1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
12 #include <linux/bits.h>
13 
14 #include <drm/drm_crtc.h>
15 #include <drm/drm_flip_work.h>
16 #include <drm/drm_mode.h>
17 #include <drm/drm_probe_helper.h>
18 #include <drm/drm_rect.h>
19 #include <drm/drm_vblank.h>
20 
21 #include "dpu_kms.h"
22 #include "dpu_hw_lm.h"
23 #include "dpu_hw_ctl.h"
24 #include "dpu_hw_dspp.h"
25 #include "dpu_crtc.h"
26 #include "dpu_plane.h"
27 #include "dpu_encoder.h"
28 #include "dpu_vbif.h"
29 #include "dpu_core_perf.h"
30 #include "dpu_trace.h"
31 
32 #define DPU_DRM_BLEND_OP_NOT_DEFINED    0
33 #define DPU_DRM_BLEND_OP_OPAQUE         1
34 #define DPU_DRM_BLEND_OP_PREMULTIPLIED  2
35 #define DPU_DRM_BLEND_OP_COVERAGE       3
36 #define DPU_DRM_BLEND_OP_MAX            4
37 
38 /* layer mixer index on dpu_crtc */
39 #define LEFT_MIXER 0
40 #define RIGHT_MIXER 1
41 
42 /* timeout in ms waiting for frame done */
43 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
44 
45 #define	CONVERT_S3_15(val) \
46 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
47 
48 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
49 {
50 	struct msm_drm_private *priv = crtc->dev->dev_private;
51 
52 	return to_dpu_kms(priv->kms);
53 }
54 
55 static void dpu_crtc_destroy(struct drm_crtc *crtc)
56 {
57 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
58 
59 	DPU_DEBUG("\n");
60 
61 	if (!crtc)
62 		return;
63 
64 	drm_crtc_cleanup(crtc);
65 	kfree(dpu_crtc);
66 }
67 
68 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
69 		struct dpu_plane_state *pstate, struct dpu_format *format)
70 {
71 	struct dpu_hw_mixer *lm = mixer->hw_lm;
72 	uint32_t blend_op;
73 	struct drm_format_name_buf format_name;
74 
75 	/* default to opaque blending */
76 	blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
77 		DPU_BLEND_BG_ALPHA_BG_CONST;
78 
79 	if (format->alpha_enable) {
80 		/* coverage blending */
81 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
82 			DPU_BLEND_BG_ALPHA_FG_PIXEL |
83 			DPU_BLEND_BG_INV_ALPHA;
84 	}
85 
86 	lm->ops.setup_blend_config(lm, pstate->stage,
87 				0xFF, 0, blend_op);
88 
89 	DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n",
90 		drm_get_format_name(format->base.pixel_format, &format_name),
91 		format->alpha_enable, blend_op);
92 }
93 
94 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
95 {
96 	struct dpu_crtc_state *crtc_state;
97 	int lm_idx, lm_horiz_position;
98 
99 	crtc_state = to_dpu_crtc_state(crtc->state);
100 
101 	lm_horiz_position = 0;
102 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
103 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
104 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
105 		struct dpu_hw_mixer_cfg cfg;
106 
107 		if (!lm_roi || !drm_rect_visible(lm_roi))
108 			continue;
109 
110 		cfg.out_width = drm_rect_width(lm_roi);
111 		cfg.out_height = drm_rect_height(lm_roi);
112 		cfg.right_mixer = lm_horiz_position++;
113 		cfg.flags = 0;
114 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
115 	}
116 }
117 
118 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
119 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
120 {
121 	struct drm_plane *plane;
122 	struct drm_framebuffer *fb;
123 	struct drm_plane_state *state;
124 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
125 	struct dpu_plane_state *pstate = NULL;
126 	struct dpu_format *format;
127 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
128 	struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
129 
130 	u32 flush_mask;
131 	uint32_t stage_idx, lm_idx;
132 	int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
133 	bool bg_alpha_enable = false;
134 
135 	drm_atomic_crtc_for_each_plane(plane, crtc) {
136 		state = plane->state;
137 		if (!state)
138 			continue;
139 
140 		pstate = to_dpu_plane_state(state);
141 		fb = state->fb;
142 
143 		dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
144 
145 		DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n",
146 				crtc->base.id,
147 				pstate->stage,
148 				plane->base.id,
149 				dpu_plane_pipe(plane) - SSPP_VIG0,
150 				state->fb ? state->fb->base.id : -1);
151 
152 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
153 
154 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
155 			bg_alpha_enable = true;
156 
157 		stage_idx = zpos_cnt[pstate->stage]++;
158 		stage_cfg->stage[pstate->stage][stage_idx] =
159 					dpu_plane_pipe(plane);
160 		stage_cfg->multirect_index[pstate->stage][stage_idx] =
161 					pstate->multirect_index;
162 
163 		trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
164 					   state, pstate, stage_idx,
165 					   dpu_plane_pipe(plane) - SSPP_VIG0,
166 					   format->base.pixel_format,
167 					   fb ? fb->modifier : 0);
168 
169 		/* blend config update */
170 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
171 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
172 						pstate, format);
173 
174 			mixer[lm_idx].flush_mask |= flush_mask;
175 
176 			if (bg_alpha_enable && !format->alpha_enable)
177 				mixer[lm_idx].mixer_op_mode = 0;
178 			else
179 				mixer[lm_idx].mixer_op_mode |=
180 						1 << pstate->stage;
181 		}
182 	}
183 
184 	 _dpu_crtc_program_lm_output_roi(crtc);
185 }
186 
187 /**
188  * _dpu_crtc_blend_setup - configure crtc mixers
189  * @crtc: Pointer to drm crtc structure
190  */
191 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
192 {
193 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
194 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
195 	struct dpu_crtc_mixer *mixer = cstate->mixers;
196 	struct dpu_hw_ctl *ctl;
197 	struct dpu_hw_mixer *lm;
198 	int i;
199 
200 	DPU_DEBUG("%s\n", dpu_crtc->name);
201 
202 	for (i = 0; i < cstate->num_mixers; i++) {
203 		mixer[i].mixer_op_mode = 0;
