1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 34 #define DPU_DRM_BLEND_OP_OPAQUE 1 35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 36 #define DPU_DRM_BLEND_OP_COVERAGE 3 37 #define DPU_DRM_BLEND_OP_MAX 4 38 39 /* layer mixer index on dpu_crtc */ 40 #define LEFT_MIXER 0 41 #define RIGHT_MIXER 1 42 43 /* timeout in ms waiting for frame done */ 44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 45 46 #define CONVERT_S3_15(val) \ 47 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 48 49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 50 { 51 struct msm_drm_private *priv = crtc->dev->dev_private; 52 53 return to_dpu_kms(priv->kms); 54 } 55 56 static void dpu_crtc_destroy(struct drm_crtc *crtc) 57 { 58 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 59 60 DPU_DEBUG("\n"); 61 62 if (!crtc) 63 return; 64 65 drm_crtc_cleanup(crtc); 66 kfree(dpu_crtc); 67 } 68 69 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 70 { 71 struct drm_device *dev = crtc->dev; 72 struct drm_encoder *encoder; 73 74 drm_for_each_encoder(encoder, dev) 75 if (encoder->crtc == crtc) 76 return encoder; 77 78 return NULL; 79 } 80 81 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 82 { 83 struct drm_encoder *encoder; 84 85 encoder = get_encoder_from_crtc(crtc); 86 if (!encoder) { 87 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 88 return false; 89 } 90 91 return dpu_encoder_get_frame_count(encoder); 92 } 93 94 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 95 bool in_vblank_irq, 96 int *vpos, int *hpos, 97 ktime_t *stime, ktime_t *etime, 98 const struct drm_display_mode *mode) 99 { 100 unsigned int pipe = crtc->index; 101 struct drm_encoder *encoder; 102 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 103 104 encoder = get_encoder_from_crtc(crtc); 105 if (!encoder) { 106 DRM_ERROR("no encoder found for crtc %d\n", pipe); 107 return false; 108 } 109 110 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 111 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 112 113 /* 114 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 115 * the end of VFP. Translate the porch values relative to the line 116 * counter positions. 117 */ 118 119 vactive_start = vsw + vbp + 1; 120 vactive_end = vactive_start + mode->crtc_vdisplay; 121 122 /* last scan line before VSYNC */ 123 vfp_end = mode->crtc_vtotal; 124 125 if (stime) 126 *stime = ktime_get(); 127 128 line = dpu_encoder_get_linecount(encoder); 129 130 if (line < vactive_start) 131 line -= vactive_start; 132 else if (line > vactive_end) 133 line = line - vfp_end - vactive_start; 134 else 135 line -= vactive_start; 136 137 *vpos = line; 138 *hpos = 0; 139 140 if (etime) 141 *etime = ktime_get(); 142 143 return true; 144 } 145 146 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 147 struct dpu_plane_state *pstate, struct dpu_format *format) 148 { 149 struct dpu_hw_mixer *lm = mixer->hw_lm; 150 uint32_t blend_op; 151 152 /* default to opaque blending */ 153 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 154 DPU_BLEND_BG_ALPHA_BG_CONST; 155 156 if (format->alpha_enable) { 157 /* coverage blending */ 158 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 159 DPU_BLEND_BG_ALPHA_FG_PIXEL | 160 DPU_BLEND_BG_INV_ALPHA; 161 } 162 163 lm->ops.setup_blend_config(lm, pstate->stage, 164 0xFF, 0, blend_op); 165 166 DPU_DEBUG("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 167 &format->base.pixel_format, format->alpha_enable, blend_op); 168 } 169 170 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 171 { 172 struct dpu_crtc_state *crtc_state; 173 int lm_idx, lm_horiz_position; 174 175 crtc_state = to_dpu_crtc_state(crtc->state); 176 177 lm_horiz_position = 0; 178 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 179 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 180 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 181 struct dpu_hw_mixer_cfg cfg; 182 183 if (!lm_roi || !drm_rect_visible(lm_roi)) 184 continue; 185 186 cfg.out_width = drm_rect_width(lm_roi); 187 cfg.out_height = drm_rect_height(lm_roi); 188 cfg.right_mixer = lm_horiz_position++; 189 cfg.flags = 0; 190 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 191 } 192 } 193 194 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 195 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 196 { 197 struct drm_plane *plane; 198 struct drm_framebuffer *fb; 199 struct drm_plane_state *state; 200 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 201 struct dpu_plane_state *pstate = NULL; 202 struct dpu_format *format; 203 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 204 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 205 206 u32 flush_mask; 207 uint32_t stage_idx, lm_idx; 208 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 209 bool bg_alpha_enable = false; 210 DECLARE_BITMAP(fetch_active, SSPP_MAX); 211 212 memset(fetch_active, 0, sizeof(fetch_active)); 213 drm_atomic_crtc_for_each_plane(plane, crtc) { 214 state = plane->state; 215 if (!state) 216 continue; 217 218 pstate = to_dpu_plane_state(state); 219 fb = state->fb; 220 221 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 222 