1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. 4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. 5 * Copyright (C) 2013 Red Hat 6 * Author: Rob Clark <robdclark@gmail.com> 7 */ 8 9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 10 #include <linux/sort.h> 11 #include <linux/debugfs.h> 12 #include <linux/ktime.h> 13 #include <linux/bits.h> 14 15 #include <drm/drm_atomic.h> 16 #include <drm/drm_blend.h> 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_flip_work.h> 19 #include <drm/drm_framebuffer.h> 20 #include <drm/drm_mode.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_rect.h> 23 #include <drm/drm_vblank.h> 24 #include <drm/drm_self_refresh_helper.h> 25 26 #include "dpu_kms.h" 27 #include "dpu_hw_lm.h" 28 #include "dpu_hw_ctl.h" 29 #include "dpu_hw_dspp.h" 30 #include "dpu_crtc.h" 31 #include "dpu_plane.h" 32 #include "dpu_encoder.h" 33 #include "dpu_vbif.h" 34 #include "dpu_core_perf.h" 35 #include "dpu_trace.h" 36 37 /* layer mixer index on dpu_crtc */ 38 #define LEFT_MIXER 0 39 #define RIGHT_MIXER 1 40 41 /* timeout in ms waiting for frame done */ 42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 43 44 #define CONVERT_S3_15(val) \ 45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 46 47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 48 { 49 struct msm_drm_private *priv = crtc->dev->dev_private; 50 51 return to_dpu_kms(priv->kms); 52 } 53 54 static void dpu_crtc_destroy(struct drm_crtc *crtc) 55 { 56 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 57 58 if (!crtc) 59 return; 60 61 drm_crtc_cleanup(crtc); 62 kfree(dpu_crtc); 63 } 64 65 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 66 { 67 struct drm_device *dev = crtc->dev; 68 struct drm_encoder *encoder; 69 70 drm_for_each_encoder(encoder, dev) 71 if (encoder->crtc == crtc) 72 return encoder; 73 74 return NULL; 75 } 76 77 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name) 78 { 79 if (!src_name || 80 !strcmp(src_name, "none")) 81 return DPU_CRTC_CRC_SOURCE_NONE; 82 if (!strcmp(src_name, "auto") || 83 !strcmp(src_name, "lm")) 84 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER; 85 if (!strcmp(src_name, "encoder")) 86 return DPU_CRTC_CRC_SOURCE_ENCODER; 87 88 return DPU_CRTC_CRC_SOURCE_INVALID; 89 } 90 91 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc, 92 const char *src_name, size_t *values_cnt) 93 { 94 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 95 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 96 97 if (source < 0) { 98 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index); 99 return -EINVAL; 100 } 101 102 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) { 103 *values_cnt = crtc_state->num_mixers; 104 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) { 105 struct drm_encoder *drm_enc; 106 107 *values_cnt = 0; 108 109 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 110 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc); 111 } 112 113 return 0; 114 } 115 116 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state) 117 { 118 struct dpu_crtc_mixer *m; 119 int i; 120 121 for (i = 0; i < crtc_state->num_mixers; ++i) { 122 m = &crtc_state->mixers[i]; 123 124 if (!m->hw_lm || !m->hw_lm->ops.setup_misr) 125 continue; 126 127 /* Calculate MISR over 1 frame */ 128 m->hw_lm->ops.setup_misr(m->hw_lm); 129 } 130 } 131 132 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc) 133 { 134 struct drm_encoder *drm_enc; 135 136 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 137 dpu_encoder_setup_misr(drm_enc); 138 } 139 140 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name) 141 { 142 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 143 enum dpu_crtc_crc_source current_source; 144 struct dpu_crtc_state *crtc_state; 145 struct drm_device *drm_dev = crtc->dev; 146 147 bool was_enabled; 148 bool enable = false; 149 int ret = 0; 150 151 if (source < 0) { 152 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index); 153 return -EINVAL; 154 } 155 156 ret = drm_modeset_lock(&crtc->mutex, NULL); 157 158 if (ret) 159 return ret; 160 161 enable = (source != DPU_CRTC_CRC_SOURCE_NONE); 162 crtc_state = to_dpu_crtc_state(crtc->state); 163 164 spin_lock_irq(&drm_dev->event_lock); 165 current_source = crtc_state->crc_source; 166 spin_unlock_irq(&drm_dev->event_lock); 167 168 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE); 169 170 if (!was_enabled && enable) { 171 ret = drm_crtc_vblank_get(crtc); 172 173 if (ret) 174 goto cleanup; 175 176 } else if (was_enabled && !enable) { 177 drm_crtc_vblank_put(crtc); 178 } 179 180 spin_lock_irq(&drm_dev->event_lock); 181 crtc_state->crc_source = source; 182 spin_unlock_irq(&drm_dev->event_lock); 183 184 crtc_state->crc_frame_skip_count = 0; 185 186 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 187 dpu_crtc_setup_lm_misr(crtc_state); 188 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) 189 dpu_crtc_setup_encoder_misr(crtc); 190 else 191 ret = -EINVAL; 192 193 cleanup: 194 drm_modeset_unlock(&crtc->mutex); 195 196 return ret; 197 } 198 199 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 200 { 201 struct drm_encoder *encoder = get_encoder_from_crtc(crtc); 202 if (!encoder) { 203 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 204 return 0; 205 } 206 207 return dpu_encoder_get_vsync_count(encoder); 208 } 209 210 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc, 211 struct dpu_crtc_state *crtc_state) 212 { 213 struct dpu_crtc_mixer *m; 214 u32 crcs[CRTC_DUAL_MIXERS]; 215 216 int rc = 0; 217 int i; 218 219 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers)); 220 221 for (i = 0; i < crtc_state->num_mixers; ++i) { 222 223 m = &crtc_state->mixers[i]; 224 225 if (!m->hw_lm || !m->hw_lm->ops.collect_misr) 226 continue; 227 228 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]); 229 230 if (rc) { 231 if (rc != -ENODATA) 232 DRM_DEBUG_DRIVER("MISR read failed\n"); 233 return rc; 234 } 235 } 236 237 return drm_crtc_add_crc_entry(crtc, true, 238 drm_crtc_accurate_vblank_count(crtc), crcs); 239 } 240 241 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc) 242 { 243 struct drm_encoder *drm_enc; 244 int rc, pos = 0; 245 u32 crcs[INTF_MAX]; 246 247 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) { 248 rc = dpu_encoder_get_crc(drm_enc, crcs, pos); 249 if (rc < 0) { 250 if (rc != -ENODATA) 251 DRM_DEBUG_DRIVER("MISR read failed\n"); 252 253 return rc; 254 } 255 256 pos += rc; 257 } 258 259 return drm_crtc_add_crc_entry(crtc, true, 260 drm_crtc_accurate_vblank_count(crtc), crcs); 261 } 262 263 static int dpu_crtc_get_crc(struct drm_crtc *crtc) 264 { 265 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 266 267 /* Skip first 2 frames in case of "uncooked" CRCs */ 268 if (crtc_state->crc_frame_skip_count < 2) { 269 crtc_state->crc_frame_skip_count++; 270 return 0; 271 } 272 273 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 274 return dpu_crtc_get_lm_crc(crtc, crtc_state); 275 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER) 276 return dpu_crtc_get_encoder_crc(crtc); 277 278 return -EINVAL; 279 } 280 281 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 282 bool in_vblank_irq, 283 int *vpos, int *hpos, 284 ktime_t *stime, ktime_t *etime, 285 const struct drm_display_mode *mode) 286 { 287 unsigned int pipe = crtc->index; 288 struct drm_encoder *encoder; 289 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 290 291 encoder = get_encoder_from_crtc(crtc); 292 if (!encoder) { 293 DRM_ERROR("no encoder found for crtc %d\n", pipe); 294 return false; 295 } 296 297 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 298 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 299 300 /* 301 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 302 * the end of VFP. Translate the porch values relative to the line 303 * counter positions. 304 */ 305 306 vactive_start = vsw + vbp + 1; 307 vactive_end = vactive_start + mode->crtc_vdisplay; 308 309 /* last scan line before VSYNC */ 310 vfp_end = mode->crtc_vtotal; 311 312 if (stime) 313 *stime = ktime_get(); 314 315 line = dpu_encoder_get_linecount(encoder); 316 317 if (line < vactive_start) 318 line -= vactive_start; 319 else if (line > vactive_end) 320 line = line - vfp_end - vactive_start; 321 else 322 line -= vactive_start; 323 324 *vpos = line; 325 *hpos = 0; 326 327 if (etime) 328 *etime = ktime_get(); 329 330 return true; 331 } 332 333 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 334 struct dpu_plane_state *pstate, struct dpu_format *format) 335 { 336 struct dpu_hw_mixer *lm = mixer->hw_lm; 337 uint32_t blend_op; 338 uint32_t fg_alpha, bg_alpha; 339 340 fg_alpha = pstate->base.alpha >> 8; 341 bg_alpha = 0xff - fg_alpha; 342 343 /* default to opaque blending */ 344 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || 345 !format->alpha_enable) { 346 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 347 DPU_BLEND_BG_ALPHA_BG_CONST; 348 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { 349 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 350 DPU_BLEND_BG_ALPHA_FG_PIXEL; 351 if (fg_alpha != 0xff) { 352 bg_alpha = fg_alpha; 353 blend_op |= DPU_BLEND_BG_MOD_ALPHA | 354 DPU_BLEND_BG_INV_MOD_ALPHA; 355 } else { 356 blend_op |= DPU_BLEND_BG_INV_ALPHA; 357 } 358 } else { 359 /* coverage blending */ 360 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 361 DPU_BLEND_BG_ALPHA_FG_PIXEL; 362 if (fg_alpha != 0xff) { 363 bg_alpha = fg_alpha; 364 blend_op |= DPU_BLEND_FG_MOD_ALPHA | 365 DPU_BLEND_FG_INV_MOD_ALPHA | 366 DPU_BLEND_BG_MOD_ALPHA | 367 DPU_BLEND_BG_INV_MOD_ALPHA; 368 } else { 369 blend_op |= DPU_BLEND_BG_INV_ALPHA; 370 } 371 } 372 373 lm->ops.setup_blend_config(lm, pstate->stage, 374 fg_alpha, bg_alpha, blend_op); 375 376 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 377 &format->base.pixel_format, format->alpha_enable, blend_op); 378 } 379 380 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 381 { 382 struct dpu_crtc_state *crtc_state; 383 int lm_idx, lm_horiz_position; 384 385 crtc_state = to_dpu_crtc_state(crtc->state); 386 387 lm_horiz_position = 0; 388 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 389 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 390 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 391 struct dpu_hw_mixer_cfg cfg; 392 393 if (!lm_roi || !drm_rect_visible(lm_roi)) 394 continue; 395 396 cfg.out_width = drm_rect_width(lm_roi); 397 cfg.out_height = drm_rect_height(lm_roi); 398 cfg.right_mixer = lm_horiz_position++; 399 cfg.flags = 0; 400 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 401 } 402 } 403 404 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc, 405 struct drm_plane *plane, 406 struct dpu_crtc_mixer *mixer, 407 u32 num_mixers, 408 enum dpu_stage stage, 409 struct dpu_format *format, 410 uint64_t modifier, 411 struct dpu_sw_pipe *pipe, 412 unsigned int stage_idx, 413 struct dpu_hw_stage_cfg *stage_cfg 414 ) 415 { 416 uint32_t lm_idx; 417 enum dpu_sspp sspp_idx; 418 struct drm_plane_state *state; 419 420 sspp_idx = pipe->sspp->idx; 421 422 state = plane->state; 423 424 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 425 state, to_dpu_plane_state(state), stage_idx, 426 format->base.pixel_format, 427 modifier); 428 429 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n", 430 crtc->base.id, 431 stage, 432 plane->base.id, 433 sspp_idx - SSPP_NONE, 434 state->fb ? state->fb->base.id : -1, 435 pipe->multirect_index); 436 437 stage_cfg->stage[stage][stage_idx] = sspp_idx; 438 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index; 439 440 /* blend config update */ 441 for (lm_idx = 0; lm_idx < num_mixers; lm_idx++) 442 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx); 443 } 444 445 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 446 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer, 447 struct dpu_hw_stage_cfg *stage_cfg) 448 { 449 struct drm_plane *plane; 450 struct drm_framebuffer *fb; 451 struct drm_plane_state *state; 452 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 453 struct dpu_plane_state *pstate = NULL; 454 struct dpu_format *format; 455 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 456 457 uint32_t lm_idx; 458 bool bg_alpha_enable = false; 459 DECLARE_BITMAP(fetch_active, SSPP_MAX); 460 461 memset(fetch_active, 0, sizeof(fetch_active)); 462 drm_atomic_crtc_for_each_plane(plane, crtc) { 463 state = plane->state; 464 if (!state) 465 continue; 466 467 if (!state->visible) 468 continue; 469 470 pstate = to_dpu_plane_state(state); 471 fb = state->fb; 472 473 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 474 475 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 476 bg_alpha_enable = true; 477 478 set_bit(pstate->pipe.sspp->idx, fetch_active); 479 _dpu_crtc_blend_setup_pipe(crtc, plane, 480 mixer, cstate->num_mixers, 481 pstate->stage, 482 format, fb ? fb->modifier : 0, 483 &pstate->pipe, 0, stage_cfg); 484 485 if (pstate->r_pipe.sspp) { 486 set_bit(pstate->r_pipe.sspp->idx, fetch_active); 487 _dpu_crtc_blend_setup_pipe(crtc, plane, 488 mixer, cstate->num_mixers, 489 pstate->stage, 490 format, fb ? fb->modifier : 0, 491 &pstate->r_pipe, 1, stage_cfg); 492 } 493 494 /* blend config update */ 495 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 496 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format); 497 498 if (bg_alpha_enable && !format->alpha_enable) 499 mixer[lm_idx].mixer_op_mode = 0; 500 else 501 mixer[lm_idx].mixer_op_mode |= 502 1 << pstate->stage; 503 } 504 } 505 506 if (ctl->ops.set_active_pipes) 507 ctl->ops.set_active_pipes(ctl, fetch_active); 508 509 _dpu_crtc_program_lm_output_roi(crtc); 510 } 511 512 /** 513 * _dpu_crtc_blend_setup - configure crtc mixers 514 * @crtc: Pointer to drm crtc structure 515 */ 516 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 517 { 518 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 519 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 520 struct dpu_crtc_mixer *mixer = cstate->mixers; 521 struct dpu_hw_ctl *ctl; 522 struct dpu_hw_mixer *lm; 523 struct dpu_hw_stage_cfg stage_cfg; 524 int i; 525 526 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 527 528 for (i = 0; i < cstate->num_mixers; i++) { 529 mixer[i].mixer_op_mode = 0; 530 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 531 mixer[i].lm_ctl->ops.clear_all_blendstages( 532 mixer[i].lm_ctl); 533 } 534 535 /* initialize stage cfg */ 536 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 537 538 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg); 539 540 for (i = 0; i < cstate->num_mixers; i++) { 541 ctl = mixer[i].lm_ctl; 542 lm = mixer[i].hw_lm; 543 544 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 545 546 /* stage config flush mask */ 547 ctl->ops.update_pending_flush_mixer(ctl, 548 mixer[i].hw_lm->idx); 549 550 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n", 551 mixer[i].hw_lm->idx - LM_0, 552 mixer[i].mixer_op_mode, 553 ctl->idx - CTL_0); 554 555 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 556 &stage_cfg); 557 } 558 } 559 560 /** 561 * _dpu_crtc_complete_flip - signal pending page_flip events 562 * Any pending vblank events are added to the vblank_event_list 563 * so that the next vblank interrupt shall signal them. 564 * However PAGE_FLIP events are not handled through the vblank_event_list. 565 * This API signals any pending PAGE_FLIP events requested through 566 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 567 * @crtc: Pointer to drm crtc structure 568 */ 569 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 570 { 571 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 572 struct drm_device *dev = crtc->dev; 573 unsigned long flags; 574 575 spin_lock_irqsave(&dev->event_lock, flags); 576 if (dpu_crtc->event) { 577 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 578 dpu_crtc->event); 579 trace_dpu_crtc_complete_flip(DRMID(crtc)); 580 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 581 dpu_crtc->event = NULL; 582 } 583 spin_unlock_irqrestore(&dev->event_lock, flags); 584 } 585 586 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 587 { 588 struct drm_encoder *encoder; 589 590 /* 591 * TODO: This function is called from dpu debugfs and as part of atomic 592 * check. When called from debugfs, the crtc->mutex must be held to 593 * read crtc->state. However reading crtc->state from atomic check isn't 594 * allowed (unless you have a good reason, a big comment, and a deep 595 * understanding of how the atomic/modeset locks work (<- and this is 596 * probably not possible)). So we'll keep the WARN_ON here for now, but 597 * really we need to figure out a better way to track our operating mode 598 */ 599 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 600 601 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 602 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 603 return dpu_encoder_get_intf_mode(encoder); 604 605 return INTF_MODE_NONE; 606 } 607 608 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 609 { 610 