204 		mixer[i].flush_mask = 0;
205 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
206 			mixer[i].lm_ctl->ops.clear_all_blendstages(
207 					mixer[i].lm_ctl);
208 	}
209 
210 	/* initialize stage cfg */
211 	memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
212 
213 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
214 
215 	for (i = 0; i < cstate->num_mixers; i++) {
216 		ctl = mixer[i].lm_ctl;
217 		lm = mixer[i].hw_lm;
218 
219 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
220 
221 		mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
222 			mixer[i].hw_lm->idx);
223 
224 		/* stage config flush mask */
225 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
226 
227 		DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
228 			mixer[i].hw_lm->idx - LM_0,
229 			mixer[i].mixer_op_mode,
230 			ctl->idx - CTL_0,
231 			mixer[i].flush_mask);
232 
233 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
234 			&dpu_crtc->stage_cfg);
235 	}
236 }
237 
238 /**
239  *  _dpu_crtc_complete_flip - signal pending page_flip events
240  * Any pending vblank events are added to the vblank_event_list
241  * so that the next vblank interrupt shall signal them.
242  * However PAGE_FLIP events are not handled through the vblank_event_list.
243  * This API signals any pending PAGE_FLIP events requested through
244  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
245  * @crtc: Pointer to drm crtc structure
246  */
247 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
248 {
249 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
250 	struct drm_device *dev = crtc->dev;
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(&dev->event_lock, flags);
254 	if (dpu_crtc->event) {
255 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
256 			      dpu_crtc->event);
257 		trace_dpu_crtc_complete_flip(DRMID(crtc));
258 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
259 		dpu_crtc->event = NULL;
260 	}
261 	spin_unlock_irqrestore(&dev->event_lock, flags);
262 }
263 
264 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
265 {
266 	struct drm_encoder *encoder;
267 
268 	if (!crtc) {
269 		DPU_ERROR("invalid crtc\n");
270 		return INTF_MODE_NONE;
271 	}
272 
273 	/*
274 	 * TODO: This function is called from dpu debugfs and as part of atomic
275 	 * check. When called from debugfs, the crtc->mutex must be held to
276 	 * read crtc->state. However reading crtc->state from atomic check isn't
277 	 * allowed (unless you have a good reason, a big comment, and a deep
278 	 * understanding of how the atomic/modeset locks work (<- and this is
279 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
280 	 * really we need to figure out a better way to track our operating mode
281 	 */
282 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
283 
284 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
285 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
286 		return dpu_encoder_get_intf_mode(encoder);
287 
288 	return INTF_MODE_NONE;
289 }
290 
291 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
292 {
293 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
294 
295 	/* keep statistics on vblank callback - with auto reset via debugfs */
296 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
297 		dpu_crtc->vblank_cb_time = ktime_get();
298 	else
299 		dpu_crtc->vblank_cb_count++;
300 	_dpu_crtc_complete_flip(crtc);
301 	drm_crtc_handle_vblank(crtc);
302 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
303 }
304 
305 static void dpu_crtc_frame_event_work(struct kthread_work *work)
306 {
307 	struct dpu_crtc_frame_event *fevent = container_of(work,
308 			struct dpu_crtc_frame_event, work);
309 	struct drm_crtc *crtc = fevent->crtc;
310 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
311 	unsigned long flags;
312 	bool frame_done = false;
313 
314 	DPU_ATRACE_BEGIN("crtc_frame_event");
315 
316 	DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
317 			ktime_to_ns(fevent->ts));
318 
319 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
320 				| DPU_ENCODER_FRAME_EVENT_ERROR
321 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
322 
323 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
324 			/* ignore vblank when not pending */
325 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
326 			/* release bandwidth and other resources */
327 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
328 							fevent->event);
329 			dpu_core_perf_crtc_release_bw(crtc);
330 		} else {
331 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
332 								fevent->event);
333 		}
334 
335 		if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE)
336 			dpu_core_perf_crtc_update(crtc, 0, false);
337 
338 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
339 					| DPU_ENCODER_FRAME_EVENT_ERROR))
340 			frame_done = true;
341 	}
342 
343 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
344 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
345 				crtc->base.id, ktime_to_ns(fevent->ts));
346 
347 	if (frame_done)
348 		complete_all(&dpu_crtc->frame_done_comp);
349 
350 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
351 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
352 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
353 	DPU_ATRACE_END("crtc_frame_event");
354 }
355 
356 /*
357  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
358  * registers this API to encoder for all frame event callbacks like
359  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
360  * from different context - IRQ, user thread, commit_thread, etc. Each event
361  * should be carefully reviewed and should be processed in proper task context
362  * to avoid schedulin delay or properly manage the irq context's bottom half
363  * processing.