set_bit(dpu_plane_pipe(plane), fetch_active); 223 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n", 224 crtc->base.id, 225 pstate->stage, 226 plane->base.id, 227 dpu_plane_pipe(plane) - SSPP_VIG0, 228 state->fb ? state->fb->base.id : -1); 229 230 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 231 232 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 233 bg_alpha_enable = true; 234 235 stage_idx = zpos_cnt[pstate->stage]++; 236 stage_cfg->stage[pstate->stage][stage_idx] = 237 dpu_plane_pipe(plane); 238 stage_cfg->multirect_index[pstate->stage][stage_idx] = 239 pstate->multirect_index; 240 241 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 242 state, pstate, stage_idx, 243 dpu_plane_pipe(plane) - SSPP_VIG0, 244 format->base.pixel_format, 245 fb ? fb->modifier : 0); 246 247 /* blend config update */ 248 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 249 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 250 pstate, format); 251 252 mixer[lm_idx].flush_mask |= flush_mask; 253 254 if (bg_alpha_enable && !format->alpha_enable) 255 mixer[lm_idx].mixer_op_mode = 0; 256 else 257 mixer[lm_idx].mixer_op_mode |= 258 1 << pstate->stage; 259 } 260 } 261 262 if (ctl->ops.set_active_pipes) 263 ctl->ops.set_active_pipes(ctl, fetch_active); 264 265 _dpu_crtc_program_lm_output_roi(crtc); 266 } 267 268 /** 269 * _dpu_crtc_blend_setup - configure crtc mixers 270 * @crtc: Pointer to drm crtc structure 271 */ 272 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 273 { 274 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 275 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 276 struct dpu_crtc_mixer *mixer = cstate->mixers; 277 struct dpu_hw_ctl *ctl; 278 struct dpu_hw_mixer *lm; 279 int i; 280 281 DPU_DEBUG("%s\n", dpu_crtc->name); 282 283 for (i = 0; i < cstate->num_mixers; i++) { 284 mixer[i].mixer_op_mode = 0; 285 mixer[i].flush_mask = 0; 286 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 287 mixer[i].lm_ctl->ops.clear_all_blendstages( 288 mixer[i].lm_ctl); 289 } 290 291 /* initialize stage cfg */ 292 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 293 294 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 295 296 for (i = 0; i < cstate->num_mixers; i++) { 297 ctl = mixer[i].lm_ctl; 298 lm = mixer[i].hw_lm; 299 300 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 301 302 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 303 mixer[i].hw_lm->idx); 304 305 /* stage config flush mask */ 306 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 307 308 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 309 mixer[i].hw_lm->idx - LM_0, 310 mixer[i].mixer_op_mode, 311 ctl->idx - CTL_0, 312 mixer[i].flush_mask); 313 314 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 315 &dpu_crtc->stage_cfg); 316 } 317 } 318 319 /** 320 * _dpu_crtc_complete_flip - signal pending page_flip events 321 * Any pending vblank events are added to the vblank_event_list 322 * so that the next vblank interrupt shall signal them. 323 * However PAGE_FLIP events are not handled through the vblank_event_list. 324 * This API signals any pending PAGE_FLIP events requested through 325 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 326 * @crtc: Pointer to drm crtc structure 327 */ 328 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 329 { 330 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 331 struct drm_device *dev = crtc->dev; 332 unsigned long flags; 333 334 spin_lock_irqsave(&dev->event_lock, flags); 335 if (dpu_crtc->event) { 336 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 337 dpu_crtc->event); 338 trace_dpu_crtc_complete_flip(DRMID(crtc)); 339 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 340 dpu_crtc->event = NULL; 341 } 342 spin_unlock_irqrestore(&dev->event_lock, flags); 343 } 344 345 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 346 { 347 struct drm_encoder *encoder; 348 349 /* 350 * TODO: This function is called from dpu debugfs and as part of atomic 351 * check. When called from debugfs, the crtc->mutex must be held to 352 * read crtc->state. However reading crtc->state from atomic check isn't 353 * allowed (unless you have a good reason, a big comment, and a deep 354 * understanding of how the atomic/modeset locks work (<- and this is 355 * probably not possible)). So we'll keep the WARN_ON here for now, but 356 * really we need to figure out a better way to track our operating mode 357 */ 358 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 359 360 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 361 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 362 return dpu_encoder_get_intf_mode(encoder); 363 364 return INTF_MODE_NONE; 365 } 366 367 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 368 { 369 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 370 371 /* keep statistics on vblank callback - with auto reset via debugfs */ 372 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 373 dpu_crtc->vblank_cb_time = ktime_get(); 374 else 375 dpu_crtc->vblank_cb_count++; 376 drm_crtc_handle_vblank(crtc); 377 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 378 } 379 380 static void dpu_crtc_frame_event_work(struct