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 611 612 /* keep statistics on vblank callback - with auto reset via debugfs */ 613 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 614 dpu_crtc->vblank_cb_time = ktime_get(); 615 else 616 dpu_crtc->vblank_cb_count++; 617 618 dpu_crtc_get_crc(crtc); 619 620 drm_crtc_handle_vblank(crtc); 621 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 622 } 623 624 static void dpu_crtc_frame_event_work(struct kthread_work *work) 625 { 626 struct dpu_crtc_frame_event *fevent = container_of(work, 627 struct dpu_crtc_frame_event, work); 628 struct drm_crtc *crtc = fevent->crtc; 629 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 630 unsigned long flags; 631 bool frame_done = false; 632 633 DPU_ATRACE_BEGIN("crtc_frame_event"); 634 635 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 636 ktime_to_ns(fevent->ts)); 637 638 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 639 | DPU_ENCODER_FRAME_EVENT_ERROR 640 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 641 642 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 643 /* ignore vblank when not pending */ 644 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 645 /* release bandwidth and other resources */ 646 trace_dpu_crtc_frame_event_done(DRMID(crtc), 647 fevent->event); 648 dpu_core_perf_crtc_release_bw(crtc); 649 } else { 650 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 651 fevent->event); 652 } 653 654 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 655 | DPU_ENCODER_FRAME_EVENT_ERROR)) 656 frame_done = true; 657 } 658 659 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 660 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 661 crtc->base.id, ktime_to_ns(fevent->ts)); 662 663 if (frame_done) 664 complete_all(&dpu_crtc->frame_done_comp); 665 666 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 667 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 668 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 669 DPU_ATRACE_END("crtc_frame_event"); 670 } 671 672 /* 673 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 674 * registers this API to encoder for all frame event callbacks like 675 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 676 * from different context - IRQ, user thread, commit_thread, etc. Each event 677 * should be carefully reviewed and should be processed in proper task context 678 * to avoid schedulin delay or properly manage the irq context's bottom half 679 * processing. 680 */ 681 static void dpu_crtc_frame_event_cb(void *data, u32 event) 682 { 683 struct drm_crtc *crtc = (struct drm_crtc *)data; 684 struct dpu_crtc *dpu_crtc; 685 struct msm_drm_private *priv; 686 struct dpu_crtc_frame_event *fevent; 687 unsigned long flags; 688 u32 crtc_id; 689 690 /* Nothing to do on idle event */ 691 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 692 return; 693 694 dpu_crtc = to_dpu_crtc(crtc); 695 priv = crtc->dev->dev_private; 696 crtc_id = drm_crtc_index(crtc); 697 698 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 699 700 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 701 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 702 struct dpu_crtc_frame_event, list); 703 if (fevent) 704 list_del_init(&fevent->list); 705 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 706 707 if (!fevent) { 708 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 709 return; 710 } 711 712 fevent->event = event; 713 fevent->crtc = crtc; 714 fevent->ts = ktime_get(); 715 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 716 } 717 718 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 719 { 720 trace_dpu_crtc_complete_commit(DRMID(crtc)); 721 dpu_core_perf_crtc_update(crtc, 0); 722 _dpu_crtc_complete_flip(crtc); 723 } 724 725 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc, 726 struct drm_crtc_state *state) 727 { 728 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 729 struct drm_display_mode *adj_mode = &state->adjusted_mode; 730 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 731 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 732 int i; 733 734 for (i = 0; i < cstate->num_mixers; i++) { 735 struct drm_rect *r = &cstate->lm_bounds[i]; 736 r->x1 = crtc_split_width * i; 737 r->y1 = 0; 738 r->x2 = r->x1 + crtc_split_width; 739 r->y2 = adj_mode->vdisplay; 740 741 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 742 743 if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width) 744 return -E2BIG; 745 } 746 747 return 0; 748 } 749 750 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 751 struct dpu_hw_pcc_cfg *cfg) 752 { 753 struct drm_color_ctm *ctm; 754 755 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 756 757 ctm = (struct drm_color_ctm *)state->ctm->data; 758 759 if (!ctm) 760 return; 761 762 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 763 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 764 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 765 766 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 767 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 768 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 769 770 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 771 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 772 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 773 } 774 775 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 776 { 777 struct drm_crtc_state *state = crtc->state; 778 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 779 struct dpu_crtc_mixer *mixer = cstate->mixers; 780 struct dpu_hw_pcc_cfg cfg; 781 struct dpu_hw_ctl *ctl; 782 struct dpu_hw_dspp *dspp; 783 int i; 784 785 786 