364  */
365 static void dpu_crtc_frame_event_cb(void *data, u32 event)
366 {
367 	struct drm_crtc *crtc = (struct drm_crtc *)data;
368 	struct dpu_crtc *dpu_crtc;
369 	struct msm_drm_private *priv;
370 	struct dpu_crtc_frame_event *fevent;
371 	unsigned long flags;
372 	u32 crtc_id;
373 
374 	/* Nothing to do on idle event */
375 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
376 		return;
377 
378 	dpu_crtc = to_dpu_crtc(crtc);
379 	priv = crtc->dev->dev_private;
380 	crtc_id = drm_crtc_index(crtc);
381 
382 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
383 
384 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
385 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
386 			struct dpu_crtc_frame_event, list);
387 	if (fevent)
388 		list_del_init(&fevent->list);
389 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
390 
391 	if (!fevent) {
392 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
393 		return;
394 	}
395 
396 	fevent->event = event;
397 	fevent->crtc = crtc;
398 	fevent->ts = ktime_get();
399 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
400 }
401 
402 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
403 {
404 	trace_dpu_crtc_complete_commit(DRMID(crtc));
405 }
406 
407 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
408 		struct drm_crtc_state *state)
409 {
410 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
411 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
412 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
413 	int i;
414 
415 	for (i = 0; i < cstate->num_mixers; i++) {
416 		struct drm_rect *r = &cstate->lm_bounds[i];
417 		r->x1 = crtc_split_width * i;
418 		r->y1 = 0;
419 		r->x2 = r->x1 + crtc_split_width;
420 		r->y2 = adj_mode->vdisplay;
421 
422 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
423 	}
424 
425 	drm_mode_debug_printmodeline(adj_mode);
426 }
427 
428 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
429 		struct dpu_hw_pcc_cfg *cfg)
430 {
431 	struct drm_color_ctm *ctm;
432 
433 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
434 
435 	ctm = (struct drm_color_ctm *)state->ctm->data;
436 
437 	if (!ctm)
438 		return;
439 
440 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
441 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
442 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
443 
444 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
445 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
446 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
447 
448 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
449 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
450 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
451 }
452 
453 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
454 {
455 	struct drm_crtc_state *state = crtc->state;
456 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
457 	struct dpu_crtc_mixer *mixer = cstate->mixers;
458 	struct dpu_hw_pcc_cfg cfg;
459 	struct dpu_hw_ctl *ctl;
460 	struct dpu_hw_mixer *lm;
461 	struct dpu_hw_dspp *dspp;
462 	int i;
463 
464 
465 	if (!state->color_mgmt_changed)
466 		return;
467 
468 	for (i = 0; i < cstate->num_mixers; i++) {
469 		ctl = mixer[i].lm_ctl;
470 		lm = mixer[i].hw_lm;
471 		dspp = mixer[i].hw_dspp;
472 
473 		if (!dspp || !dspp->ops.setup_pcc)
474 			continue;
475 
476 		if (!state->ctm) {
477 			dspp->ops.setup_pcc(dspp, NULL);
478 		} else {
479 			_dpu_crtc_get_pcc_coeff(state, &cfg);
480 			dspp->ops.setup_pcc(dspp, &cfg);
481 		}
482 
483 		mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
484 			mixer[i].hw_dspp->idx);
485 
486 		/* stage config flush mask */
487 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
488 
489 		DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n",
490 			mixer[i].hw_lm->idx - DSPP_0,
491 			ctl->idx - CTL_0,
492 			mixer[i].flush_mask);
493 	}
494 }
495 
496 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
497 		struct drm_crtc_state *old_state)
498 {
499 	struct dpu_crtc *dpu_crtc;
500 	struct dpu_crtc_state *cstate;
501 	struct drm_encoder *encoder;
502 	struct drm_device *dev;
503 	unsigned long flags;
504 
505 	if (!crtc) {
506 		DPU_ERROR("invalid crtc\n");
507 		return;
508 	}
509 
510 	if (!crtc->state->enable) {
511 		DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n",
512 				crtc->base.id, crtc->state->enable);
513 		return;
514 	}
515 
516 	DPU_DEBUG("crtc%d\n", crtc->base.id);
517 
518 	dpu_crtc = to_dpu_crtc(crtc);
519 	cstate = to_dpu_crtc_state(crtc->state);
520 	dev = crtc->dev;
521 
522 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
523 
524 	if (dpu_crtc->event) {
525 		WARN_ON(dpu_crtc->event);
526 	} else {
527 		spin_lock_irqsave(&dev->event_lock, flags);
528 		dpu_crtc->event = crtc->state->event;
529 		crtc->state->event = NULL;
530 		spin_unlock_irqrestore(&dev->event_lock, flags);
531 	}
532 
533 	/* encoder will trigger pending mask now */
534 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
535 		dpu_encoder_trigger_kickoff_pending(encoder);
536 
537 	/*
538 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
539 	 * it means we are trying to flush a CRTC whose state is disabled:
540 	 * nothing else needs to be done.
541 	 */
542 	if (unlikely(!cstate->num_mixers))
543 		return;
544 
545 	_dpu_crtc_blend_setup(crtc);
546 
547 	_dpu_crtc_setup_cp_blocks(crtc);
548 
549 	/*
550 	 * PP_DONE irq is only used by command mode for now.
551 	 * It is better to request pending before FLUSH and START trigger
552 	 * to make sure no pp_done irq missed.