kthread_work *work) 381 { 382 struct dpu_crtc_frame_event *fevent = container_of(work, 383 struct dpu_crtc_frame_event, work); 384 struct drm_crtc *crtc = fevent->crtc; 385 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 386 unsigned long flags; 387 bool frame_done = false; 388 389 DPU_ATRACE_BEGIN("crtc_frame_event"); 390 391 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 392 ktime_to_ns(fevent->ts)); 393 394 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 395 | DPU_ENCODER_FRAME_EVENT_ERROR 396 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 397 398 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 399 /* ignore vblank when not pending */ 400 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 401 /* release bandwidth and other resources */ 402 trace_dpu_crtc_frame_event_done(DRMID(crtc), 403 fevent->event); 404 dpu_core_perf_crtc_release_bw(crtc); 405 } else { 406 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 407 fevent->event); 408 } 409 410 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE) 411 dpu_core_perf_crtc_update(crtc, 0, false); 412 413 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 414 | DPU_ENCODER_FRAME_EVENT_ERROR)) 415 frame_done = true; 416 } 417 418 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 419 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 420 crtc->base.id, ktime_to_ns(fevent->ts)); 421 422 if (frame_done) 423 complete_all(&dpu_crtc->frame_done_comp); 424 425 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 426 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 427 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 428 DPU_ATRACE_END("crtc_frame_event"); 429 } 430 431 /* 432 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 433 * registers this API to encoder for all frame event callbacks like 434 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 435 * from different context - IRQ, user thread, commit_thread, etc. Each event 436 * should be carefully reviewed and should be processed in proper task context 437 * to avoid schedulin delay or properly manage the irq context's bottom half 438 * processing. 439 */ 440 static void dpu_crtc_frame_event_cb(void *data, u32 event) 441 { 442 struct drm_crtc *crtc = (struct drm_crtc *)data; 443 struct dpu_crtc *dpu_crtc; 444 struct msm_drm_private *priv; 445 struct dpu_crtc_frame_event *fevent; 446 unsigned long flags; 447 u32 crtc_id; 448 449 /* Nothing to do on idle event */ 450 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 451 return; 452 453 dpu_crtc = to_dpu_crtc(crtc); 454 priv = crtc->dev->dev_private; 455 crtc_id = drm_crtc_index(crtc); 456 457 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 458 459 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 460 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 461 struct dpu_crtc_frame_event, list); 462 if (fevent) 463 list_del_init(&fevent->list); 464 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 465 466 if (!fevent) { 467 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 468 return; 469 } 470 471 fevent->event = event; 472 fevent->crtc = crtc; 473 fevent->ts = ktime_get(); 474 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 475 } 476 477 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 478 { 479 trace_dpu_crtc_complete_commit(DRMID(crtc)); 480 _dpu_crtc_complete_flip(crtc); 481 } 482 483 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 484 struct drm_crtc_state *state) 485 { 486 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 487 struct drm_display_mode *adj_mode = &state->adjusted_mode; 488 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 489 int i; 490 491 for (i = 0; i < cstate->num_mixers; i++) { 492 struct drm_rect *r = &cstate->lm_bounds[i]; 493 r->x1 = crtc_split_width * i; 494 r->y1 = 0; 495 r->x2 = r->x1 + crtc_split_width; 496 r->y2 = adj_mode->vdisplay; 497 498 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 499 } 500 } 501 502 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 503 struct dpu_hw_pcc_cfg *cfg) 504 { 505 struct drm_color_ctm *ctm; 506 507 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 508 509 ctm = (struct drm_color_ctm *)state->ctm->data; 510 511 if (!ctm) 512 return; 513 514 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 515 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 516 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 517 518 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 519 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 520 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 521 522 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 523 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 524 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 525 } 526 527 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 528 { 529 struct drm_crtc_state *state = crtc->state; 530 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 531 struct dpu_crtc_mixer *mixer = cstate->mixers; 532 struct dpu_hw_pcc_cfg cfg; 533 struct dpu_hw_ctl *ctl; 534 struct dpu_hw_dspp *dspp; 535 int i; 536 537 538 if (!state->color_mgmt_changed) 539 return; 