1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_flip_work.h> 15 #include <drm/drm_mode.h> 16 #include <drm/drm_probe_helper.h> 17 #include <drm/drm_rect.h> 18 #include <drm/drm_vblank.h> 19 20 #include "dpu_kms.h" 21 #include "dpu_hw_lm.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_crtc.h" 24 #include "dpu_plane.h" 25 #include "dpu_encoder.h" 26 #include "dpu_vbif.h" 27 #include "dpu_core_perf.h" 28 #include "dpu_trace.h" 29 30 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 31 #define DPU_DRM_BLEND_OP_OPAQUE 1 32 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 33 #define DPU_DRM_BLEND_OP_COVERAGE 3 34 #define DPU_DRM_BLEND_OP_MAX 4 35 36 /* layer mixer index on dpu_crtc */ 37 #define LEFT_MIXER 0 38 #define RIGHT_MIXER 1 39 40 /* timeout in ms waiting for frame done */ 41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 42 43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 44 { 45 struct msm_drm_private *priv = crtc->dev->dev_private; 46 47 return to_dpu_kms(priv->kms); 48 } 49 50 static void dpu_crtc_destroy(struct drm_crtc *crtc) 51 { 52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 53 54 DPU_DEBUG("\n"); 55 56 if (!crtc) 57 return; 58 59 drm_crtc_cleanup(crtc); 60 kfree(dpu_crtc); 61 } 62 63 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 64 struct dpu_plane_state *pstate, struct dpu_format *format) 65 { 66 struct dpu_hw_mixer *lm = mixer->hw_lm; 67 uint32_t blend_op; 68 struct drm_format_name_buf format_name; 69 70 /* default to opaque blending */ 71 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 72 DPU_BLEND_BG_ALPHA_BG_CONST; 73 74 if (format->alpha_enable) { 75 /* coverage blending */ 76 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 77 DPU_BLEND_BG_ALPHA_FG_PIXEL | 78 DPU_BLEND_BG_INV_ALPHA; 79 } 80 81 lm->ops.setup_blend_config(lm, pstate->stage, 82 0xFF, 0, blend_op); 83 84 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n", 85 drm_get_format_name(format->base.pixel_format, &format_name), 86 format->alpha_enable, blend_op); 87 } 88 89 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 90 { 91 struct dpu_crtc *dpu_crtc; 92 struct dpu_crtc_state *crtc_state; 93 int lm_idx, lm_horiz_position; 94 95 dpu_crtc = to_dpu_crtc(crtc); 96 crtc_state = to_dpu_crtc_state(crtc->state); 97 98 lm_horiz_position = 0; 99 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 100 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 101 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 102 struct dpu_hw_mixer_cfg cfg; 103 104 if (!lm_roi || !drm_rect_visible(lm_roi)) 105 continue; 106 107 cfg.out_width = drm_rect_width(lm_roi); 108 cfg.out_height = drm_rect_height(lm_roi); 109 cfg.right_mixer = lm_horiz_position++; 110 cfg.flags = 0; 111 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 112 } 113 } 114 115 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 116 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 117 { 118 struct drm_plane *plane; 119 struct drm_framebuffer *fb; 120 struct drm_plane_state *state; 121 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 122 struct dpu_plane_state *pstate = NULL; 123 struct dpu_format *format; 124 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 125 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 126 127 u32 flush_mask; 128 uint32_t stage_idx, lm_idx; 129 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 130 bool bg_alpha_enable = false; 131 132 drm_atomic_crtc_for_each_plane(plane, crtc) { 133 state = plane->state; 134 if (!state) 135 continue; 136 137 pstate = to_dpu_plane_state(state); 138 fb = state->fb; 139 140 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 141 142 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n", 143 crtc->base.id, 144 pstate->stage, 145 plane->base.id, 146 dpu_plane_pipe(plane) - SSPP_VIG0, 147 state->fb ? state->fb->base.id : -1); 148 149 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 150 151 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 152 bg_alpha_enable = true; 153 154 stage_idx = zpos_cnt[pstate->stage]++; 155 stage_cfg->stage[pstate->stage][stage_idx] = 156 dpu_plane_pipe(plane); 157 stage_cfg->multirect_index[pstate->stage][stage_idx] = 158 pstate->multirect_index; 159 160 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 161 state, pstate, stage_idx, 162 dpu_plane_pipe(plane) - SSPP_VIG0, 163 format->base.pixel_format, 164 fb ? fb->modifier : 0); 165 166 /* blend config update */ 167 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 168 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 169 pstate, format); 170 171 mixer[lm_idx].flush_mask |= flush_mask; 172 173 if (bg_alpha_enable && !format->alpha_enable) 174 mixer[lm_idx].mixer_op_mode = 0; 175 else 176 mixer[lm_idx].mixer_op_mode |= 177 1 << pstate->stage; 178 } 179 } 180 181 _dpu_crtc_program_lm_output_roi(crtc); 182 } 183 184 /** 185 * _dpu_crtc_blend_setup - configure crtc mixers 186 * @crtc: Pointer to drm crtc structure 