553 	 * This is safe because no pp_done will happen before SW trigger
554 	 * in command mode.
555 	 */
556 }
557 
558 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
559 		struct drm_crtc_state *old_crtc_state)
560 {
561 	struct dpu_crtc *dpu_crtc;
562 	struct drm_device *dev;
563 	struct drm_plane *plane;
564 	struct msm_drm_private *priv;
565 	unsigned long flags;
566 	struct dpu_crtc_state *cstate;
567 
568 	if (!crtc->state->enable) {
569 		DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n",
570 				crtc->base.id, crtc->state->enable);
571 		return;
572 	}
573 
574 	DPU_DEBUG("crtc%d\n", crtc->base.id);
575 
576 	dpu_crtc = to_dpu_crtc(crtc);
577 	cstate = to_dpu_crtc_state(crtc->state);
578 	dev = crtc->dev;
579 	priv = dev->dev_private;
580 
581 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
582 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
583 		return;
584 	}
585 
586 	if (dpu_crtc->event) {
587 		DPU_DEBUG("already received dpu_crtc->event\n");
588 	} else {
589 		spin_lock_irqsave(&dev->event_lock, flags);
590 		dpu_crtc->event = crtc->state->event;
591 		crtc->state->event = NULL;
592 		spin_unlock_irqrestore(&dev->event_lock, flags);
593 	}
594 
595 	/*
596 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
597 	 * it means we are trying to flush a CRTC whose state is disabled:
598 	 * nothing else needs to be done.
599 	 */
600 	if (unlikely(!cstate->num_mixers))
601 		return;
602 
603 	/*
604 	 * For planes without commit update, drm framework will not add
605 	 * those planes to current state since hardware update is not
606 	 * required. However, if those planes were power collapsed since
607 	 * last commit cycle, driver has to restore the hardware state
608 	 * of those planes explicitly here prior to plane flush.
609 	 */
610 	drm_atomic_crtc_for_each_plane(plane, crtc)
611 		dpu_plane_restore(plane);
612 
613 	/* update performance setting before crtc kickoff */
614 	dpu_core_perf_crtc_update(crtc, 1, false);
615 
616 	/*
617 	 * Final plane updates: Give each plane a chance to complete all
618 	 *                      required writes/flushing before crtc's "flush
619 	 *                      everything" call below.
620 	 */
621 	drm_atomic_crtc_for_each_plane(plane, crtc) {
622 		if (dpu_crtc->smmu_state.transition_error)
623 			dpu_plane_set_error(plane, true);
624 		dpu_plane_flush(plane);
625 	}
626 
627 	/* Kickoff will be scheduled by outer layer */
628 }
629 
630 /**
631  * dpu_crtc_destroy_state - state destroy hook
632  * @crtc: drm CRTC
633  * @state: CRTC state object to release
634  */
635 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
636 		struct drm_crtc_state *state)
637 {
638 	struct dpu_crtc_state *cstate;
639 
640 	if (!crtc || !state) {
641 		DPU_ERROR("invalid argument(s)\n");
642 		return;
643 	}
644 
645 	cstate = to_dpu_crtc_state(state);
646 
647 	DPU_DEBUG("crtc%d\n", crtc->base.id);
648 
649 	__drm_atomic_helper_crtc_destroy_state(state);
650 
651 	kfree(cstate);
652 }
653 
654 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
655 {
656 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
657 	int ret, rc = 0;
658 
659 	if (!atomic_read(&dpu_crtc->frame_pending)) {
660 		DPU_DEBUG("no frames pending\n");
661 		return 0;
662 	}
663 
664 	DPU_ATRACE_BEGIN("frame done completion wait");
665 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
666 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
667 	if (!ret) {
668 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
669 		rc = -ETIMEDOUT;
670 	}
671 	DPU_ATRACE_END("frame done completion wait");
672 
673 	return rc;
674 }
675 
676 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
677 {
678 	struct drm_encoder *encoder;
679 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
680 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
681 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
682 
683 	/*
684 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
685 	 * it means we are trying to start a CRTC whose state is disabled:
686 	 * nothing else needs to be done.