540 541 for (i = 0; i < cstate->num_mixers; i++) { 542 ctl = mixer[i].lm_ctl; 543 dspp = mixer[i].hw_dspp; 544 545 if (!dspp || !dspp->ops.setup_pcc) 546 continue; 547 548 if (!state->ctm) { 549 dspp->ops.setup_pcc(dspp, NULL); 550 } else { 551 _dpu_crtc_get_pcc_coeff(state, &cfg); 552 dspp->ops.setup_pcc(dspp, &cfg); 553 } 554 555 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 556 mixer[i].hw_dspp->idx); 557 558 /* stage config flush mask */ 559 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 560 561 DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n", 562 mixer[i].hw_lm->idx - DSPP_0, 563 ctl->idx - CTL_0, 564 mixer[i].flush_mask); 565 } 566 } 567 568 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 569 struct drm_atomic_state *state) 570 { 571 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 572 struct drm_encoder *encoder; 573 574 if (!crtc->state->enable) { 575 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n", 576 crtc->base.id, crtc->state->enable); 577 return; 578 } 579 580 DPU_DEBUG("crtc%d\n", crtc->base.id); 581 582 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 583 584 /* encoder will trigger pending mask now */ 585 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 586 dpu_encoder_trigger_kickoff_pending(encoder); 587 588 /* 589 * If no mixers have been allocated in dpu_crtc_atomic_check(), 590 * it means we are trying to flush a CRTC whose state is disabled: 591 * nothing else needs to be done. 592 */ 593 if (unlikely(!cstate->num_mixers)) 594 return; 595 596 _dpu_crtc_blend_setup(crtc); 597 598 _dpu_crtc_setup_cp_blocks(crtc); 599 600 /* 601 * PP_DONE irq is only used by command mode for now. 602 * It is better to request pending before FLUSH and START trigger 603 * to make sure no pp_done irq missed. 604 * This is safe because no pp_done will happen before SW trigger 605 * in command mode. 606 */ 607 } 608 609 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 610 struct drm_atomic_state *state) 611 { 612 struct dpu_crtc *dpu_crtc; 613 struct drm_device *dev; 614 struct drm_plane *plane; 615 struct msm_drm_private *priv; 616 unsigned long flags; 617 struct dpu_crtc_state *cstate; 618 619 if (!crtc->state->enable) { 620 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n", 621 crtc->base.id, crtc->state->enable); 622 return; 623 } 624 625 DPU_DEBUG("crtc%d\n", crtc->base.id); 626 627 dpu_crtc = to_dpu_crtc(crtc); 628 cstate = to_dpu_crtc_state(crtc->state); 629 dev = crtc->dev; 630 priv = dev->dev_private; 631 632 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 633 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 634 return; 635 } 636 637 WARN_ON(dpu_crtc->event); 638 spin_lock_irqsave(&dev->event_lock, flags); 639 dpu_crtc->event = crtc->state->event; 640 crtc->state->event = NULL; 641 spin_unlock_irqrestore(&dev->event_lock, flags); 642 643 /* 644 * If no mixers has been allocated in dpu_crtc_atomic_check(), 645 * it means we are trying to flush a CRTC whose state is disabled: 646 * nothing else needs to be done. 647 */ 648 if (unlikely(!cstate->num_mixers)) 649 return; 650 651 /* 652 * For planes without commit update, drm framework will not add 653 * those planes to current state since hardware update is not 654 * required. However, if those planes were power collapsed since 655 * last commit cycle, driver has to restore the hardware state 656 * of those planes explicitly here prior to plane flush. 657 */ 658 drm_atomic_crtc_for_each_plane(plane, crtc) 659 dpu_plane_restore(plane, state); 660 661 /* update performance setting before crtc kickoff */ 662 dpu_core_perf_crtc_update(crtc, 1, false); 663 664 /* 665 * Final plane updates: Give each plane a chance to complete all 666 * required writes/flushing before crtc's "flush 667 * everything" call below. 668 */ 669 drm_atomic_crtc_for_each_plane(plane, crtc) { 670 if (dpu_crtc->smmu_state.transition_error) 671 dpu_plane_set_error(plane, true); 672 dpu_plane_flush(plane); 673 } 674 675 /* Kickoff will be scheduled by outer layer */ 676 } 677 678 /** 679 * dpu_crtc_destroy_state - state destroy hook 680 * @crtc: drm CRTC 681 * @state: CRTC state object to release 682 */ 683 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 684 struct drm_crtc_state *state) 685 { 686 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 687 688 DPU_DEBUG("crtc%d\n", crtc->base.id); 689 690 __drm_atomic_helper_crtc_destroy_state(state); 691 692 kfree(cstate); 693 } 694 695 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 696 { 697 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 698 int ret, rc = 0; 699 700 if (!atomic_read(&dpu_crtc->frame_pending)) { 701 DPU_DEBUG("no frames pending\n"); 702 return 0; 703 } 704 705 DPU_ATRACE_BEGIN("frame done completion wait"); 706 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 707 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 708 if (!ret) { 709 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 710 rc = -ETIMEDOUT; 711 } 712 DPU_ATRACE_END("frame done completion wait"); 713 714 return rc; 715 } 716 717 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 718 { 719 struct drm_encoder *encoder; 720 