187 */ 188 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 189 { 190 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 191 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 192 struct dpu_crtc_mixer *mixer = cstate->mixers; 193 struct dpu_hw_ctl *ctl; 194 struct dpu_hw_mixer *lm; 195 int i; 196 197 DPU_DEBUG("%s\n", dpu_crtc->name); 198 199 for (i = 0; i < cstate->num_mixers; i++) { 200 mixer[i].mixer_op_mode = 0; 201 mixer[i].flush_mask = 0; 202 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 203 mixer[i].lm_ctl->ops.clear_all_blendstages( 204 mixer[i].lm_ctl); 205 } 206 207 /* initialize stage cfg */ 208 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 209 210 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 211 212 for (i = 0; i < cstate->num_mixers; i++) { 213 ctl = mixer[i].lm_ctl; 214 lm = mixer[i].hw_lm; 215 216 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 217 218 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 219 mixer[i].hw_lm->idx); 220 221 /* stage config flush mask */ 222 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 223 224 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 225 mixer[i].hw_lm->idx - LM_0, 226 mixer[i].mixer_op_mode, 227 ctl->idx - CTL_0, 228 mixer[i].flush_mask); 229 230 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 231 &dpu_crtc->stage_cfg); 232 } 233 } 234 235 /** 236 * _dpu_crtc_complete_flip - signal pending page_flip events 237 * Any pending vblank events are added to the vblank_event_list 238 * so that the next vblank interrupt shall signal them. 239 * However PAGE_FLIP events are not handled through the vblank_event_list. 240 * This API signals any pending PAGE_FLIP events requested through 241 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 242 * @crtc: Pointer to drm crtc structure 243 */ 244 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 245 { 246 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 247 struct drm_device *dev = crtc->dev; 248 unsigned long flags; 249 250 spin_lock_irqsave(&dev->event_lock, flags); 251 if (dpu_crtc->event) { 252 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 253 dpu_crtc->event); 254 trace_dpu_crtc_complete_flip(DRMID(crtc)); 255 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 256 dpu_crtc->event = NULL; 257 } 258 spin_unlock_irqrestore(&dev->event_lock, flags); 259 } 260 261 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 262 { 263 struct drm_encoder *encoder; 264 265 if (!crtc) { 266 DPU_ERROR("invalid crtc\n"); 267 return INTF_MODE_NONE; 268 } 269 270 /* 271 * TODO: This function is called from dpu debugfs and as part of atomic 272 * check. When called from debugfs, the crtc->mutex must be held to 273 * read crtc->state. However reading crtc->state from atomic check isn't 274 * allowed (unless you have a good reason, a big comment, and a deep 275 * understanding of how the atomic/modeset locks work (<- and this is 276 * probably not possible)). So we'll keep the WARN_ON here for now, but 277 * really we need to figure out a better way to track our operating mode 278 */ 279 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 280 281 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 282 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 283 return dpu_encoder_get_intf_mode(encoder); 284 285 return INTF_MODE_NONE; 286 } 287 288 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 289 { 290 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 291 292 /* keep statistics on vblank callback - with auto reset via debugfs */ 293 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 294 dpu_crtc->vblank_cb_time = ktime_get(); 295 else 296 dpu_crtc->vblank_cb_count++; 297 _dpu_crtc_complete_flip(crtc); 298 drm_crtc_handle_vblank(crtc); 299 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 300 } 301 302 static void dpu_crtc_frame_event_work(struct kthread_work *work) 303 { 304 struct dpu_crtc_frame_event *fevent = container_of(work, 305 struct dpu_crtc_frame_event, work); 306 struct drm_crtc *crtc = fevent->crtc; 307 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 308 unsigned long flags; 309 bool frame_done = false; 310 311 DPU_ATRACE_BEGIN("crtc_frame_event"); 312 313 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 314 ktime_to_ns(fevent->ts)); 315 316 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 317 | DPU_ENCODER_FRAME_EVENT_ERROR 318 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 319 320 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 321 /* ignore vblank when not pending */ 322 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 323 /* release bandwidth and other resources */ 324 trace_dpu_crtc_frame_event_done(DRMID(crtc), 325 fevent->event); 326 dpu_core_perf_crtc_release_bw(crtc); 327 } else { 328 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 329 fevent->event); 330 } 331 332 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE) 333 dpu_core_perf_crtc_update(crtc, 