687 	 */
688 	if (unlikely(!cstate->num_mixers))
689 		return;
690 
691 	DPU_ATRACE_BEGIN("crtc_commit");
692 
693 	/*
694 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
695 	 * may delay and flush at an irq event (e.g. ppdone)
696 	 */
697 	drm_for_each_encoder_mask(encoder, crtc->dev,
698 				  crtc->state->encoder_mask)
699 		dpu_encoder_prepare_for_kickoff(encoder);
700 
701 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
702 		/* acquire bandwidth and other resources */
703 		DPU_DEBUG("crtc%d first commit\n", crtc->base.id);
704 	} else
705 		DPU_DEBUG("crtc%d commit\n", crtc->base.id);
706 
707 	dpu_crtc->play_count++;
708 
709 	dpu_vbif_clear_errors(dpu_kms);
710 
711 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
712 		dpu_encoder_kickoff(encoder);
713 
714 	reinit_completion(&dpu_crtc->frame_done_comp);
715 	DPU_ATRACE_END("crtc_commit");
716 }
717 
718 static void dpu_crtc_reset(struct drm_crtc *crtc)
719 {
720 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
721 
722 	if (crtc->state)
723 		dpu_crtc_destroy_state(crtc, crtc->state);
724 
725 	__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
726 }
727 
728 /**
729  * dpu_crtc_duplicate_state - state duplicate hook
730  * @crtc: Pointer to drm crtc structure
731  */
732 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
733 {
734 	struct dpu_crtc_state *cstate, *old_cstate;
735 
736 	if (!crtc || !crtc->state) {
737 		DPU_ERROR("invalid argument(s)\n");
738 		return NULL;
739 	}
740 
741 	old_cstate = to_dpu_crtc_state(crtc->state);
742 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
743 	if (!cstate) {
744 		DPU_ERROR("failed to allocate state\n");
745 		return NULL;
746 	}
747 
748 	/* duplicate base helper */
749 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
750 
751 	return &cstate->base;
752 }
753 
754 static void dpu_crtc_disable(struct drm_crtc *crtc,
755 			     struct drm_crtc_state *old_crtc_state)
756 {
757 	struct dpu_crtc *dpu_crtc;
758 	struct dpu_crtc_state *cstate;
759 	struct drm_encoder *encoder;
760 	unsigned long flags;
761 	bool release_bandwidth = false;
762 
763 	if (!crtc || !crtc->state) {
764 		DPU_ERROR("invalid crtc\n");
765 		return;
766 	}
767 	dpu_crtc = to_dpu_crtc(crtc);
768 	cstate = to_dpu_crtc_state(crtc->state);
769 
770 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
771 
772 	/* Disable/save vblank irq handling */
773 	drm_crtc_vblank_off(crtc);
774 
775 	drm_for_each_encoder_mask(encoder, crtc->dev,
776 				  old_crtc_state->encoder_mask) {
777 		/* in video mode, we hold an extra bandwidth reference
778 		 * as we cannot drop bandwidth at frame-done if any
779 		 * crtc is being used in video mode.
780 		 */
781 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
782 			release_bandwidth = true;
783 		dpu_encoder_assign_crtc(encoder, NULL);
784 	}
785 
786 	/* wait for frame_event_done completion */
787 	if (_dpu_crtc_wait_for_frame_done(crtc))
788 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
789 				crtc->base.id,
790 				atomic_read(&dpu_crtc->frame_pending));
791 
792 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
793 	dpu_crtc->enabled = false;
794 
795 	if (atomic_read(&dpu_crtc->frame_pending)) {
796 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
797 				     atomic_read(&dpu_crtc->frame_pending));
798 		if (release_bandwidth)
799 			dpu_core_perf_crtc_release_bw(crtc);
800 		atomic_set(&dpu_crtc->frame_pending, 0);
801 	}
802 
803 	dpu_core_perf_crtc_update(crtc, 0, true);
804 
805 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
806 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
807 
808 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
809 	cstate->num_mixers = 0;
810 
811 	/* disable clk & bw control until clk & bw properties are set */
812 	cstate->bw_control = false;
813 	cstate->bw_split_vote = false;
814 
815 	if (crtc->state->event && !crtc->state->active) {
816 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
817 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
818 		crtc->state->event = NULL;
819 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
820 	}
821 
822 	pm_runtime_put_sync(crtc->dev->dev);
823 }
824 
825 static void dpu_crtc_enable(struct drm_crtc *crtc,
826 		struct drm_crtc_state *old_crtc_state)
827 {
828 	struct dpu_crtc *dpu_crtc;
829 	struct drm_encoder *encoder;
830 	bool request_bandwidth;
831 
832 	if (!crtc) {
833 		DPU_ERROR("invalid crtc\n");
834 		return;
835 	}
836 
837 	pm_runtime_get_sync(crtc->dev->dev);
838 
839 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
840 	dpu_crtc = to_dpu_crtc(crtc);
841 
842 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
843 		/* in video mode, we hold an extra bandwidth reference
844 		 * as we cannot drop bandwidth at frame-done if any
845 		 * crtc is being used in video mode.