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state)) 787 return; 788 789 for (i = 0; i < cstate->num_mixers; i++) { 790 ctl = mixer[i].lm_ctl; 791 dspp = mixer[i].hw_dspp; 792 793 if (!dspp || !dspp->ops.setup_pcc) 794 continue; 795 796 if (!state->ctm) { 797 dspp->ops.setup_pcc(dspp, NULL); 798 } else { 799 _dpu_crtc_get_pcc_coeff(state, &cfg); 800 dspp->ops.setup_pcc(dspp, &cfg); 801 } 802 803 /* stage config flush mask */ 804 ctl->ops.update_pending_flush_dspp(ctl, 805 mixer[i].hw_dspp->idx, DPU_DSPP_PCC); 806 } 807 } 808 809 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 810 struct drm_atomic_state *state) 811 { 812 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 813 struct drm_encoder *encoder; 814 815 if (!crtc->state->enable) { 816 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 817 crtc->base.id, crtc->state->enable); 818 return; 819 } 820 821 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 822 823 _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state); 824 825 /* encoder will trigger pending mask now */ 826 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 827 dpu_encoder_trigger_kickoff_pending(encoder); 828 829 /* 830 * If no mixers have been allocated in dpu_crtc_atomic_check(), 831 * it means we are trying to flush a CRTC whose state is disabled: 832 * nothing else needs to be done. 833 */ 834 if (unlikely(!cstate->num_mixers)) 835 return; 836 837 _dpu_crtc_blend_setup(crtc); 838 839 _dpu_crtc_setup_cp_blocks(crtc); 840 841 /* 842 * PP_DONE irq is only used by command mode for now. 843 * It is better to request pending before FLUSH and START trigger 844 * to make sure no pp_done irq missed. 845 * This is safe because no pp_done will happen before SW trigger 846 * in command mode. 847 */ 848 } 849 850 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 851 struct drm_atomic_state *state) 852 { 853 struct dpu_crtc *dpu_crtc; 854 struct drm_device *dev; 855 struct drm_plane *plane; 856 struct msm_drm_private *priv; 857 unsigned long flags; 858 struct dpu_crtc_state *cstate; 859 860 if (!crtc->state->enable) { 861 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 862 crtc->base.id, crtc->state->enable); 863 return; 864 } 865 866 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 867 868 dpu_crtc = to_dpu_crtc(crtc); 869 cstate = to_dpu_crtc_state(crtc->state); 870 dev = crtc->dev; 871 priv = dev->dev_private; 872 873 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 874 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 875 return; 876 } 877 878 WARN_ON(dpu_crtc->event); 879 spin_lock_irqsave(&dev->event_lock, flags); 880 dpu_crtc->event = crtc->state->event; 881 crtc->state->event = NULL; 882 spin_unlock_irqrestore(&dev->event_lock, flags); 883 884 /* 885 * If no mixers has been allocated in dpu_crtc_atomic_check(), 886 * it means we are trying to flush a CRTC whose state is disabled: 887 * nothing else needs to be done. 888 */ 889 if (unlikely(!cstate->num_mixers)) 890 return; 891 892 /* update performance setting before crtc kickoff */ 893 dpu_core_perf_crtc_update(crtc, 1); 894 895 /* 896 * Final plane updates: Give each plane a chance to complete all 897 * required writes/flushing before crtc's "flush 898 * everything" call below. 899 */ 900 drm_atomic_crtc_for_each_plane(plane, crtc) { 901 if (dpu_crtc->smmu_state.transition_error) 902 dpu_plane_set_error(plane, true); 903 dpu_plane_flush(plane); 904 } 905 906 /* Kickoff will be scheduled by outer layer */ 907 } 908 909 /** 910 * dpu_crtc_destroy_state - state destroy hook 911 * @crtc: drm CRTC 912 * @state: CRTC state object to release 913 */ 914 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 915 struct drm_crtc_state *state) 916 { 917 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 918 919 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 920 921 __drm_atomic_helper_crtc_destroy_state(state); 922 923 kfree(cstate); 924 } 925 926 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 927 { 928 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 929 int ret, rc = 0; 930 931 if (!atomic_read(&dpu_crtc->frame_pending)) { 932 DRM_DEBUG_ATOMIC("no frames pending\n"); 933 return 0; 934 } 935 936 DPU_ATRACE_BEGIN("frame done completion wait"); 937 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 938 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 939 if (!ret) { 940 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 941 rc = -ETIMEDOUT; 942 } 943 DPU_ATRACE_END("frame done completion wait"); 944 945 return rc; 946 } 947 948 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 949 { 950 struct drm_encoder *encoder; 951 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 952 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 953 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 954 955 /* 956 * If no mixers has been allocated in dpu_crtc_atomic_check(), 957 * it means we are trying to start a CRTC whose state is disabled: 958 * nothing else needs to be done. 959 */ 960 if (unlikely(!cstate->num_mixers)) 961 return; 962 963 DPU_ATRACE_BEGIN("crtc_commit"); 964 965 drm_for_each_encoder_mask(encoder, crtc->dev, 966 crtc->state->encoder_mask) { 967 if (!dpu_encoder_is_valid_for_commit(encoder)) { 968 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n"); 969 goto end; 970 } 971 } 972 /* 973 * Encoder will flush/start now, unless it has a tx pending. If so, it 974 * may delay and flush at an irq event (e.g. ppdone) 975 */ 976 drm_for_each_encoder_mask(encoder, crtc->dev, 977 crtc->state->encoder_mask) 978 dpu_encoder_prepare_for_kickoff(encoder); 979 980 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 981 /* acquire bandwidth and other resources */ 982 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 983 } else 984 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 985 986 dpu_crtc->play_count++; 987 988 dpu_vbif_clear_errors(dpu_kms); 989 990 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 991 dpu_encoder_kickoff(encoder); 992 993 reinit_completion(&dpu_crtc->frame_done_comp); 994 995 end: 996 DPU_ATRACE_END("crtc_commit"); 997 } 998 999 static void dpu_crtc_reset(struct drm_crtc *crtc) 1000 { 1001 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 1002 1003 if (crtc->state) 1004 dpu_crtc_destroy_state(crtc, crtc->state); 1005 1006 if (cstate) 1007 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 1008 else 1009 __drm_atomic_helper_crtc_reset(crtc, NULL); 1010 } 1011 1012 /** 1013 * dpu_crtc_duplicate_state - state duplicate hook 1014 * @crtc: Pointer to drm crtc structure 1015 */ 1016 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 1017 { 1018 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 1019 1020 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 1021 if (!cstate) { 1022 DPU_ERROR("failed to allocate state\n"); 1023 return NULL; 1024 } 1025 1026 /* duplicate base helper */ 1027 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 1028 1029 return &cstate->base; 1030 } 1031 1032 static void dpu_crtc_atomic_print_state(struct drm_printer *p, 1033 const struct drm_crtc_state *state) 1034 { 1035 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 1036 int i; 1037 1038 for (i = 0; i < cstate->num_mixers; i++) { 1039 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0); 1040 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0); 1041 if (cstate->mixers[i].hw_dspp) 1042 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0); 1043 } 1044 } 1045 1046 static void dpu_crtc_disable(struct drm_crtc *crtc, 1047 struct drm_atomic_state *state) 1048 { 1049 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1050 crtc); 1051 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1052 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 1053 struct drm_encoder *encoder; 1054 unsigned long flags; 1055 bool release_bandwidth = false; 1056 1057 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1058 1059 /* If disable is triggered while in self refresh mode, 1060 * reset the encoder software state so that in enable 1061 * it won't trigger a warn while assigning crtc. 1062 */ 1063 if (old_crtc_state->self_refresh_active) { 1064 drm_for_each_encoder_mask(encoder, crtc->dev, 1065 old_crtc_state->encoder_mask) { 1066 dpu_encoder_assign_crtc(encoder, NULL); 1067 } 1068 return; 1069 } 1070 1071 /* Disable/save vblank irq handling */ 1072 drm_crtc_vblank_off(crtc); 1073 1074 drm_for_each_encoder_mask(encoder, crtc->dev, 1075 old_crtc_state->encoder_mask) { 1076 /* in video mode, we hold an extra bandwidth reference 1077 * as we cannot drop bandwidth at frame-done if any 1078 * crtc is being used in video mode. 1079 */ 1080 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1081 release_bandwidth = true; 1082 1083 /* 1084 * If disable is triggered during psr active(e.g: screen dim in PSR), 1085 * we will need encoder->crtc connection to process the device sleep & 1086 * preserve it during psr sequence. 1087 */ 1088 if (!crtc->state->self_refresh_active) 1089 dpu_encoder_assign_crtc(encoder, NULL); 1090 } 1091 1092 /* wait for frame_event_done completion */ 1093 if (_dpu_crtc_wait_for_frame_done(crtc)) 1094 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 1095 crtc->base.id, 1096 atomic_read(&dpu_crtc->frame_pending)); 1097 1098 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 1099 dpu_crtc->enabled = false; 1100 1101 if (atomic_read(&dpu_crtc->frame_pending)) { 1102 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 1103 atomic_read(&dpu_crtc->frame_pending)); 1104 if (release_bandwidth) 1105 dpu_core_perf_crtc_release_bw(crtc); 1106 atomic_set(&dpu_crtc->frame_pending, 0); 1107 } 1108 1109 dpu_core_perf_crtc_update(crtc, 0); 1110 1111 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1112 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 1113 1114 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 1115 cstate->num_mixers = 0; 1116 1117 /* disable clk & bw control until clk & bw properties are set */ 1118 cstate->bw_control = false; 1119 cstate->bw_split_vote = false; 1120 1121 if (crtc->state->event && !crtc->state->active) { 1122 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1123 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1124 crtc->state->event = NULL; 1125 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1126 } 1127 1128 pm_runtime_put_sync(crtc->dev->dev); 1129 } 1130 1131 static void dpu_crtc_enable(struct drm_crtc *crtc, 1132 struct drm_atomic_state *state) 1133 { 1134 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1135 struct drm_encoder *encoder; 1136 bool request_bandwidth = false; 1137 struct drm_crtc_state *old_crtc_state; 1138 1139 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); 1140 1141 pm_runtime_get_sync(crtc->dev->dev); 1142 1143 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1144 1145 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 1146 /* in video mode, we hold an extra bandwidth reference 1147 * as we cannot drop bandwidth at frame-done if any 1148 * crtc is being used in video mode. 1149 */ 1150 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1151 request_bandwidth = true; 1152 dpu_encoder_register_frame_event_callback(encoder, 1153 dpu_crtc_frame_event_cb, (void *)crtc); 1154 } 1155 1156 if (request_bandwidth) 1157 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1158 1159 