0, false); 334 335 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 336 | DPU_ENCODER_FRAME_EVENT_ERROR)) 337 frame_done = true; 338 } 339 340 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 341 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 342 crtc->base.id, ktime_to_ns(fevent->ts)); 343 344 if (frame_done) 345 complete_all(&dpu_crtc->frame_done_comp); 346 347 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 348 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 349 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 350 DPU_ATRACE_END("crtc_frame_event"); 351 } 352 353 /* 354 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 355 * registers this API to encoder for all frame event callbacks like 356 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 357 * from different context - IRQ, user thread, commit_thread, etc. Each event 358 * should be carefully reviewed and should be processed in proper task context 359 * to avoid schedulin delay or properly manage the irq context's bottom half 360 * processing. 361 */ 362 static void dpu_crtc_frame_event_cb(void *data, u32 event) 363 { 364 struct drm_crtc *crtc = (struct drm_crtc *)data; 365 struct dpu_crtc *dpu_crtc; 366 struct msm_drm_private *priv; 367 struct dpu_crtc_frame_event *fevent; 368 unsigned long flags; 369 u32 crtc_id; 370 371 /* Nothing to do on idle event */ 372 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 373 return; 374 375 dpu_crtc = to_dpu_crtc(crtc); 376 priv = crtc->dev->dev_private; 377 crtc_id = drm_crtc_index(crtc); 378 379 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 380 381 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 382 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 383 struct dpu_crtc_frame_event, list); 384 if (fevent) 385 list_del_init(&fevent->list); 386 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 387 388 if (!fevent) { 389 DRM_ERROR("crtc%d event %d overflow\n", crtc->base.id, event); 390 return; 391 } 392 393 fevent->event = event; 394 fevent->crtc = crtc; 395 fevent->ts = ktime_get(); 396 kthread_queue_work(&priv->event_thread[crtc_id].worker, &fevent->work); 397 } 398 399 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 400 { 401 trace_dpu_crtc_complete_commit(DRMID(crtc)); 402 } 403 404 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 405 struct drm_crtc_state *state) 406 { 407 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 408 struct drm_display_mode *adj_mode = &state->adjusted_mode; 409 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 410 int i; 411 412 for (i = 0; i < cstate->num_mixers; i++) { 413 struct drm_rect *r = &cstate->lm_bounds[i]; 414 r->x1 = crtc_split_width * i; 415 r->y1 = 0; 416 r->x2 = r->x1 + crtc_split_width; 417 r->y2 = adj_mode->vdisplay; 418 419 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 420 } 421 422 drm_mode_debug_printmodeline(adj_mode); 423 } 424 425 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 426 struct drm_crtc_state *old_state) 427 { 428 struct dpu_crtc *dpu_crtc; 429 struct dpu_crtc_state *cstate; 430 struct drm_encoder *encoder; 431 struct drm_device *dev; 432 unsigned long flags; 433 struct dpu_crtc_smmu_state_data *smmu_state; 434 435 if (!crtc) { 436 DPU_ERROR("invalid crtc\n"); 437 return; 438 } 439 440 if (!crtc->state->enable) { 441 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n", 442 crtc->base.id, crtc->state->enable); 443 return; 444 } 445 446 DPU_DEBUG("crtc%d\n", crtc->base.id); 447 448 dpu_crtc = to_dpu_crtc(crtc); 449 cstate = to_dpu_crtc_state(crtc->state); 450 dev = crtc->dev; 451 smmu_state = &dpu_crtc->smmu_state; 452 453 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 454 455 if (dpu_crtc->event) { 456 WARN_ON(dpu_crtc->event); 457 } else { 458 spin_lock_irqsave(&dev->event_lock, flags); 459 dpu_crtc->event = crtc->state->event; 460 crtc->state->event = NULL; 461 spin_unlock_irqrestore(&dev->event_lock, flags); 462 } 463 464 /* encoder will trigger pending mask now */ 465 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 466 dpu_encoder_trigger_kickoff_pending(encoder); 467 468 /* 469 * If no mixers have been allocated in dpu_crtc_atomic_check(), 470 * it means we are trying to flush a CRTC whose state is disabled: 471 * nothing else needs to be done. 472 */ 473 if (unlikely(!cstate->num_mixers)) 474 return; 475 476 _dpu_crtc_blend_setup(crtc); 477 478 /* 479 * PP_DONE irq is only used by command mode for now. 480 * It is better to request pending before FLUSH and START trigger 481 * to make sure no pp_done irq missed. 