 0, true);
1075 
1076 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1077 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1078 
1079 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
1080 	cstate->num_mixers = 0;
1081 
1082 	/* disable clk & bw control until clk & bw properties are set */
1083 	cstate->bw_control = false;
1084 	cstate->bw_split_vote = false;
1085 
1086 	if (crtc->state->event && !crtc->state->active) {
1087 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1088 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1089 		crtc->state->event = NULL;
1090 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1091 	}
1092 
1093 	pm_runtime_put_sync(crtc->dev->dev);
1094 }
1095 
1096 static void dpu_crtc_enable(struct drm_crtc *crtc,
1097 		struct drm_atomic_state *state)
1098 {
1099 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1100 	struct drm_encoder *encoder;
1101 	bool request_bandwidth = false;
1102 	struct drm_crtc_state *old_crtc_state;
1103 
1104 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1105 
1106 	pm_runtime_get_sync(crtc->dev->dev);
1107 
1108 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1109 
1110 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1111 		/* in video mode, we hold an extra bandwidth reference
1112 		 * as we cannot drop bandwidth at frame-done if any
1113 		 * crtc is being used in video mode.
1114 		 */
1115 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1116 			request_bandwidth = true;
1117 		dpu_encoder_register_frame_event_callback(encoder,
1118 				dpu_crtc_frame_event_cb, (void *)crtc);
1119 	}
1120 
1121 	if (request_bandwidth)
1122 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1123 
1124 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1125 	dpu_crtc->enabled = true;
1126 
1127 	if (!old_crtc_state->self_refresh_active) {
1128 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1129 			dpu_encoder_assign_crtc(encoder, crtc);
1130 	}
1131 
1132 	/* Enable/restore vblank irq handling */
1133 	drm_crtc_vblank_on(crtc);
1134 }
1135 
1136 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1137 {
1138 	struct drm_crtc *crtc = cstate->crtc;
1139 	struct drm_encoder *encoder;
1140 
1141 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1142 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1143 			return true;
1144 		}
1145 	}
1146 
1147 	return false;
1148 }
1149 
1150 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1151 		struct drm_atomic_state *state)
1152 {
1153 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1154 									  crtc);
1155 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1156 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1157 
1158 	const struct drm_plane_state *pstate;
1159 	struct drm_plane *plane;
1160 	struct drm_display_mode *mode;
1161 
1162 	int rc = 0;
1163 
1164 	struct drm_rect crtc_rect = { 0 };
1165 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1166 
1167 	if (!crtc_state->enable || !crtc_state->active) {
1168 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1169 				crtc->base.id, crtc_state->enable,
1170 				crtc_state->active);
1171 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1172 		return 0;
1173 	}
1174 
1175 	mode = &crtc_state->adjusted_mode;
1176 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1177 
1178 	/* force a full mode set if active state changed */
1179 	if (crtc_state->active_changed)
1180 		crtc_state->mode_changed = true;
1181 
1182 	if (cstate->num_mixers)
1183 		_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
1184 
1185 	crtc_rect.x2 = mode->hdisplay;
1186 	crtc_rect.y2 = mode->vdisplay;
1187 
1188 	 /* get plane state for all drm planes associated with crtc state */
1189 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1190 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1191 		struct drm_rect dst, clip = crtc_rect;
1192 		int z_pos;
1193 
1194 		if (IS_ERR_OR_NULL(pstate)) {
1195 			rc = PTR_ERR(pstate);
1196 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1197 					dpu_crtc->name, plane->base.id, rc);
1198 			return rc;
1199 		}
1200 
1201 		if (!pstate->visible)
1202 			continue;
1203 
1204 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1205 
1206 		dpu_plane_clear_multirect(pstate);
1207 
1208 		dst = drm_plane_state_dest(pstate);
1209 		if (!drm_rect_intersect(&clip, &dst)) {
1210 			DPU_ERROR("invalid vertical/horizontal destination\n");
1211 			DPU_ERROR("display: " DRM_RECT_FMT " plane: "
1212 				  DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
1213 				  DRM_RECT_ARG(&dst));
1214 			return -E2BIG;
1215 		}
1216 
1217 		z_pos = pstate->normalized_zpos;
1218 
1219 		/* verify z_pos setting before using it */
1220 		if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1221 			DPU_ERROR("> %d plane stages assigned\n",
1222 					DPU_STAGE_MAX - DPU_STAGE_0);
1223 			return -EINVAL;
1224 		}
1225 
1226 		to_dpu_plane_state(pstate)->stage = z_pos + DPU_STAGE_0;
1227 		DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1228 
1229 	}
1230 
1231 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1232 
1233 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1234 	if (rc) {
1235 		DPU_ERROR("crtc%d failed performance check %d\n",
1236 				crtc->base.id, rc);
1237 		return rc;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1244 {
1245 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1246 	struct drm_encoder *enc;
1247 
1248 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1249 
1250 	/*
1251 	 * Normally we would iterate through encoder_mask in crtc state to find
1252 	 * attached encoders. In this case, we might be disabling vblank _after_
1253 	 * encoder_mask has been cleared.