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 721 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 722 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 723 724 /* 725 * If no mixers has been allocated in dpu_crtc_atomic_check(), 726 * it means we are trying to start a CRTC whose state is disabled: 727 * nothing else needs to be done. 728 */ 729 if (unlikely(!cstate->num_mixers)) 730 return; 731 732 DPU_ATRACE_BEGIN("crtc_commit"); 733 734 /* 735 * Encoder will flush/start now, unless it has a tx pending. If so, it 736 * may delay and flush at an irq event (e.g. ppdone) 737 */ 738 drm_for_each_encoder_mask(encoder, crtc->dev, 739 crtc->state->encoder_mask) 740 dpu_encoder_prepare_for_kickoff(encoder); 741 742 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 743 /* acquire bandwidth and other resources */ 744 DPU_DEBUG("crtc%d first commit\n", crtc->base.id); 745 } else 746 DPU_DEBUG("crtc%d commit\n", crtc->base.id); 747 748 dpu_crtc->play_count++; 749 750 dpu_vbif_clear_errors(dpu_kms); 751 752 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 753 dpu_encoder_kickoff(encoder); 754 755 reinit_completion(&dpu_crtc->frame_done_comp); 756 DPU_ATRACE_END("crtc_commit"); 757 } 758 759 static void dpu_crtc_reset(struct drm_crtc *crtc) 760 { 761 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 762 763 if (crtc->state) 764 dpu_crtc_destroy_state(crtc, crtc->state); 765 766 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 767 } 768 769 /** 770 * dpu_crtc_duplicate_state - state duplicate hook 771 * @crtc: Pointer to drm crtc structure 772 */ 773 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 774 { 775 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 776 777 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 778 if (!cstate) { 779 DPU_ERROR("failed to allocate state\n"); 780 return NULL; 781 } 782 783 /* duplicate base helper */ 784 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 785 786 return &cstate->base; 787 } 788 789 static void dpu_crtc_disable(struct drm_crtc *crtc, 790 struct drm_atomic_state *state) 791 { 792 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 793 crtc); 794 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 795 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 796 struct drm_encoder *encoder; 797 unsigned long flags; 798 bool release_bandwidth = false; 799 800 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 801 802 /* Disable/save vblank irq handling */ 803 drm_crtc_vblank_off(crtc); 804 805 drm_for_each_encoder_mask(encoder, crtc->dev, 806 old_crtc_state->encoder_mask) { 807 /* in video mode, we hold an extra bandwidth reference 808 * as we cannot drop bandwidth at frame-done if any 809 * crtc is being used in video mode. 810 */ 811 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 812 release_bandwidth = true; 813 dpu_encoder_assign_crtc(encoder, NULL); 814 } 815 816 /* wait for frame_event_done completion */ 817 if (_dpu_crtc_wait_for_frame_done(crtc)) 818 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 819 crtc->base.id, 820 atomic_read(&dpu_crtc->frame_pending)); 821 822 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 823 dpu_crtc->enabled = false; 824 825 if (atomic_read(&dpu_crtc->frame_pending)) { 826 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 827 atomic_read(&dpu_crtc->frame_pending)); 828 if (release_bandwidth) 829 dpu_core_perf_crtc_release_bw(crtc); 830 atomic_set(&dpu_crtc->frame_pending, 0); 831 } 832 833 dpu_core_perf_crtc_update(crtc, 0, true); 834 835 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 836 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 837 838 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 839 cstate->num_mixers = 0; 840 841 /* disable clk & bw control until clk & bw properties are set */ 842 cstate->bw_control = false; 843 cstate->bw_split_vote = false; 844 845 if (crtc->state->event && !crtc->state->active) { 846 spin_lock_irqsave(&crtc->dev->event_lock, flags); 847 drm_crtc_send_vblank_event(crtc, crtc->state->event); 848 crtc->state->event = NULL; 849 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 850 } 851 852 pm_runtime_put_sync(crtc->dev->dev); 853 } 854 855 static void dpu_crtc_enable(struct drm_crtc *crtc, 856 struct drm_atomic_state *state) 857 { 858 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 859 struct drm_encoder *encoder; 860 bool request_bandwidth = false; 861 862 pm_runtime_get_sync(crtc->dev->dev); 863 864 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 865 866 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 867 /* in video mode, we hold an extra bandwidth reference 868 * as we cannot drop bandwidth at frame-done if any 869 * crtc is being used in video mode. 870 */ 871 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 872 request_bandwidth = true; 873 dpu_encoder_register_frame_event_callback(encoder, 874 dpu_crtc_frame_event_cb, (void *)crtc); 875 } 876 877 if (request_bandwidth) 878 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 879 880 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 881 dpu_crtc->enabled = true; 882 883 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 