482 * This is safe because no pp_done will happen before SW trigger 483 * in command mode. 484 */ 485 } 486 487 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 488 struct drm_crtc_state *old_crtc_state) 489 { 490 struct dpu_crtc *dpu_crtc; 491 struct drm_device *dev; 492 struct drm_plane *plane; 493 struct msm_drm_private *priv; 494 struct msm_drm_thread *event_thread; 495 unsigned long flags; 496 struct dpu_crtc_state *cstate; 497 498 if (!crtc->state->enable) { 499 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n", 500 crtc->base.id, crtc->state->enable); 501 return; 502 } 503 504 DPU_DEBUG("crtc%d\n", crtc->base.id); 505 506 dpu_crtc = to_dpu_crtc(crtc); 507 cstate = to_dpu_crtc_state(crtc->state); 508 dev = crtc->dev; 509 priv = dev->dev_private; 510 511 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 512 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 513 return; 514 } 515 516 event_thread = &priv->event_thread[crtc->index]; 517 518 if (dpu_crtc->event) { 519 DPU_DEBUG("already received dpu_crtc->event\n"); 520 } else { 521 spin_lock_irqsave(&dev->event_lock, flags); 522 dpu_crtc->event = crtc->state->event; 523 crtc->state->event = NULL; 524 spin_unlock_irqrestore(&dev->event_lock, flags); 525 } 526 527 /* 528 * If no mixers has been allocated in dpu_crtc_atomic_check(), 529 * it means we are trying to flush a CRTC whose state is disabled: 530 * nothing else needs to be done. 531 */ 532 if (unlikely(!cstate->num_mixers)) 533 return; 534 535 /* 536 * For planes without commit update, drm framework will not add 537 * those planes to current state since hardware update is not 538 * required. However, if those planes were power collapsed since 539 * last commit cycle, driver has to restore the hardware state 540 * of those planes explicitly here prior to plane flush. 541 */ 542 drm_atomic_crtc_for_each_plane(plane, crtc) 543 dpu_plane_restore(plane); 544 545 /* update performance setting before crtc kickoff */ 546 dpu_core_perf_crtc_update(crtc, 1, false); 547 548 /* 549 * Final plane updates: Give each plane a chance to complete all 550 * required writes/flushing before crtc's "flush 551 * everything" call below. 552 */ 553 drm_atomic_crtc_for_each_plane(plane, crtc) { 554 if (dpu_crtc->smmu_state.transition_error) 555 dpu_plane_set_error(plane, true); 556 dpu_plane_flush(plane); 557 } 558 559 /* Kickoff will be scheduled by outer layer */ 560 } 561 562 /** 563 * dpu_crtc_destroy_state - state destroy hook 564 * @crtc: drm CRTC 565 * @state: CRTC state object to release 566 */ 567 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 568 struct drm_crtc_state *state) 569 { 570 struct dpu_crtc *dpu_crtc; 571 struct dpu_crtc_state *cstate; 572 573 if (!crtc || !state) { 574 DPU_ERROR("invalid argument(s)\n"); 575 return; 576 } 577 578 dpu_crtc = to_dpu_crtc(crtc); 579 cstate = to_dpu_crtc_state(state); 580 581 DPU_DEBUG("crtc%d\n", crtc->base.id); 582 583 __drm_atomic_helper_crtc_destroy_state(state); 584 585 kfree(cstate); 586 } 587 588 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 589 { 590 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 591 int ret, rc = 0; 592 593 if (!atomic_read(&dpu_crtc->frame_pending)) { 594 DPU_DEBUG("no frames pending\n"); 595 return 0; 596 } 597 598 DPU_ATRACE_BEGIN("frame done completion wait"); 599 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 600 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 601 if (!ret) { 602 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 603 rc = -ETIMEDOUT; 604 } 605 DPU_ATRACE_END("frame done completion wait"); 606 607 return rc; 608 } 609 610 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 611 { 612 struct drm_encoder *encoder; 613 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 614 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 615 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 616 617 /* 618 * If no mixers has been allocated in dpu_crtc_atomic_check(), 619 * it means we are trying to start a CRTC whose state is disabled: 620 * nothing else needs to be done. 621 */ 622 if (unlikely(!cstate->num_mixers)) 623 return; 624 625 DPU_ATRACE_BEGIN("crtc_commit"); 626 627 /* 628 * Encoder will flush/start now, unless it has a tx pending. If so, it 629 * may delay and flush at an irq event (e.g. ppdone) 630 */ 631 drm_for_each_encoder_mask(encoder, crtc->dev, 632 crtc->state->encoder_mask) 633 dpu_encoder_prepare_for_kickoff(encoder); 634 635 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 636 /* acquire bandwidth and other resources */ 637 DPU_DEBUG("crtc%d first commit\n", crtc->base.id); 638 } else 639 DPU_DEBUG("crtc%d commit\n", crtc->base.id); 640 641 dpu_crtc->play_count++; 642 643 dpu_vbif_clear_errors(dpu_kms); 644 645 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 646 dpu_encoder_kickoff(encoder); 647 648 reinit_completion(&dpu_crtc->frame_done_comp); 649 DPU_ATRACE_END("crtc_commit"); 650 } 651 652 static void dpu_crtc_reset(struct drm_crtc *crtc) 653 { 654 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 655 656 if (crtc->state) 657 dpu_crtc_destroy_state(crtc, crtc->state); 658 659 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 660 } 661 662 /** 663 * dpu_crtc_duplicate_state - state duplicate hook 664 * @crtc: Pointer to drm crtc structure 665 * @Returns: Pointer to new drm_crtc_state structure 666 */ 667 