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 1160 dpu_crtc->enabled = true; 1161 1162 if (!old_crtc_state->self_refresh_active) { 1163 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1164 dpu_encoder_assign_crtc(encoder, crtc); 1165 } 1166 1167 /* Enable/restore vblank irq handling */ 1168 drm_crtc_vblank_on(crtc); 1169 } 1170 1171 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate) 1172 { 1173 struct drm_crtc *crtc = cstate->crtc; 1174 struct drm_encoder *encoder; 1175 1176 if (cstate->self_refresh_active) 1177 return true; 1178 1179 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) { 1180 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) { 1181 return true; 1182 } 1183 } 1184 1185 return false; 1186 } 1187 1188 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 1189 struct drm_atomic_state *state) 1190 { 1191 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1192 crtc); 1193 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1194 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 1195 1196 const struct drm_plane_state *pstate; 1197 struct drm_plane *plane; 1198 1199 int rc = 0; 1200 1201 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state); 1202 1203 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) { 1204 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 1205 crtc->base.id, crtc_state->enable, 1206 crtc_state->active); 1207 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 1208 return 0; 1209 } 1210 1211 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 1212 1213 /* force a full mode set if active state changed */ 1214 if (crtc_state->active_changed) 1215 crtc_state->mode_changed = true; 1216 1217 if (cstate->num_mixers) { 1218 rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state); 1219 if (rc) 1220 return rc; 1221 } 1222 1223 /* FIXME: move this to dpu_plane_atomic_check? */ 1224 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 1225 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate); 1226 1227 if (IS_ERR_OR_NULL(pstate)) { 1228 rc = PTR_ERR(pstate); 1229 DPU_ERROR("%s: failed to get plane%d state, %d\n", 1230 dpu_crtc->name, plane->base.id, rc); 1231 return rc; 1232 } 1233 1234 if (!pstate->visible) 1235 continue; 1236 1237 dpu_pstate->needs_dirtyfb = needs_dirtyfb; 1238 } 1239 1240 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1241 1242 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1243 if (rc) { 1244 DPU_ERROR("crtc%d failed performance check %d\n", 1245 crtc->base.id, rc); 1246 return rc; 1247 } 1248 1249 return 0; 1250 } 1251 1252 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1253 { 1254 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1255 struct drm_encoder *enc; 1256 1257 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1258 1259 /* 1260 * Normally we would iterate through encoder_mask in crtc state to find 1261 * attached encoders. In this case, we might be disabling vblank _after_ 1262 * encoder_mask has been cleared. 1263 * 1264 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1265 * disable (which is also after encoder_mask is cleared). So instead of 1266 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1267 * currently assigned to our crtc. 1268 * 1269 * Note also that this function cannot be called while crtc is disabled 1270 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1271 * about the assigned crtcs being inconsistent with the current state 1272 * (which means no need to worry about modeset locks). 1273 */ 1274 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1275 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1276 dpu_crtc); 1277 1278 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1279 } 1280 1281 return 0; 1282 } 1283 1284 #ifdef CONFIG_DEBUG_FS 1285 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1286 { 1287 struct dpu_crtc *dpu_crtc; 1288 struct dpu_plane_state *pstate = NULL; 1289 struct dpu_crtc_mixer *m; 1290 1291 struct drm_crtc *crtc; 1292 struct drm_plane *plane; 1293 struct drm_display_mode *mode; 1294 struct drm_framebuffer *fb; 1295 struct drm_plane_state *state; 1296 struct dpu_crtc_state *cstate; 1297 1298 int i, out_width; 1299 1300 dpu_crtc = s->private; 1301 crtc = &dpu_crtc->base; 1302 1303 drm_modeset_lock_all(crtc->dev); 1304 cstate = to_dpu_crtc_state(crtc->state); 1305 1306 mode = &crtc->state->adjusted_mode; 1307 out_width = mode->hdisplay / cstate->num_mixers; 1308 1309 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1310 mode->hdisplay, mode->vdisplay); 1311 1312 seq_puts(s, "\n"); 1313 1314 for (i = 0; i < cstate->num_mixers; ++i) { 1315 m = &cstate->mixers[i]; 1316 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1317 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1318 out_width, mode->vdisplay); 1319 } 1320 1321 seq_puts(s, "\n"); 1322 1323 drm_atomic_crtc_for_each_plane(plane, crtc) { 1324 pstate = to_dpu_plane_state(plane->state); 1325 state = plane->state; 1326 1327 if (!pstate || !state) 1328 continue; 1329 1330 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1331 pstate->stage); 1332 1333 if (plane->state->fb) { 1334 fb = plane->state->fb; 1335 1336 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1337 fb->base.id, (char *) &fb->format->format, 1338 fb->width, fb->height); 1339 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1340 seq_printf(s, "cpp[%d]:%u ", 1341 i, fb->format->cpp[i]); 1342 seq_puts(s, "\n\t"); 1343 1344 seq_printf(s, "modifier:%8llu ", fb->modifier); 1345 seq_puts(s, "\n"); 1346 1347 seq_puts(s, "\t"); 1348 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1349 seq_printf(s, "pitches[%d]:%8u ", i, 1350 fb->pitches[i]); 1351 seq_puts(s, "\n"); 