1254 	 *
1255 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1256 	 * disable (which is also after encoder_mask is cleared). So instead of
1257 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1258 	 * currently assigned to our crtc.
1259 	 *
1260 	 * Note also that this function cannot be called while crtc is disabled
1261 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1262 	 * about the assigned crtcs being inconsistent with the current state
1263 	 * (which means no need to worry about modeset locks).
1264 	 */
1265 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1266 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1267 					     dpu_crtc);
1268 
1269 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 #ifdef CONFIG_DEBUG_FS
1276 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1277 {
1278 	struct dpu_crtc *dpu_crtc;
1279 	struct dpu_plane_state *pstate = NULL;
1280 	struct dpu_crtc_mixer *m;
1281 
1282 	struct drm_crtc *crtc;
1283 	struct drm_plane *plane;
1284 	struct drm_display_mode *mode;
1285 	struct drm_framebuffer *fb;
1286 	struct drm_plane_state *state;
1287 	struct dpu_crtc_state *cstate;
1288 
1289 	int i, out_width;
1290 
1291 	dpu_crtc = s->private;
1292 	crtc = &dpu_crtc->base;
1293 
1294 	drm_modeset_lock_all(crtc->dev);
1295 	cstate = to_dpu_crtc_state(crtc->state);
1296 
1297 	mode = &crtc->state->adjusted_mode;
1298 	out_width = mode->hdisplay / cstate->num_mixers;
1299 
1300 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1301 				mode->hdisplay, mode->vdisplay);
1302 
1303 	seq_puts(s, "\n");
1304 
1305 	for (i = 0; i < cstate->num_mixers; ++i) {
1306 		m = &cstate->mixers[i];
1307 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1308 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1309 			out_width, mode->vdisplay);
1310 	}
1311 
1312 	seq_puts(s, "\n");
1313 
1314 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1315 		pstate = to_dpu_plane_state(plane->state);
1316 		state = plane->state;
1317 
1318 		if (!pstate || !state)
1319 			continue;
1320 
1321 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1322 			pstate->stage);
1323 
1324 		if (plane->state->fb) {
1325 			fb = plane->state->fb;
1326 
1327 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1328 				fb->base.id, (char *) &fb->format->format,
1329 				fb->width, fb->height);
1330 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1331 				seq_printf(s, "cpp[%d]:%u ",
1332 						i, fb->format->cpp[i]);
1333 			seq_puts(s, "\n\t");
1334 
1335 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1336 			seq_puts(s, "\n");
1337 
1338 			seq_puts(s, "\t");
1339 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1340 				seq_printf(s, "pitches[%d]:%8u ", i,
1341 							fb->pitches[i]);
1342 			seq_puts(s, "\n");
1343 
1344 			seq_puts(s, "\t");
1345 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1346 				seq_printf(s, "offsets[%d]:%8u ", i,
1347 							fb->offsets[i]);
1348 			seq_puts(s, "\n");
1349 		}
1350 
1351 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1352 			state->src_x, state->src_y, state->src_w, state->src_h);
1353 
1354 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1355 			state->crtc_x, state->crtc_y, state->crtc_w,
1356 			state->crtc_h);
1357 		seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1358 			pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1359 
1360 		seq_puts(s, "\n");
1361 	}
1362 	if (dpu_crtc->vblank_cb_count) {
1363 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1364 		s64 diff_ms = ktime_to_ms(diff);
1365 		s64 fps = diff_ms ? div_s64(
1366 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1367 
1368 		seq_printf(s,
1369 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1370 				fps, dpu_crtc->vblank_cb_count,
1371 				ktime_to_ms(diff), dpu_crtc->play_count);
1372 
1373 		/* reset time & count for next measurement */
1374 		dpu_crtc->vblank_cb_count = 0;
1375 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1376 	}
1377 
1378 	drm_modeset_unlock_all(crtc->dev);
1379 
1380 	return 0;
1381 }
1382 