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 668 { 669 struct dpu_crtc *dpu_crtc; 670 struct dpu_crtc_state *cstate, *old_cstate; 671 672 if (!crtc || !crtc->state) { 673 DPU_ERROR("invalid argument(s)\n"); 674 return NULL; 675 } 676 677 dpu_crtc = to_dpu_crtc(crtc); 678 old_cstate = to_dpu_crtc_state(crtc->state); 679 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 680 if (!cstate) { 681 DPU_ERROR("failed to allocate state\n"); 682 return NULL; 683 } 684 685 /* duplicate base helper */ 686 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 687 688 return &cstate->base; 689 } 690 691 static void dpu_crtc_disable(struct drm_crtc *crtc, 692 struct drm_crtc_state *old_crtc_state) 693 { 694 struct dpu_crtc *dpu_crtc; 695 struct dpu_crtc_state *cstate; 696 struct drm_display_mode *mode; 697 struct drm_encoder *encoder; 698 struct msm_drm_private *priv; 699 unsigned long flags; 700 bool release_bandwidth = false; 701 702 if (!crtc || !crtc->state) { 703 DPU_ERROR("invalid crtc\n"); 704 return; 705 } 706 dpu_crtc = to_dpu_crtc(crtc); 707 cstate = to_dpu_crtc_state(crtc->state); 708 mode = &cstate->base.adjusted_mode; 709 priv = crtc->dev->dev_private; 710 711 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 712 713 /* Disable/save vblank irq handling */ 714 drm_crtc_vblank_off(crtc); 715 716 drm_for_each_encoder_mask(encoder, crtc->dev, 717 old_crtc_state->encoder_mask) { 718 /* in video mode, we hold an extra bandwidth reference 719 * as we cannot drop bandwidth at frame-done if any 720 * crtc is being used in video mode. 721 */ 722 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 723 release_bandwidth = true; 724 dpu_encoder_assign_crtc(encoder, NULL); 725 } 726 727 /* wait for frame_event_done completion */ 728 if (_dpu_crtc_wait_for_frame_done(crtc)) 729 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 730 crtc->base.id, 731 atomic_read(&dpu_crtc->frame_pending)); 732 733 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 734 dpu_crtc->enabled = false; 735 736 if (atomic_read(&dpu_crtc->frame_pending)) { 737 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 738 atomic_read(&dpu_crtc->frame_pending)); 739 if (release_bandwidth) 740 dpu_core_perf_crtc_release_bw(crtc); 741 atomic_set(&dpu_crtc->frame_pending, 0); 742 } 743 744 dpu_core_perf_crtc_update(crtc, 0, true); 745 746 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 747 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 748 749 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 750 cstate->num_mixers = 0; 751 752 /* disable clk & bw control until clk & bw properties are set */ 753 cstate->bw_control = false; 754 cstate->bw_split_vote = false; 755 756 if (crtc->state->event && !crtc->state->active) { 757 spin_lock_irqsave(&crtc->dev->event_lock, flags); 758 drm_crtc_send_vblank_event(crtc, crtc->state->event); 759 crtc->state->event = NULL; 760 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 761 } 762 763 pm_runtime_put_sync(crtc->dev->dev); 764 } 765 766 static void dpu_crtc_enable(struct drm_crtc *crtc, 767 struct drm_crtc_state *old_crtc_state) 768 { 769 struct dpu_crtc *dpu_crtc; 770 struct drm_encoder *encoder; 771 struct msm_drm_private *priv; 772 bool request_bandwidth; 773 774 if (!crtc) { 775 DPU_ERROR("invalid crtc\n"); 776 return; 777 } 778 priv = crtc->dev->dev_private; 779 780 pm_runtime_get_sync(crtc->dev->dev); 781 782 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 783 dpu_crtc = to_dpu_crtc(crtc); 784 785 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 786 /* in video mode, we hold an extra bandwidth reference 787 * as we cannot drop bandwidth at frame-done if any 788 * crtc is being used in video mode. 789 */ 790 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 791 request_bandwidth = true; 792 dpu_encoder_register_frame_event_callback(encoder, 793 dpu_crtc_frame_event_cb, (void *)crtc); 794 } 795 796 if (request_bandwidth) 797 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 798 799 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 800 dpu_crtc->enabled = true; 801 802 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 803 dpu_encoder_assign_crtc(encoder, crtc); 804 805 /* Enable/restore vblank irq handling */ 806 drm_crtc_vblank_on(crtc); 807 } 808 809 struct plane_state { 810 struct dpu_plane_state *dpu_pstate; 811 const struct drm_plane_state *drm_pstate; 812 int stage; 813 u32 pipe_id; 814 }; 815 816 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 817 struct drm_crtc_state *state) 818 { 819 struct dpu_crtc *dpu_crtc; 820 struct plane_state *pstates; 821 struct dpu_crtc_state *cstate; 822 823 const struct drm_plane_state *pstate; 824 struct drm_plane *plane; 825 struct drm_display_mode *mode; 826 827 int cnt = 0, rc = 0, mixer_width, i, z_pos; 828 829 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 830 int multirect_count = 0; 831 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 832 int left_zpos_cnt = 0, right_zpos_cnt = 0; 833 struct drm_rect crtc_rect = { 0 }; 834 835 if (!crtc) { 836 DPU_ERROR("invalid crtc\n"); 837 return -EINVAL; 838 } 839 840 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 841 842 dpu_crtc = to_dpu_crtc(crtc); 843 cstate = to_dpu_crtc_state(state); 844 845 if (!state->enable || !state->active) { 846 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n", 847 crtc->base.id, state->enable, state->active); 848 goto end; 849 } 850 851 mode = &state->adjusted_mode; 852 DPU_DEBUG("%s: check", dpu_crtc->name); 853 854 /* force a full mode set if active state changed */ 855 if (state->active_changed) 856 state->mode_changed = true; 857 858 memset(pipe_staged, 0, sizeof(pipe_staged)); 859 860 mixer_width = mode->hdisplay / cstate->num_mixers; 861 862 _dpu_crtc_setup_lm_bounds(crtc, state); 863 864 crtc_rect.x2 = mode->hdisplay; 865 crtc_rect.y2 = mode->vdisplay; 866 867 /* get plane state for all drm planes associated with crtc state */ 868 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 869 struct drm_rect dst, clip = crtc_rect; 870 871 if (IS_ERR_OR_NULL(pstate)) { 872 rc = PTR_ERR(pstate); 873 DPU_ERROR("%s: failed to get plane%d state, %d\n", 874 dpu_crtc->name, plane->base.id, rc); 875 goto end; 876 } 877 if (cnt >= DPU_STAGE_MAX * 4) 878 continue; 879 880 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 881 pstates[cnt].drm_pstate = pstate; 882 pstates[cnt].stage = pstate->normalized_zpos; 883 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 884 885 if (pipe_staged[pstates[cnt].pipe_id]) { 886 multirect_plane[multirect_count].r0 = 887 pipe_staged[pstates[cnt].pipe_id]; 888 multirect_plane[multirect_count].r1 = pstate; 889 multirect_count++; 890 891 pipe_staged[pstates[cnt].pipe_id] = NULL; 892 } else { 893 pipe_staged[pstates[cnt].pipe_id] = pstate; 894 } 895 896 cnt++; 897 898 dst = drm_plane_state_dest(pstate); 899 if (!drm_rect_intersect(&clip, &dst)) { 900 DPU_ERROR("invalid vertical/horizontal destination\n"); 901 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 902 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 903 DRM_RECT_ARG(&dst)); 904 rc = -E2BIG; 905 goto end; 906 } 907 } 908 909 for (i = 1; i < SSPP_MAX; i++) { 910 if (pipe_staged[i]) { 911 dpu_plane_clear_multirect(pipe_staged[i]); 912 913 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 914 DPU_ERROR( 915 "r1 only virt plane:%d not supported\n", 916 pipe_staged[i]->plane->base.id); 917 rc = -EINVAL; 918 goto end; 919 } 920 } 921 } 922 923 z_pos = -1; 924 for (i = 0; i < cnt; i++) { 925 /* reset counts at every new blend stage */ 926 if (pstates[i].stage != z_pos) { 927 left_zpos_cnt = 0; 928 right_zpos_cnt = 0; 929 z_pos = pstates[i].stage; 930 } 931 932 /* verify z_pos setting before using it */ 933 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 934 DPU_ERROR("> %d plane stages assigned\n", 935 DPU_STAGE_MAX - DPU_STAGE_0); 936 rc = -EINVAL; 937 goto end; 938 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 939 if (left_zpos_cnt == 2) { 940 DPU_ERROR("> 2 planes @ stage %d on left\n", 941 z_pos); 942 rc = -EINVAL; 943 goto end; 944 } 945 left_zpos_cnt++; 946 947 } else { 948 if (right_zpos_cnt == 2) { 949 DPU_ERROR("> 2 planes @ stage %d on right\n", 950 z_pos); 951 rc = -EINVAL; 952 goto end; 953 } 954 right_zpos_cnt++; 955 } 956 957 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 958 DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos); 959 } 960 961 for (i = 0; i < multirect_count; i++) { 962 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 963 DPU_ERROR( 964 "multirect validation failed for planes (%d - %d)\n", 965 multirect_plane[i].r0->plane->base.id, 966 multirect_plane[i].r1->plane->base.id); 967 rc = -EINVAL; 968 goto end; 969 } 970 } 971 972 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 973 974 rc = dpu_core_perf_crtc_check(crtc, state); 975 if (rc) { 976 DPU_ERROR("crtc%d failed performance check %d\n", 977 crtc->base.id, rc); 978 goto end; 979 } 980 981 /* validate source split: 982 * use pstates sorted by stage to check planes on same stage 983 * we assume that all pipes are in source split so its valid to compare 984 * without taking into account left/right mixer placement 985 */ 986 for (i = 1; i < cnt; i++) { 987 struct plane_state *prv_pstate, *cur_pstate; 988 struct drm_rect left_rect, right_rect; 989 int32_t left_pid, right_pid; 990 int32_t stage; 991 992 prv_pstate = &pstates[i - 1]; 993 cur_pstate = &pstates[i]; 994 if (prv_pstate->stage != cur_pstate->stage) 995 continue; 996 997 stage = cur_pstate->stage; 998 999 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1000 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1001 1002 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1003 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1004 1005 if (right_rect.x1 < left_rect.x1) { 1006 swap(left_pid, right_pid); 1007 swap(left_rect, right_rect); 1008 } 1009 1010 /** 1011 * - planes are enumerated in pipe-priority order such that 1012 * planes with lower drm_id must be left-most in a shared 1013 * blend-stage when using source split. 