846 		 */
847 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
848 			request_bandwidth = true;
849 		dpu_encoder_register_frame_event_callback(encoder,
850 				dpu_crtc_frame_event_cb, (void *)crtc);
851 	}
852 
853 	if (request_bandwidth)
854 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
855 
856 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
857 	dpu_crtc->enabled = true;
858 
859 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
860 		dpu_encoder_assign_crtc(encoder, crtc);
861 
862 	/* Enable/restore vblank irq handling */
863 	drm_crtc_vblank_on(crtc);
864 }
865 
866 struct plane_state {
867 	struct dpu_plane_state *dpu_pstate;
868 	const struct drm_plane_state *drm_pstate;
869 	int stage;
870 	u32 pipe_id;
871 };
872 
873 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
874 		struct drm_crtc_state *state)
875 {
876 	struct dpu_crtc *dpu_crtc;
877 	struct plane_state *pstates;
878 	struct dpu_crtc_state *cstate;
879 
880 	const struct drm_plane_state *pstate;
881 	struct drm_plane *plane;
882 	struct drm_display_mode *mode;
883 
884 	int cnt = 0, rc = 0, mixer_width, i, z_pos;
885 
886 	struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
887 	int multirect_count = 0;
888 	const struct drm_plane_state *pipe_staged[SSPP_MAX];
889 	int left_zpos_cnt = 0, right_zpos_cnt = 0;
890 	struct drm_rect crtc_rect = { 0 };
891 
892 	if (!crtc) {
893 		DPU_ERROR("invalid crtc\n");
894 		return -EINVAL;
895 	}
896 
897 	pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
898 
899 	dpu_crtc = to_dpu_crtc(crtc);
900 	cstate = to_dpu_crtc_state(state);
901 
902 	if (!state->enable || !state->active) {
903 		DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n",
904 				crtc->base.id, state->enable, state->active);
905 		goto end;
906 	}
907 
908 	mode = &state->adjusted_mode;
909 	DPU_DEBUG("%s: check", dpu_crtc->name);
910 
911 	/* force a full mode set if active state changed */
912 	if (state->active_changed)
913 		state->mode_changed = true;
914 
915 	memset(pipe_staged, 0, sizeof(pipe_staged));
916 
917 	mixer_width = mode->hdisplay / cstate->num_mixers;
918 
919 	_dpu_crtc_setup_lm_bounds(crtc, state);
920 
921 	crtc_rect.x2 = mode->hdisplay;
922 	crtc_rect.y2 = mode->vdisplay;
923 
924 	 /* get plane state for all drm planes associated with crtc state */
925 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
926 		struct drm_rect dst, clip = crtc_rect;
927 
928 		if (IS_ERR_OR_NULL(pstate)) {
929 			rc = PTR_ERR(pstate);
930 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
931 					dpu_crtc->name, plane->base.id, rc);
932 			goto end;
933 		}
934 		if (cnt >= DPU_STAGE_MAX * 4)
935 			continue;
936 
937 		pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
938 		pstates[cnt].drm_pstate = pstate;
939 		pstates[cnt].stage = pstate->normalized_zpos;
940 		pstates[cnt].pipe_id = dpu_plane_pipe(plane);
941 
942 		if (pipe_staged[pstates[cnt].pipe_id]) {
943 			multirect_plane[multirect_count].r0 =
944 				pipe_staged[pstates[cnt].pipe_id];
945 			multirect_plane[multirect_count].r1 = pstate;
946 			multirect_count++;
947 
948 			pipe_staged[pstates[cnt].pipe_id] = NULL;
949 		} else {
950 			pipe_staged[pstates[cnt].pipe_id] = pstate;
951 		}
952 
953 		cnt++;
954 
955 		dst = drm_plane_state_dest(pstate);
956 		if (!drm_rect_intersect(&clip, &dst)) {
957 			DPU_ERROR("invalid vertical/horizontal destination\n");
958 			DPU_ERROR("display: " DRM_RECT_FMT " plane: "
959 				  DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
960 				  DRM_RECT_ARG(&dst));
961 			rc = -E2BIG;
962 			goto end;
963 		}
964 	}
965 
966 	for (i = 1; i < SSPP_MAX; i++) {
967 		if (pipe_staged[i]) {
968 			dpu_plane_clear_multirect(pipe_staged[i]);
969 
970 			if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
971 				DPU_ERROR(
972 					"r1 only virt plane:%d not supported\n",
973 					pipe_staged[i]->plane->base.id);
974 				rc  = -EINVAL;
975 				goto end;
976 			}
977 		}
978 	}
979 
980 	z_pos = -1;
981 	for (i = 0; i < cnt; i++) {
982 		/* reset counts at every new blend stage */
983 		if (pstates[i].stage != z_pos) {
984 			left_zpos_cnt = 0;
985 			right_zpos_cnt = 0;
986 			z_pos = pstates[i].stage;
987 		}
988 
989 		/* verify z_pos setting before using it */
990 		if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
991 			DPU_ERROR("> %d plane stages assigned\n",
992 					DPU_STAGE_MAX - DPU_STAGE_0);
993 			rc = -EINVAL;
994 			goto end;
995 		} else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
996 			if (left_zpos_cnt == 2) {
997 				DPU_ERROR("> 2 planes @ stage %d on left\n",
998 					z_pos);
999 				rc = -EINVAL;
1000 				goto end;
1001 			}
1002 			left_zpos_cnt++;
1003 
1004 		} else {
1005 			if (right_zpos_cnt == 2) {
1006 				DPU_ERROR("> 2 planes @ stage %d on right\n",
1007 					z_pos);
1008 				rc = -EINVAL;
1009 				goto end;
1010 			}
1011 			right_zpos_cnt++;
1012 		}
1013 
1014 		pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1015 		DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos);
1016 	}
1017 
1018 	for (i = 0; i < multirect_count; i++) {
1019 		if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1020 			DPU_ERROR(
1021 			"multirect validation failed for planes (%d - %d)\n",
1022 					multirect_plane[i].r0->plane->base.id,
1023 					multirect_plane[i].r1->plane->base.id);
1024 			rc = -EINVAL;
1025 			goto end;
1026 		}
1027 	}
1028 
1029 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1030 
1031 	rc = dpu_core_perf_crtc_check(crtc, state);
1032 	if (rc) {
1033 		DPU_ERROR("crtc%d failed performance check %d\n",
1034 				crtc->base.id, rc);
1035 		goto end;
1036 	}
1037 
1038 	/* validate source split:
1039 	 * use pstates sorted by stage to check planes on same stage
1040 	 * we assume that all pipes are in source split so its valid to compare
1041 	 * without taking into account left/right mixer placement
1042 	 */
1043 	for (i = 1; i < cnt; i++) {
1044 		struct plane_state *prv_pstate, *cur_pstate;
1045 		struct drm_rect left_rect, right_rect;
1046 		int32_t left_pid, right_pid;
1047 		int32_t stage;
1048 
1049 		prv_pstate = &pstates[i - 1];
1050 		cur_pstate = &pstates[i];
1051 		if (prv_pstate->stage != cur_pstate->stage)
1052 			continue;
1053 
1054 		stage = cur_pstate->stage;
1055 
1056 		left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1057 		left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1058 
1059 		right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1060 		right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1061 
1062 		if (right_rect.x1 < left_rect.x1) {
1063 			swap(left_pid, right_pid);
1064 			swap(left_rect, right_rect);
1065 		}
1066 
1067 		/**
1068 		 * - planes are enumerated in pipe-priority order such that
1069 		 *   planes with lower drm_id must be left-most in a shared
1070 		 *   blend-stage when using source split.