884 dpu_encoder_assign_crtc(encoder, crtc); 885 886 /* Enable/restore vblank irq handling */ 887 drm_crtc_vblank_on(crtc); 888 } 889 890 struct plane_state { 891 struct dpu_plane_state *dpu_pstate; 892 const struct drm_plane_state *drm_pstate; 893 int stage; 894 u32 pipe_id; 895 }; 896 897 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 898 struct drm_atomic_state *state) 899 { 900 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 901 crtc); 902 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 903 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 904 struct plane_state *pstates; 905 906 const struct drm_plane_state *pstate; 907 struct drm_plane *plane; 908 struct drm_display_mode *mode; 909 910 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 911 912 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 913 int multirect_count = 0; 914 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 915 int left_zpos_cnt = 0, right_zpos_cnt = 0; 916 struct drm_rect crtc_rect = { 0 }; 917 918 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 919 920 if (!crtc_state->enable || !crtc_state->active) { 921 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n", 922 crtc->base.id, crtc_state->enable, 923 crtc_state->active); 924 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 925 goto end; 926 } 927 928 mode = &crtc_state->adjusted_mode; 929 DPU_DEBUG("%s: check\n", dpu_crtc->name); 930 931 /* force a full mode set if active state changed */ 932 if (crtc_state->active_changed) 933 crtc_state->mode_changed = true; 934 935 memset(pipe_staged, 0, sizeof(pipe_staged)); 936 937 if (cstate->num_mixers) { 938 mixer_width = mode->hdisplay / cstate->num_mixers; 939 940 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 941 } 942 943 crtc_rect.x2 = mode->hdisplay; 944 crtc_rect.y2 = mode->vdisplay; 945 946 /* get plane state for all drm planes associated with crtc state */ 947 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 948 struct drm_rect dst, clip = crtc_rect; 949 950 if (IS_ERR_OR_NULL(pstate)) { 951 rc = PTR_ERR(pstate); 952 DPU_ERROR("%s: failed to get plane%d state, %d\n", 953 dpu_crtc->name, plane->base.id, rc); 954 goto end; 955 } 956 if (cnt >= DPU_STAGE_MAX * 4) 957 continue; 958 959 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 960 pstates[cnt].drm_pstate = pstate; 961 pstates[cnt].stage = pstate->normalized_zpos; 962 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 963 964 if (pipe_staged[pstates[cnt].pipe_id]) { 965 multirect_plane[multirect_count].r0 = 966 pipe_staged[pstates[cnt].pipe_id]; 967 multirect_plane[multirect_count].r1 = pstate; 968 multirect_count++; 969 970 pipe_staged[pstates[cnt].pipe_id] = NULL; 971 } else { 972 pipe_staged[pstates[cnt].pipe_id] = pstate; 973 } 974 975 cnt++; 976 977 dst = drm_plane_state_dest(pstate); 978 if (!drm_rect_intersect(&clip, &dst)) { 979 DPU_ERROR("invalid vertical/horizontal destination\n"); 980 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 981 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 982 DRM_RECT_ARG(&dst)); 983 rc = -E2BIG; 984 goto end; 985 } 986 } 987 988 for (i = 1; i < SSPP_MAX; i++) { 989 if (pipe_staged[i]) { 990 dpu_plane_clear_multirect(pipe_staged[i]); 991 992 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 993 DPU_ERROR( 994 "r1 only virt plane:%d not supported\n", 995 pipe_staged[i]->plane->base.id); 996 rc = -EINVAL; 997 goto end; 998 } 999 } 1000 } 1001 1002 z_pos = -1; 1003 for (i = 0; i < cnt; i++) { 1004 /* reset counts at every new blend stage */ 1005 if (pstates[i].stage != z_pos) { 1006 left_zpos_cnt = 0; 1007 right_zpos_cnt = 0; 1008 z_pos = pstates[i].stage; 1009 } 1010 1011 /* verify z_pos setting before using it */ 1012 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1013 DPU_ERROR("> %d plane stages assigned\n", 1014 DPU_STAGE_MAX - DPU_STAGE_0); 1015 rc = -EINVAL; 1016 goto end; 1017 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1018 if (left_zpos_cnt == 2) { 1019 DPU_ERROR("> 2 planes @ stage %d on left\n", 1020 z_pos); 1021 rc = -EINVAL; 1022 goto end; 1023 } 1024 left_zpos_cnt++; 1025 1026 } else { 1027 if (right_zpos_cnt == 2) { 1028 DPU_ERROR("> 2 planes @ stage %d on right\n", 1029 z_pos); 1030 rc = -EINVAL; 1031 goto end; 1032 } 1033 right_zpos_cnt++; 1034 } 1035 1036 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1037 DPU_DEBUG("%s: zpos %d\n", dpu_crtc->name, z_pos); 1038 } 1039 1040 for (i = 0; i < multirect_count; i++) { 1041 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1042 DPU_ERROR( 1043 "multirect validation failed for planes (%d - %d)\n", 1044 multirect_plane[i].r0->plane->base.id, 1045 multirect_plane[i].r1->plane->base.id); 1046 rc = -EINVAL; 1047 goto end; 1048 } 1049 } 1050 1051 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1052 1053 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1054 if (rc) { 1055 DPU_ERROR("crtc%d failed performance check %d\n", 1056 crtc->base.id, rc); 1057 goto end; 1058 } 1059 1060 /* validate source split: 1061 * use pstates sorted by stage to check planes on same stage 1062 * we assume that all pipes are in source split so its valid to