1014 * - planes in source split must be contiguous in width 1015 * - planes in source split must have same dest yoff and height 1016 */ 1017 if (right_pid < left_pid) { 1018 DPU_ERROR( 1019 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1020 stage, left_pid, right_pid); 1021 rc = -EINVAL; 1022 goto end; 1023 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1024 DPU_ERROR("non-contiguous coordinates for src split. " 1025 "stage: %d left: " DRM_RECT_FMT " right: " 1026 DRM_RECT_FMT "\n", stage, 1027 DRM_RECT_ARG(&left_rect), 1028 DRM_RECT_ARG(&right_rect)); 1029 rc = -EINVAL; 1030 goto end; 1031 } else if (left_rect.y1 != right_rect.y1 || 1032 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1033 DPU_ERROR("source split at stage: %d. invalid " 1034 "yoff/height: left: " DRM_RECT_FMT " right: " 1035 DRM_RECT_FMT "\n", stage, 1036 DRM_RECT_ARG(&left_rect), 1037 DRM_RECT_ARG(&right_rect)); 1038 rc = -EINVAL; 1039 goto end; 1040 } 1041 } 1042 1043 end: 1044 kfree(pstates); 1045 return rc; 1046 } 1047 1048 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1049 { 1050 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1051 struct drm_encoder *enc; 1052 1053 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1054 1055 /* 1056 * Normally we would iterate through encoder_mask in crtc state to find 1057 * attached encoders. In this case, we might be disabling vblank _after_ 1058 * encoder_mask has been cleared. 1059 * 1060 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1061 * disable (which is also after encoder_mask is cleared). So instead of 1062 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1063 * currently assigned to our crtc. 1064 * 1065 * Note also that this function cannot be called while crtc is disabled 1066 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1067 * about the assigned crtcs being inconsistent with the current state 1068 * (which means no need to worry about modeset locks). 1069 */ 1070 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1071 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1072 dpu_crtc); 1073 1074 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1075 } 1076 1077 return 0; 1078 } 1079 1080 #ifdef CONFIG_DEBUG_FS 1081 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1082 { 1083 struct dpu_crtc *dpu_crtc; 1084 struct dpu_plane_state *pstate = NULL; 1085 struct dpu_crtc_mixer *m; 1086 1087 struct drm_crtc *crtc; 1088 struct drm_plane *plane; 1089 struct drm_display_mode *mode; 1090 struct drm_framebuffer *fb; 1091 struct drm_plane_state *state; 1092 struct dpu_crtc_state *cstate; 1093 1094 int i, out_width; 1095 1096 dpu_crtc = s->private; 1097 crtc = &dpu_crtc->base; 1098 1099 drm_modeset_lock_all(crtc->dev); 1100 cstate = to_dpu_crtc_state(crtc->state); 1101 1102 mode = &crtc->state->adjusted_mode; 1103 out_width = mode->hdisplay / cstate->num_mixers; 1104 1105 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1106 mode->hdisplay, mode->vdisplay); 1107 1108 seq_puts(s, "\n"); 1109 1110 for (i = 0; i < cstate->num_mixers; ++i) { 1111 m = &cstate->mixers[i]; 1112 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1113 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1114 out_width, mode->vdisplay); 1115 } 1116 1117 seq_puts(s, "\n"); 1118 1119 drm_atomic_crtc_for_each_plane(plane, crtc) { 1120 pstate = to_dpu_plane_state(plane->state); 1121 state = plane->state; 1122 1123 if (!pstate || !state) 1124 continue; 1125 1126 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1127 pstate->stage); 1128 1129 if (plane->state->fb) { 1130 fb = plane->state->fb; 1131 1132 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1133 fb->base.id, (char *) &fb->format->format, 1134 fb->width, fb->height); 1135 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1136 seq_printf(s, "cpp[%d]:%u ", 1137 i, fb->format->cpp[i]); 1138 seq_puts(s, "\n\t"); 1139 1140 seq_printf(s, "modifier:%8llu ", fb->modifier); 1141 seq_puts(s, "\n"); 1142 1143 seq_puts(s, "\t"); 1144 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1145 seq_printf(s, "pitches[%d]:%8u ", i, 1146 fb->pitches[i]); 1147 seq_puts(s, "\n"); 1148 1149 seq_puts(s, "\t"); 1150 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1151 seq_printf(s, "offsets[%d]:%8u ", i, 1152 fb->offsets[i]); 1153 seq_puts(s, "\n"); 1154 } 1155 1156 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1157 state->src_x, state->src_y, state->src_w, state->src_h); 1158 1159 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1160 state->crtc_x, state->crtc_y, state->crtc_w, 1161 state->crtc_h); 1162 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1163 pstate->multirect_mode, pstate->multirect_index); 1164 1165 seq_puts(s, "\n"); 1166 } 1167 if (dpu_crtc->vblank_cb_count) { 1168 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1169 s64 diff_ms = ktime_to_ms(diff); 1170 s64 fps = diff_ms ? div_s64( 1171 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1172 1173 seq_printf(s, 1174 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1175 fps, dpu_crtc->vblank_cb_count, 1176 ktime_to_ms(diff), dpu_crtc->play_count); 1177 1178 /* reset time & count for next measurement */ 1179 dpu_crtc->vblank_cb_count = 0; 1180 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1181 } 1182 1183 drm_modeset_unlock_all(crtc->dev); 1184 1185 return 0; 1186 } 1187 1188 static int _dpu_debugfs_status_open(struct inode *inode, struct file *file) 1189 { 1190 return single_open(file, _dpu_debugfs_status_show, inode->i_private); 1191 } 1192 1193 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \ 1194 static int __prefix ## _open(struct inode *inode, struct file *file) \ 1195 { \ 1196 return single_open(file, __prefix ## _show, inode->i_private); \ 1197 } \ 1198 static const struct file_operations __prefix ## _fops = { \ 1199 .owner = THIS_MODULE, \ 1200 .open = __prefix ## _open, \ 1201 .release = single_release, \ 1202 .read = seq_read, \ 1203 .llseek = seq_lseek, \ 1204 } 1205 1206 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1207 { 1208 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1209 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1210 1211 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1212 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1213 seq_printf(s, "core_clk_rate: %llu\n", 1214 dpu_crtc->cur_perf.core_clk_rate); 1215 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1216 seq_printf(s, "max_per_pipe_ib: %llu\n", 1217 dpu_crtc->cur_perf.max_per_pipe_ib); 1218 1219 return 0; 1220 } 1221 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_crtc_debugfs_state); 1222 1223 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1224 { 1225 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1226 1227 static const struct file_operations debugfs_status_fops = { 1228 .open = _dpu_debugfs_status_open, 1229 .read = seq_read, 1230 .llseek = seq_lseek, 1231 .release = single_release, 1232 }; 1233 1234 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1235 crtc->dev->primary->debugfs_root); 1236 1237 debugfs_create_file("status", 0400, 1238 dpu_crtc->debugfs_root, 1239 dpu_crtc, &debugfs_status_fops); 1240 debugfs_create_file("state", 0600, 1241 dpu_crtc->debugfs_root, 1242 &dpu_crtc->base, 1243 &dpu_crtc_debugfs_state_fops); 1244 1245 return 0; 1246 } 1247 #else 1248 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1249 { 1250 return 0; 1251 } 1252 #endif /* CONFIG_DEBUG_FS */ 1253 1254 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1255 { 1256 return _dpu_crtc_init_debugfs(crtc); 1257 } 1258 1259 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1260 { 1261 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1262 1263 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1264 } 1265 1266 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1267 .set_config = drm_atomic_helper_set_config, 1268 .destroy = dpu_crtc_destroy, 1269 .page_flip = drm_atomic_helper_page_flip, 1270 .reset = dpu_crtc_reset, 1271 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1272 .atomic_destroy_state = dpu_crtc_destroy_state, 1273 .late_register = dpu_crtc_late_register, 1274 .early_unregister = dpu_crtc_early_unregister, 1275 }; 1276 1277 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1278 .atomic_disable = dpu_crtc_disable, 1279 .atomic_enable = dpu_crtc_enable, 1280 .atomic_check = dpu_crtc_atomic_check, 1281 .atomic_begin = dpu_crtc_atomic_begin, 1282 .atomic_flush = dpu_crtc_atomic_flush, 1283 }; 1284 1285 /* initialize crtc */ 1286 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1287 struct drm_plane *cursor) 1288 { 1289 struct drm_crtc *crtc = NULL; 1290 struct dpu_crtc *dpu_crtc = NULL; 1291 int i; 1292 1293 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1294 if (!dpu_crtc) 1295 return ERR_PTR(-ENOMEM); 1296 1297 crtc = &dpu_crtc->base; 1298 crtc->dev = dev; 1299 1300 spin_lock_init(&dpu_crtc->spin_lock); 1301 atomic_set(&dpu_crtc->frame_pending, 0); 1302 1303 init_completion(&dpu_crtc->frame_done_comp); 1304 1305 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1306 1307 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1308 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1309 list_add(&dpu_crtc->frame_events[i].list, 1310 &dpu_crtc->frame_event_list); 1311 kthread_init_work(&dpu_crtc->frame_events[i].work, 1312 dpu_crtc_frame_event_work); 1313 } 1314 1315 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1316 NULL); 1317 1318 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1319 1320 /* save user friendly CRTC name for later */ 1321 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1322 1323 /* initialize event handling */ 1324 spin_lock_init(&dpu_crtc->event_lock); 1325 1326 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name); 1327 return crtc; 1328 } 1329