1071 		 * - planes in source split must be contiguous in width
1072 		 * - planes in source split must have same dest yoff and height
1073 		 */
1074 		if (right_pid < left_pid) {
1075 			DPU_ERROR(
1076 				"invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1077 				stage, left_pid, right_pid);
1078 			rc = -EINVAL;
1079 			goto end;
1080 		} else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1081 			DPU_ERROR("non-contiguous coordinates for src split. "
1082 				  "stage: %d left: " DRM_RECT_FMT " right: "
1083 				  DRM_RECT_FMT "\n", stage,
1084 				  DRM_RECT_ARG(&left_rect),
1085 				  DRM_RECT_ARG(&right_rect));
1086 			rc = -EINVAL;
1087 			goto end;
1088 		} else if (left_rect.y1 != right_rect.y1 ||
1089 			   drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1090 			DPU_ERROR("source split at stage: %d. invalid "
1091 				  "yoff/height: left: " DRM_RECT_FMT " right: "
1092 				  DRM_RECT_FMT "\n", stage,
1093 				  DRM_RECT_ARG(&left_rect),
1094 				  DRM_RECT_ARG(&right_rect));
1095 			rc = -EINVAL;
1096 			goto end;
1097 		}
1098 	}
1099 
1100 end:
1101 	kfree(pstates);
1102 	return rc;
1103 }
1104 
1105 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1106 {
1107 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1108 	struct drm_encoder *enc;
1109 
1110 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1111 
1112 	/*
1113 	 * Normally we would iterate through encoder_mask in crtc state to find
1114 	 * attached encoders. In this case, we might be disabling vblank _after_
1115 	 * encoder_mask has been cleared.
1116 	 *
1117 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1118 	 * disable (which is also after encoder_mask is cleared). So instead of
1119 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1120 	 * currently assigned to our crtc.
1121 	 *
1122 	 * Note also that this function cannot be called while crtc is disabled
1123 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1124 	 * about the assigned crtcs being inconsistent with the current state
1125 	 * (which means no need to worry about modeset locks).
1126 	 */
1127 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1128 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1129 					     dpu_crtc);
1130 
1131 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 #ifdef CONFIG_DEBUG_FS
1138 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1139 {
1140 	struct dpu_crtc *dpu_crtc;
1141 	struct dpu_plane_state *pstate = NULL;
1142 	struct dpu_crtc_mixer *m;
1143 
1144 	struct drm_crtc *crtc;
1145 	struct drm_plane *plane;
1146 	struct drm_display_mode *mode;
1147 	struct drm_framebuffer *fb;
1148 	struct drm_plane_state *state;
1149 	struct dpu_crtc_state *cstate;
1150 
1151 	int i, out_width;
1152 
1153 	dpu_crtc = s->private;
1154 	crtc = &dpu_crtc->base;
1155 
1156 	drm_modeset_lock_all(crtc->dev);
1157 	cstate = to_dpu_crtc_state(crtc->state);
1158 
1159 	mode = &crtc->state->adjusted_mode;
1160 	out_width = mode->hdisplay / cstate->num_mixers;
1161 
1162 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1163 				mode->hdisplay, mode->vdisplay);
1164 
1165 	seq_puts(s, "\n");
1166 
1167 	for (i = 0; i < cstate->num_mixers; ++i) {
1168 		m = &cstate->mixers[i];
1169 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1170 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1171 			out_width, mode->vdisplay);
1172 	}
1173 
1174 	seq_puts(s, "\n");
1175 
1176 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1177 		pstate = to_dpu_plane_state(plane->state);
1178 		state = plane->state;
1179 
1180 		if (!pstate || !state)
1181 			continue;
1182 
1183 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1184 			pstate->stage);
1185 
1186 		if (plane->state->fb) {
1187 			fb = plane->state->fb;
1188 
1189 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1190 				fb->base.id, (char *) &fb->format->format,
1191 				fb->width, fb->height);
1192 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1193 				seq_printf(s, "cpp[%d]:%u ",
1194 						i, fb->format->cpp[i]);
1195 			seq_puts(s, "\n\t");
1196 
1197 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1198 			seq_puts(s, "\n");
1199 
1200 			seq_puts(s, "\t");
1201 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1202 				seq_printf(s, "pitches[%d]:%8u ", i,
1203 							fb->pitches[i]);
1204 			seq_puts(s, "\n");
1205 
1206 			seq_puts(s, "\t");
1207 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1208 				seq_printf(s, "offsets[%d]:%8u ", i,
1209 							fb->offsets[i]);
1210 			seq_puts(s, "\n");
1211 		}
1212 
1213 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1214 			state->src_x, state->src_y, state->src_w, state->src_h);
1215 
1216 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1217 			state->crtc_x, state->crtc_y, state->crtc_w,
1218 			state->crtc_h);
1219 		seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1220 			pstate->multirect_mode, pstate->multirect_index);
1221 
1222 		seq_puts(s, "\n");
1223 	}
1224 	if (dpu_crtc->vblank_cb_count) {
1225 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1226 		s64 diff_ms = ktime_to_ms(diff);
1227 		s64 fps = diff_ms ? div_s64(
1228 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1229 
