1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 34 #define DPU_DRM_BLEND_OP_OPAQUE 1 35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 36 #define DPU_DRM_BLEND_OP_COVERAGE 3 37 #define DPU_DRM_BLEND_OP_MAX 4 38 39 /* layer mixer index on dpu_crtc */ 40 #define LEFT_MIXER 0 41 #define RIGHT_MIXER 1 42 43 /* timeout in ms waiting for frame done */ 44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 45 46 #define CONVERT_S3_15(val) \ 47 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 48 49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 50 { 51 struct msm_drm_private *priv = crtc->dev->dev_private; 52 53 return to_dpu_kms(priv->kms); 54 } 55 56 static void dpu_crtc_destroy(struct drm_crtc *crtc) 57 { 58 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 59 60 if (!crtc) 61 return; 62 63 drm_crtc_cleanup(crtc); 64 kfree(dpu_crtc); 65 } 66 67 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 68 { 69 struct drm_device *dev = crtc->dev; 70 struct drm_encoder *encoder; 71 72 drm_for_each_encoder(encoder, dev) 73 if (encoder->crtc == crtc) 74 return encoder; 75 76 return NULL; 77 } 78 79 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 80 { 81 struct drm_encoder *encoder; 82 83 encoder = get_encoder_from_crtc(crtc); 84 if (!encoder) { 85 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 86 return false; 87 } 88 89 return dpu_encoder_get_frame_count(encoder); 90 } 91 92 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 93 bool in_vblank_irq, 94 int *vpos, int *hpos, 95 ktime_t *stime, ktime_t *etime, 96 const struct drm_display_mode *mode) 97 { 98 unsigned int pipe = crtc->index; 99 struct drm_encoder *encoder; 100 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 101 102 encoder = get_encoder_from_crtc(crtc); 103 if (!encoder) { 104 DRM_ERROR("no encoder found for crtc %d\n", pipe); 105 return false; 106 } 107 108 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 109 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 110 111 /* 112 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 113 * the end of VFP. Translate the porch values relative to the line 114 * counter positions. 115 */ 116 117 vactive_start = vsw + vbp + 1; 118 vactive_end = vactive_start + mode->crtc_vdisplay; 119 120 /* last scan line before VSYNC */ 121 vfp_end = mode->crtc_vtotal; 122 123 if (stime) 124 *stime = ktime_get(); 125 126 line = dpu_encoder_get_linecount(encoder); 127 128 if (line < vactive_start) 129 line -= vactive_start; 130 else if (line > vactive_end) 131 line = line - vfp_end - vactive_start; 132 else 133 line -= vactive_start; 134 135 *vpos = line; 136 *hpos = 0; 137 138 if (etime) 139 *etime = ktime_get(); 140 141 return true; 142 } 143 144 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 145 struct dpu_plane_state *pstate, struct dpu_format *format) 146 { 147 struct dpu_hw_mixer *lm = mixer->hw_lm; 148 uint32_t blend_op; 149 150 /* default to opaque blending */ 151 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 152 DPU_BLEND_BG_ALPHA_BG_CONST; 153 154 if (format->alpha_enable) { 155 /* coverage blending */ 156 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 157 DPU_BLEND_BG_ALPHA_FG_PIXEL | 158 DPU_BLEND_BG_INV_ALPHA; 159 } 160 161 lm->ops.setup_blend_config(lm, pstate->stage, 162 0xFF, 0, blend_op); 163 164 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 165 &format->base.pixel_format, format->alpha_enable, blend_op); 166 } 167 168 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 169 { 170 struct dpu_crtc_state *crtc_state; 171 int lm_idx, lm_horiz_position; 172 173 crtc_state = to_dpu_crtc_state(crtc->state); 174 175 lm_horiz_position = 0; 176 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 177 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 178 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 179 struct dpu_hw_mixer_cfg cfg; 180 181 if (!lm_roi || !drm_rect_visible(lm_roi)) 182 continue; 183 184 cfg.out_width = drm_rect_width(lm_roi); 185 cfg.out_height = drm_rect_height(lm_roi); 186 cfg.right_mixer = lm_horiz_position++; 187 cfg.flags = 0; 188 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 189 } 190 } 191 192 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 193 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 