1352 1353 seq_puts(s, "\t"); 1354 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1355 seq_printf(s, "offsets[%d]:%8u ", i, 1356 fb->offsets[i]); 1357 seq_puts(s, "\n"); 1358 } 1359 1360 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1361 state->src_x, state->src_y, state->src_w, state->src_h); 1362 1363 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1364 state->crtc_x, state->crtc_y, state->crtc_w, 1365 state->crtc_h); 1366 seq_printf(s, "\tsspp[0]:%s\n", 1367 pstate->pipe.sspp->cap->name); 1368 seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n", 1369 pstate->pipe.multirect_mode, pstate->pipe.multirect_index); 1370 if (pstate->r_pipe.sspp) { 1371 seq_printf(s, "\tsspp[1]:%s\n", 1372 pstate->r_pipe.sspp->cap->name); 1373 seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n", 1374 pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index); 1375 } 1376 1377 seq_puts(s, "\n"); 1378 } 1379 if (dpu_crtc->vblank_cb_count) { 1380 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1381 s64 diff_ms = ktime_to_ms(diff); 1382 s64 fps = diff_ms ? div_s64( 1383 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1384 1385 seq_printf(s, 1386 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1387 fps, dpu_crtc->vblank_cb_count, 1388 ktime_to_ms(diff), dpu_crtc->play_count); 1389 1390 /* reset time & count for next measurement */ 1391 dpu_crtc->vblank_cb_count = 0; 1392 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1393 } 1394 1395 drm_modeset_unlock_all(crtc->dev); 1396 1397 return 0; 1398 } 1399 1400 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1401 1402 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1403 { 1404 struct drm_crtc *crtc = s->private; 1405 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1406 1407 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1408 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1409 seq_printf(s, "core_clk_rate: %llu\n", 1410 dpu_crtc->cur_perf.core_clk_rate); 1411 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1412 seq_printf(s, "max_per_pipe_ib: %llu\n", 1413 dpu_crtc->cur_perf.max_per_pipe_ib); 1414 1415 return 0; 1416 } 1417 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1418 1419 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1420 { 1421 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1422 1423 debugfs_create_file("status", 0400, 1424 crtc->debugfs_entry, 1425 dpu_crtc, &_dpu_debugfs_status_fops); 1426 debugfs_create_file("state", 0600, 1427 crtc->debugfs_entry, 1428 &dpu_crtc->base, 1429 &dpu_crtc_debugfs_state_fops); 1430 1431 return 0; 1432 } 1433 #else 1434 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1435 { 1436 return 0; 1437 } 1438 #endif /* CONFIG_DEBUG_FS */ 1439 1440 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1441 { 1442 return _dpu_crtc_init_debugfs(crtc); 1443 } 1444 1445 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1446 .set_config = drm_atomic_helper_set_config, 1447 .destroy = dpu_crtc_destroy, 1448 .page_flip = drm_atomic_helper_page_flip, 1449 .reset = dpu_crtc_reset, 1450 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1451 .atomic_destroy_state = dpu_crtc_destroy_state, 1452 .atomic_print_state = dpu_crtc_atomic_print_state, 1453 .late_register = dpu_crtc_late_register, 1454 .verify_crc_source = dpu_crtc_verify_crc_source, 1455 .set_crc_source = dpu_crtc_set_crc_source, 1456 .enable_vblank = msm_crtc_enable_vblank, 1457 .disable_vblank = msm_crtc_disable_vblank, 1458 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1459 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1460 }; 1461 1462 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1463 .atomic_disable = dpu_crtc_disable, 1464 .atomic_enable = dpu_crtc_enable, 1465 .atomic_check = dpu_crtc_atomic_check, 1466 .atomic_begin = dpu_crtc_atomic_begin, 1467 .atomic_flush = dpu_crtc_atomic_flush, 1468 .get_scanout_position = dpu_crtc_get_scanout_position, 1469 }; 1470 1471 /* initialize crtc */ 1472 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1473 struct drm_plane *cursor) 1474 { 1475 struct msm_drm_private *priv = dev->dev_private; 1476 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1477 struct drm_crtc *crtc = NULL; 1478 struct dpu_crtc *dpu_crtc = NULL; 1479 int i, ret; 1480 1481 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1482 if (!dpu_crtc) 1483 return ERR_PTR(-ENOMEM); 1484 1485 crtc = &dpu_crtc->base; 1486 crtc->dev = dev; 1487 1488 spin_lock_init(&dpu_crtc->spin_lock); 1489 atomic_set(&dpu_crtc->frame_pending, 0); 1490 1491 init_completion(&dpu_crtc->frame_done_comp); 1492 1493 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1494 1495 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1496 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1497 list_add(&dpu_crtc->frame_events[i].list, 1498 &dpu_crtc->frame_event_list); 1499 kthread_init_work(&dpu_crtc->frame_events[i].work, 1500 dpu_crtc_frame_event_work); 1501 } 1502 1503 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1504 NULL); 1505 1506 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1507 1508 if (dpu_kms->catalog->dspp_count) 1509 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1510 1511 /* save user friendly CRTC name for later */ 1512 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1513 1514 /* initialize event handling */ 1515 spin_lock_init(&dpu_crtc->event_lock); 1516 1517 ret = drm_self_refresh_helper_init(crtc); 1518 if (ret) { 1519 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n", 1520 crtc->name, ret); 1521 return ERR_PTR(ret); 1522 } 1523 1524 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1525 return crtc; 1526 } 1527