compare 1063 * without taking into account left/right mixer placement 1064 */ 1065 for (i = 1; i < cnt; i++) { 1066 struct plane_state *prv_pstate, *cur_pstate; 1067 struct drm_rect left_rect, right_rect; 1068 int32_t left_pid, right_pid; 1069 int32_t stage; 1070 1071 prv_pstate = &pstates[i - 1]; 1072 cur_pstate = &pstates[i]; 1073 if (prv_pstate->stage != cur_pstate->stage) 1074 continue; 1075 1076 stage = cur_pstate->stage; 1077 1078 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1079 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1080 1081 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1082 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1083 1084 if (right_rect.x1 < left_rect.x1) { 1085 swap(left_pid, right_pid); 1086 swap(left_rect, right_rect); 1087 } 1088 1089 /** 1090 * - planes are enumerated in pipe-priority order such that 1091 * planes with lower drm_id must be left-most in a shared 1092 * blend-stage when using source split. 1093 * - planes in source split must be contiguous in width 1094 * - planes in source split must have same dest yoff and height 1095 */ 1096 if (right_pid < left_pid) { 1097 DPU_ERROR( 1098 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1099 stage, left_pid, right_pid); 1100 rc = -EINVAL; 1101 goto end; 1102 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1103 DPU_ERROR("non-contiguous coordinates for src split. " 1104 "stage: %d left: " DRM_RECT_FMT " right: " 1105 DRM_RECT_FMT "\n", stage, 1106 DRM_RECT_ARG(&left_rect), 1107 DRM_RECT_ARG(&right_rect)); 1108 rc = -EINVAL; 1109 goto end; 1110 } else if (left_rect.y1 != right_rect.y1 || 1111 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1112 DPU_ERROR("source split at stage: %d. invalid " 1113 "yoff/height: left: " DRM_RECT_FMT " right: " 1114 DRM_RECT_FMT "\n", stage, 1115 DRM_RECT_ARG(&left_rect), 1116 DRM_RECT_ARG(&right_rect)); 1117 rc = -EINVAL; 1118 goto end; 1119 } 1120 } 1121 1122 end: 1123 kfree(pstates); 1124 return rc; 1125 } 1126 1127 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1128 { 1129 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1130 struct drm_encoder *enc; 1131 1132 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1133 1134 /* 1135 * Normally we would iterate through encoder_mask in crtc state to find 1136 * attached encoders. In this case, we might be disabling vblank _after_ 1137 * encoder_mask has been cleared. 1138 * 1139 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1140 * disable (which is also after encoder_mask is cleared). So instead of 1141 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1142 * currently assigned to our crtc. 1143 * 1144 * Note also that this function cannot be called while crtc is disabled 1145 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1146 * about the assigned crtcs being inconsistent with the current state 1147 * (which means no need to worry about modeset locks). 1148 */ 1149 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1150 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1151 dpu_crtc); 1152 1153 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1154 } 1155 1156 return 0; 1157 } 1158 1159 #ifdef CONFIG_DEBUG_FS 1160 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1161 { 1162 struct dpu_crtc *dpu_crtc; 1163 struct dpu_plane_state *pstate = NULL; 1164 struct dpu_crtc_mixer *m; 1165 1166 struct drm_crtc *crtc; 1167 struct drm_plane *plane; 1168 struct drm_display_mode *mode; 1169 struct drm_framebuffer *fb; 1170 struct drm_plane_state *state; 1171 struct dpu_crtc_state *cstate; 1172 1173 int i, out_width; 1174 1175 dpu_crtc = s->private; 1176 crtc = &dpu_crtc->base; 1177 1178 drm_modeset_lock_all(crtc->dev); 1179 cstate = to_dpu_crtc_state(crtc->state); 1180 1181 mode = &crtc->state->adjusted_mode; 1182 out_width = mode->hdisplay / cstate->num_mixers; 1183 1184 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1185 mode->hdisplay, mode->vdisplay); 1186 1187 seq_puts(s, "\n"); 1188 1189 for (i = 0; i < cstate->num_mixers; ++i) { 1190 m = &cstate->mixers[i]; 1191 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1192 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1193 out_width, mode->vdisplay); 1194 } 1195 1196 seq_puts(s, "\n"); 1197 1198 drm_atomic_crtc_for_each_plane(plane, crtc) { 1199 pstate = to_dpu_plane_state(plane->state); 1200 state = plane->state; 1201 1202 if (!pstate || !state) 1203 continue; 1204 1205 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1206 pstate->stage); 1207 1208 if (plane->state->fb) { 1209 fb = plane->state->fb; 1210 1211 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1212 fb->base.id, (char *) &fb->format->format, 1213 fb->width, fb->height); 1214 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1215 seq_printf(s, "cpp[%d]:%u ", 1216 i, fb->format->cpp[i]); 1217 seq_puts(s, "\n\t"); 1218 1219 seq_printf(s, "modifier:%8llu ", fb->modifier); 1220 seq_puts(s, "\n"); 1221 1222 seq_puts(s, "\t"); 1223 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1224 seq_printf(s, "pitches[%d]:%8u ", i, 1225 fb->pitches[i]); 1226 seq_puts(s, "\n"); 1227 1228 seq_puts(s, "\t"); 1229 