1230 		seq_printf(s,
1231 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1232 				fps, dpu_crtc->vblank_cb_count,
1233 				ktime_to_ms(diff), dpu_crtc->play_count);
1234 
1235 		/* reset time & count for next measurement */
1236 		dpu_crtc->vblank_cb_count = 0;
1237 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1238 	}
1239 
1240 	drm_modeset_unlock_all(crtc->dev);
1241 
1242 	return 0;
1243 }
1244 
1245 static int _dpu_debugfs_status_open(struct inode *inode, struct file *file)
1246 {
1247 	return single_open(file, _dpu_debugfs_status_show, inode->i_private);
1248 }
1249 
1250 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix)                          \
1251 static int __prefix ## _open(struct inode *inode, struct file *file)	\
1252 {									\
1253 	return single_open(file, __prefix ## _show, inode->i_private);	\
1254 }									\
1255 static const struct file_operations __prefix ## _fops = {		\
1256 	.owner = THIS_MODULE,						\
1257 	.open = __prefix ## _open,					\
1258 	.release = single_release,					\
1259 	.read = seq_read,						\
1260 	.llseek = seq_lseek,						\
1261 }
1262 
1263 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1264 {
1265 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1266 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1267 
1268 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1269 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1270 	seq_printf(s, "core_clk_rate: %llu\n",
1271 			dpu_crtc->cur_perf.core_clk_rate);
1272 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1273 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1274 				dpu_crtc->cur_perf.max_per_pipe_ib);
1275 
1276 	return 0;
1277 }
1278 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_crtc_debugfs_state);
1279 
1280 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1281 {
1282 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1283 
1284 	static const struct file_operations debugfs_status_fops = {
1285 		.open =		_dpu_debugfs_status_open,
1286 		.read =		seq_read,
1287 		.llseek =	seq_lseek,
1288 		.release =	single_release,
1289 	};
1290 
1291 	dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1292 			crtc->dev->primary->debugfs_root);
1293 
1294 	debugfs_create_file("status", 0400,
1295 			dpu_crtc->debugfs_root,
1296 			dpu_crtc, &debugfs_status_fops);
1297 	debugfs_create_file("state", 0600,
1298 			dpu_crtc->debugfs_root,
1299 			&dpu_crtc->base,
1300 			&dpu_crtc_debugfs_state_fops);
1301 
1302 	return 0;
1303 }
1304 #else
1305 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1306 {
1307 	return 0;
1308 }
1309 #endif /* CONFIG_DEBUG_FS */
1310 
1311 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1312 {
1313 	return _dpu_crtc_init_debugfs(crtc);
1314 }
1315 
1316 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1317 {
1318 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1319 
1320 	debugfs_remove_recursive(dpu_crtc->debugfs_root);
1321 }
1322 
1323 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1324 	.set_config = drm_atomic_helper_set_config,
1325 	.destroy = dpu_crtc_destroy,
1326 	.page_flip = drm_atomic_helper_page_flip,
1327 	.reset = dpu_crtc_reset,
1328 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1329 	.atomic_destroy_state = dpu_crtc_destroy_state,
1330 	.late_register = dpu_crtc_late_register,
1331 	.early_unregister = dpu_crtc_early_unregister,
1332 	.enable_vblank  = msm_crtc_enable_vblank,
1333 	.disable_vblank = msm_crtc_disable_vblank,
1334 };
1335 
1336 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1337 	.atomic_disable = dpu_crtc_disable,
1338 	.atomic_enable = dpu_crtc_enable,
1339 	.atomic_check = dpu_crtc_atomic_check,
1340 	.atomic_begin = dpu_crtc_atomic_begin,
1341 	.atomic_flush = dpu_crtc_atomic_flush,
1342 };
1343 
1344 /* initialize crtc */
1345 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1346 				struct drm_plane *cursor)
1347 {
1348 	struct drm_crtc *crtc = NULL;
1349 	struct dpu_crtc *dpu_crtc = NULL;
1350 	int i;
1351 
1352 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1353 	if (!dpu_crtc)
1354 		return ERR_PTR(-ENOMEM);
1355 
1356 	crtc = &dpu_crtc->base;
1357 	crtc->dev = dev;
1358 
1359 	spin_lock_init(&dpu_crtc->spin_lock);
1360 	atomic_set(&dpu_crtc->frame_pending, 0);
1361 
1362 	init_completion(&dpu_crtc->frame_done_comp);
1363 
1364 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1365 
1366 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1367 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1368 		list_add(&dpu_crtc->frame_events[i].list,
1369 				&dpu_crtc->frame_event_list);
1370 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1371 				dpu_crtc_frame_event_work);
1372 	}
1373 
1374 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1375 				NULL);
1376 
1377 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1378 
1379 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1380 
1381 	/* save user friendly CRTC name for later */
1382 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1383 
1384 	/* initialize event handling */
1385 	spin_lock_init(&dpu_crtc->event_lock);
1386 
1387 	DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name);
1388 	return crtc;
1389 }
1390