194 { 195 struct drm_plane *plane; 196 struct drm_framebuffer *fb; 197 struct drm_plane_state *state; 198 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 199 struct dpu_plane_state *pstate = NULL; 200 struct dpu_format *format; 201 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 202 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 203 204 u32 flush_mask; 205 uint32_t stage_idx, lm_idx; 206 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 207 bool bg_alpha_enable = false; 208 DECLARE_BITMAP(fetch_active, SSPP_MAX); 209 210 memset(fetch_active, 0, sizeof(fetch_active)); 211 drm_atomic_crtc_for_each_plane(plane, crtc) { 212 state = plane->state; 213 if (!state) 214 continue; 215 216 pstate = to_dpu_plane_state(state); 217 fb = state->fb; 218 219 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 220 set_bit(dpu_plane_pipe(plane), fetch_active); 221 222 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n", 223 crtc->base.id, 224 pstate->stage, 225 plane->base.id, 226 dpu_plane_pipe(plane) - SSPP_VIG0, 227 state->fb ? state->fb->base.id : -1); 228 229 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 230 231 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 232 bg_alpha_enable = true; 233 234 stage_idx = zpos_cnt[pstate->stage]++; 235 stage_cfg->stage[pstate->stage][stage_idx] = 236 dpu_plane_pipe(plane); 237 stage_cfg->multirect_index[pstate->stage][stage_idx] = 238 pstate->multirect_index; 239 240 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 241 state, pstate, stage_idx, 242 dpu_plane_pipe(plane) - SSPP_VIG0, 243 format->base.pixel_format, 244 fb ? fb->modifier : 0); 245 246 /* blend config update */ 247 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 248 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 249 pstate, format); 250 251 mixer[lm_idx].flush_mask |= flush_mask; 252 253 if (bg_alpha_enable && !format->alpha_enable) 254 mixer[lm_idx].mixer_op_mode = 0; 255 else 256 mixer[lm_idx].mixer_op_mode |= 257 1 << pstate->stage; 258 } 259 } 260 261 if (ctl->ops.set_active_pipes) 262 ctl->ops.set_active_pipes(ctl, fetch_active); 263 264 _dpu_crtc_program_lm_output_roi(crtc); 265 } 266 267 /** 268 * _dpu_crtc_blend_setup - configure crtc mixers 269 * @crtc: Pointer to drm crtc structure 270 */ 271 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 272 { 273 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 274 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 275 struct dpu_crtc_mixer *mixer = cstate->mixers; 276 struct dpu_hw_ctl *ctl; 277 struct dpu_hw_mixer *lm; 278 int i; 279 280 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 281 282 for (i = 0; i < cstate->num_mixers; i++) { 283 mixer[i].mixer_op_mode = 0; 284 mixer[i].flush_mask = 0; 285 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 286 mixer[i].lm_ctl->ops.clear_all_blendstages( 287 mixer[i].lm_ctl); 288 } 289 290 /* initialize stage cfg */ 291 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 292 293 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 294 295 for (i = 0; i < cstate->num_mixers; i++) { 296 ctl = mixer[i].lm_ctl; 297 lm = mixer[i].hw_lm; 298 299 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 300 301 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 302 mixer[i].hw_lm->idx); 303 304 /* stage config flush mask */ 305 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 306 307 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 308 mixer[i].hw_lm->idx - LM_0, 309 mixer[i].mixer_op_mode, 310 ctl->idx - CTL_0, 311 mixer[i].flush_mask); 312 313 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 314 &dpu_crtc->stage_cfg); 315 } 316 } 317 318 /** 319 * _dpu_crtc_complete_flip - signal pending page_flip events 320 * Any pending vblank events are added to the vblank_event_list 321 * so that the next vblank interrupt shall signal them. 322 * However PAGE_FLIP events are not handled through the vblank_event_list. 323 * This API signals any pending PAGE_FLIP events requested through 324 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 325 * @crtc: Pointer to drm crtc structure 326 */ 327 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 328 { 329 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 330 struct drm_device *dev = crtc->dev; 331 unsigned long flags; 332 333 spin_lock_irqsave(&dev->event_lock, flags); 334 if (dpu_crtc->event) { 335 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 336 dpu_crtc->event); 337 trace_dpu_crtc_complete_flip(DRMID(crtc)); 338 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 339 dpu_crtc->event = NULL; 340 } 341 spin_unlock_irqrestore(&dev->event_lock, flags); 342 } 343 344 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 345 { 346 struct drm_encoder *encoder; 347 348 /* 349 * TODO: This function is called from dpu debugfs and as part of atomic 350 * check. When called from debugfs, the crtc->mutex must be held to 351 * read crtc->state. However reading crtc->state from atomic check isn't 352 * allowed (unless you have a good reason, a big comment, and a deep 353 * understanding of how the atomic/modeset locks work (<- and this is 354 * probably not possible)). So we'll keep the WARN_ON here for now, but 355 * really we need to figure out a better way to track our operating mode 356 */ 357 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 358 359 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 360 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 361 return dpu_encoder_get_intf_mode(encoder); 362 363 return INTF_MODE_NONE; 364 } 365 366 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 367 { 368 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 369 370 /* keep statistics on vblank callback - with auto reset via debugfs */ 371 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 372 dpu_crtc->vblank_cb_time = ktime_get(); 373 else 374 dpu_crtc->vblank_cb_count++; 375 drm_crtc_handle_vblank(crtc); 376 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 377 } 378 379 static void dpu_crtc_frame_event_work(struct kthread_work *work) 380 { 381 struct dpu_crtc_frame_event *fevent = container_of(work, 382 struct dpu_crtc_frame_event, work); 383 struct drm_crtc *crtc = fevent->crtc; 384 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 385 unsigned long flags; 386 bool frame_done = false; 387 388 DPU_ATRACE_BEGIN("crtc_frame_event"); 389 390 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 391 ktime_to_ns(fevent->ts)); 392 393 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 394 | DPU_ENCODER_FRAME_EVENT_ERROR 395 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 396 397 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 398 /* ignore vblank when not pending */ 399 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 400 /* release bandwidth and other resources */ 401 trace_dpu_crtc_frame_event_done(DRMID(crtc), 402 fevent->event); 403 dpu_core_perf_crtc_release_bw(crtc); 404 } else { 405 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 406 fevent->event); 407 } 408 409 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 410 | DPU_ENCODER_FRAME_EVENT_ERROR)) 411 frame_done = true; 412 } 413 414 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 415 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 416 crtc->base.id, ktime_to_ns(fevent->ts)); 417 418 if (frame_done) 419 complete_all(&dpu_crtc->frame_done_comp); 420 421 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 422 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 423 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 424 DPU_ATRACE_END("crtc_frame_event"); 425 } 426 427 /* 428 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 429 * registers this API to encoder for all frame event callbacks like 430 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 431 * from different context - IRQ, user thread, commit_thread, etc. Each event 432 * should be carefully reviewed and should be processed in proper task context 433 * to avoid schedulin delay or properly manage the irq context's bottom half 434 * processing. 