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1230 seq_printf(s, "offsets[%d]:%8u ", i, 1231 fb->offsets[i]); 1232 seq_puts(s, "\n"); 1233 } 1234 1235 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1236 state->src_x, state->src_y, state->src_w, state->src_h); 1237 1238 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1239 state->crtc_x, state->crtc_y, state->crtc_w, 1240 state->crtc_h); 1241 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1242 pstate->multirect_mode, pstate->multirect_index); 1243 1244 seq_puts(s, "\n"); 1245 } 1246 if (dpu_crtc->vblank_cb_count) { 1247 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1248 s64 diff_ms = ktime_to_ms(diff); 1249 s64 fps = diff_ms ? div_s64( 1250 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1251 1252 seq_printf(s, 1253 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1254 fps, dpu_crtc->vblank_cb_count, 1255 ktime_to_ms(diff), dpu_crtc->play_count); 1256 1257 /* reset time & count for next measurement */ 1258 dpu_crtc->vblank_cb_count = 0; 1259 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1260 } 1261 1262 drm_modeset_unlock_all(crtc->dev); 1263 1264 return 0; 1265 } 1266 1267 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1268 1269 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1270 { 1271 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1272 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1273 1274 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1275 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1276 seq_printf(s, "core_clk_rate: %llu\n", 1277 dpu_crtc->cur_perf.core_clk_rate); 1278 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1279 seq_printf(s, "max_per_pipe_ib: %llu\n", 1280 dpu_crtc->cur_perf.max_per_pipe_ib); 1281 1282 return 0; 1283 } 1284 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1285 1286 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1287 { 1288 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1289 1290 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1291 crtc->dev->primary->debugfs_root); 1292 1293 debugfs_create_file("status", 0400, 1294 dpu_crtc->debugfs_root, 1295 dpu_crtc, &_dpu_debugfs_status_fops); 1296 debugfs_create_file("state", 0600, 1297 dpu_crtc->debugfs_root, 1298 &dpu_crtc->base, 1299 &dpu_crtc_debugfs_state_fops); 1300 1301 return 0; 1302 } 1303 #else 1304 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1305 { 1306 return 0; 1307 } 1308 #endif /* CONFIG_DEBUG_FS */ 1309 1310 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1311 { 1312 return _dpu_crtc_init_debugfs(crtc); 1313 } 1314 1315 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1316 { 1317 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1318 1319 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1320 } 1321 1322 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1323 .set_config = drm_atomic_helper_set_config, 1324 .destroy = dpu_crtc_destroy, 1325 .page_flip = drm_atomic_helper_page_flip, 1326 .reset = dpu_crtc_reset, 1327 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1328 .atomic_destroy_state = dpu_crtc_destroy_state, 1329 .late_register = dpu_crtc_late_register, 1330 .early_unregister = dpu_crtc_early_unregister, 1331 .enable_vblank = msm_crtc_enable_vblank, 1332 .disable_vblank = msm_crtc_disable_vblank, 1333 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1334 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1335 }; 1336 1337 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1338 .atomic_disable = dpu_crtc_disable, 1339 .atomic_enable = dpu_crtc_enable, 1340 .atomic_check = dpu_crtc_atomic_check, 1341 .atomic_begin = dpu_crtc_atomic_begin, 1342 .atomic_flush = dpu_crtc_atomic_flush, 1343 .get_scanout_position = dpu_crtc_get_scanout_position, 1344 }; 1345 1346 /* initialize crtc */ 1347 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1348 struct drm_plane *cursor) 1349 { 1350 struct drm_crtc *crtc = NULL; 1351 struct dpu_crtc *dpu_crtc = NULL; 1352 int i; 1353 1354 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1355 if (!dpu_crtc) 1356 return ERR_PTR(-ENOMEM); 1357 1358 crtc = &dpu_crtc->base; 1359 crtc->dev = dev; 1360 1361 spin_lock_init(&dpu_crtc->spin_lock); 1362 atomic_set(&dpu_crtc->frame_pending, 0); 1363 1364 init_completion(&dpu_crtc->frame_done_comp); 1365 1366 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1367 1368 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1369 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1370 list_add(&dpu_crtc->frame_events[i].list, 1371 &dpu_crtc->frame_event_list); 1372 kthread_init_work(&dpu_crtc->frame_events[i].work, 1373 dpu_crtc_frame_event_work); 1374 } 1375 1376 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1377 NULL); 1378 1379 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1380 1381 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1382 1383 /* save user friendly CRTC name for later */ 1384 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1385 1386 /* initialize event handling */ 1387 spin_lock_init(&dpu_crtc->event_lock); 1388 1389 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name); 1390 return crtc; 1391 } 1392