1383 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1384 
1385 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1386 {
1387 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1388 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1389 
1390 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1391 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1392 	seq_printf(s, "core_clk_rate: %llu\n",
1393 			dpu_crtc->cur_perf.core_clk_rate);
1394 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1395 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1396 				dpu_crtc->cur_perf.max_per_pipe_ib);
1397 
1398 	return 0;
1399 }
1400 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1401 
1402 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1403 {
1404 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1405 
1406 	debugfs_create_file("status", 0400,
1407 			crtc->debugfs_entry,
1408 			dpu_crtc, &_dpu_debugfs_status_fops);
1409 	debugfs_create_file("state", 0600,
1410 			crtc->debugfs_entry,
1411 			&dpu_crtc->base,
1412 			&dpu_crtc_debugfs_state_fops);
1413 
1414 	return 0;
1415 }
1416 #else
1417 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1418 {
1419 	return 0;
1420 }
1421 #endif /* CONFIG_DEBUG_FS */
1422 
1423 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1424 {
1425 	return _dpu_crtc_init_debugfs(crtc);
1426 }
1427 
1428 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1429 	.set_config = drm_atomic_helper_set_config,
1430 	.destroy = dpu_crtc_destroy,
1431 	.page_flip = drm_atomic_helper_page_flip,
1432 	.reset = dpu_crtc_reset,
1433 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1434 	.atomic_destroy_state = dpu_crtc_destroy_state,
1435 	.atomic_print_state = dpu_crtc_atomic_print_state,
1436 	.late_register = dpu_crtc_late_register,
1437 	.verify_crc_source = dpu_crtc_verify_crc_source,
1438 	.set_crc_source = dpu_crtc_set_crc_source,
1439 	.enable_vblank  = msm_crtc_enable_vblank,
1440 	.disable_vblank = msm_crtc_disable_vblank,
1441 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1442 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1443 };
1444 
1445 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1446 	.atomic_disable = dpu_crtc_disable,
1447 	.atomic_enable = dpu_crtc_enable,
1448 	.atomic_check = dpu_crtc_atomic_check,
1449 	.atomic_begin = dpu_crtc_atomic_begin,
1450 	.atomic_flush = dpu_crtc_atomic_flush,
1451 	.get_scanout_position = dpu_crtc_get_scanout_position,
1452 };
1453 
1454 /* initialize crtc */
1455 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1456 				struct drm_plane *cursor)
1457 {
1458 	struct drm_crtc *crtc = NULL;
1459 	struct dpu_crtc *dpu_crtc = NULL;
1460 	int i, ret;
1461 
1462 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1463 	if (!dpu_crtc)
1464 		return ERR_PTR(-ENOMEM);
1465 
1466 	crtc = &dpu_crtc->base;
1467 	crtc->dev = dev;
1468 
1469 	spin_lock_init(&dpu_crtc->spin_lock);
1470 	atomic_set(&dpu_crtc->frame_pending, 0);
1471 
1472 	init_completion(&dpu_crtc->frame_done_comp);
1473 
1474 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1475 
1476 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1477 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1478 		list_add(&dpu_crtc->frame_events[i].list,
1479 				&dpu_crtc->frame_event_list);
1480 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1481 				dpu_crtc_frame_event_work);
1482 	}
1483 
1484 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1485 				NULL);
1486 
1487 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1488 
1489 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1490 
1491 	/* save user friendly CRTC name for later */
1492 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1493 
1494 	/* initialize event handling */
1495 	spin_lock_init(&dpu_crtc->event_lock);
1496 
1497 	ret = drm_self_refresh_helper_init(crtc);
1498 	if (ret) {
1499 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1500 			crtc->name, ret);
1501 		return ERR_PTR(ret);
1502 	}
1503 
1504 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1505 	return crtc;
1506 }
1507