435 */ 436 static void dpu_crtc_frame_event_cb(void *data, u32 event) 437 { 438 struct drm_crtc *crtc = (struct drm_crtc *)data; 439 struct dpu_crtc *dpu_crtc; 440 struct msm_drm_private *priv; 441 struct dpu_crtc_frame_event *fevent; 442 unsigned long flags; 443 u32 crtc_id; 444 445 /* Nothing to do on idle event */ 446 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 447 return; 448 449 dpu_crtc = to_dpu_crtc(crtc); 450 priv = crtc->dev->dev_private; 451 crtc_id = drm_crtc_index(crtc); 452 453 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 454 455 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 456 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 457 struct dpu_crtc_frame_event, list); 458 if (fevent) 459 list_del_init(&fevent->list); 460 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 461 462 if (!fevent) { 463 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 464 return; 465 } 466 467 fevent->event = event; 468 fevent->crtc = crtc; 469 fevent->ts = ktime_get(); 470 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 471 } 472 473 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 474 { 475 trace_dpu_crtc_complete_commit(DRMID(crtc)); 476 dpu_core_perf_crtc_update(crtc, 0, false); 477 _dpu_crtc_complete_flip(crtc); 478 } 479 480 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 481 struct drm_crtc_state *state) 482 { 483 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 484 struct drm_display_mode *adj_mode = &state->adjusted_mode; 485 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 486 int i; 487 488 for (i = 0; i < cstate->num_mixers; i++) { 489 struct drm_rect *r = &cstate->lm_bounds[i]; 490 r->x1 = crtc_split_width * i; 491 r->y1 = 0; 492 r->x2 = r->x1 + crtc_split_width; 493 r->y2 = adj_mode->vdisplay; 494 495 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 496 } 497 } 498 499 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 500 struct dpu_hw_pcc_cfg *cfg) 501 { 502 struct drm_color_ctm *ctm; 503 504 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 505 506 ctm = (struct drm_color_ctm *)state->ctm->data; 507 508 if (!ctm) 509 return; 510 511 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 512 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 513 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 514 515 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 516 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 517 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 518 519 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 520 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 521 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 522 } 523 524 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 525 { 526 struct drm_crtc_state *state = crtc->state; 527 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 528 struct dpu_crtc_mixer *mixer = cstate->mixers; 529 struct dpu_hw_pcc_cfg cfg; 530 struct dpu_hw_ctl *ctl; 531 struct dpu_hw_dspp *dspp; 532 int i; 533 534 535 if (!state->color_mgmt_changed) 536 return; 537 538 for (i = 0; i < cstate->num_mixers; i++) { 539 ctl = mixer[i].lm_ctl; 540 dspp = mixer[i].hw_dspp; 541 542 if (!dspp || !dspp->ops.setup_pcc) 543 continue; 544 545 if (!state->ctm) { 546 dspp->ops.setup_pcc(dspp, NULL); 547 } else { 548 _dpu_crtc_get_pcc_coeff(state, &cfg); 549 dspp->ops.setup_pcc(dspp, &cfg); 550 } 551 552 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 553 mixer[i].hw_dspp->idx); 554 555 /* stage config flush mask */ 556 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 557 558 DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n", 559 mixer[i].hw_lm->idx - DSPP_0, 560 ctl->idx - CTL_0, 561 mixer[i].flush_mask); 562 } 563 } 564 565 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 566 struct drm_atomic_state *state) 567 { 568 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 569 struct drm_encoder *encoder; 570 571 if (!crtc->state->enable) { 572 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 573 crtc->base.id, crtc->state->enable); 574 return; 575 } 576 577 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 578 579 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 580 581 /* encoder will trigger pending mask now */ 582 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 583 dpu_encoder_trigger_kickoff_pending(encoder); 584 585 /* 586 * If no mixers have been allocated in dpu_crtc_atomic_check(), 587 * it means we are trying to flush a CRTC whose state is disabled: 588 * nothing else needs to be done. 589 */ 590 if (unlikely(!cstate->num_mixers)) 591 return; 592 593 _dpu_crtc_blend_setup(crtc); 594 595 _dpu_crtc_setup_cp_blocks(crtc); 596 597 /* 598 * PP_DONE irq is only used by command mode for now. 599 * It is better to request pending before FLUSH and START trigger 600 * to make sure no pp_done irq missed. 601 * This is safe because no pp_done will happen before SW trigger 602 * in command mode. 603 */ 604 } 605 606 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 607 struct drm_atomic_state *state) 608 { 609 struct dpu_crtc *dpu_crtc; 610 struct drm_device *dev; 611 struct drm_plane *plane; 612 struct msm_drm_private *priv; 613 unsigned long flags; 614 struct dpu_crtc_state *cstate; 615 616 if (!crtc->state->enable) { 617 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 618 crtc->base.id, crtc->state->enable); 619 return; 620 } 621 622 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 623 624 dpu_crtc = to_dpu_crtc(crtc); 625 cstate = to_dpu_crtc_state(crtc->state); 626 dev = crtc->dev; 627 priv = dev->dev_private; 628 629 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 630 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 631 return; 632 } 633 634 WARN_ON(dpu_crtc->event); 635 spin_lock_irqsave(&dev->event_lock, flags); 636 dpu_crtc->event = crtc->state->event; 637 crtc->state->event = NULL; 638 spin_unlock_irqrestore(&dev->event_lock, flags); 639 640 /* 641 * If no mixers has been allocated in dpu_crtc_atomic_check(), 642 * it means we are trying to flush a CRTC whose state is disabled: 643 * nothing else needs to be done. 644 */ 645 if (unlikely(!cstate->num_mixers)) 646 return; 647 648 /* update performance setting before crtc kickoff */ 649 dpu_core_perf_crtc_update(crtc, 1, false); 650 651 /* 652 * Final plane updates: Give each plane a chance to complete all 653 * required writes/flushing before crtc's "flush 654 * everything" call below. 655 */ 656 drm_atomic_crtc_for_each_plane(plane, crtc) { 657 if (dpu_crtc->smmu_state.transition_error) 658 dpu_plane_set_error(plane, true); 659 dpu_plane_flush(plane); 660 } 661 662 /* Kickoff will be scheduled by outer layer */ 663 } 664 665 /** 666 * dpu_crtc_destroy_state - state destroy hook 667 * @crtc: drm CRTC 668 * @state: CRTC state object to release 669 */ 670 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 671 struct drm_crtc_state *state) 672 { 673 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 674 675 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 676 677 __drm_atomic_helper_crtc_destroy_state(state); 678 679 kfree(cstate); 680 } 681 682 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 683 { 684 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 685 int ret, rc = 0; 686 687 if (!atomic_read(&dpu_crtc->frame_pending)) { 688 DRM_DEBUG_ATOMIC("no frames pending\n"); 689 return 0; 690 } 691 692 DPU_ATRACE_BEGIN("frame done completion wait"); 693 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 694 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 695 if (!ret) { 696 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 697 rc = -ETIMEDOUT; 698 } 699 DPU_ATRACE_END("frame done completion wait"); 700 701 return rc; 702 } 703 704 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 705 { 706 struct drm_encoder *encoder; 707 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 708 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 709 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 710 711 /* 712 * If no mixers has been allocated in dpu_crtc_atomic_check(), 713 * it means we are trying to start a CRTC whose state is disabled: 714 * nothing else needs to be done. 715 */ 716 if (unlikely(!cstate->num_mixers)) 717 return; 718 719 DPU_ATRACE_BEGIN("crtc_commit"); 720 721 /* 722 * Encoder will flush/start now, unless it has a tx pending. If so, it 723 * may delay and flush at an irq event (e.g. ppdone) 724 */ 725 drm_for_each_encoder_mask(encoder, crtc->dev, 726 crtc->state->encoder_mask) 727 dpu_encoder_prepare_for_kickoff(encoder); 728 729 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 730 /* acquire bandwidth and other resources */ 731 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 732 } else 733 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 734 735 dpu_crtc->play_count++; 736 737 dpu_vbif_clear_errors(dpu_kms); 738 739 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 740 dpu_encoder_kickoff(encoder); 741 742 reinit_completion(&dpu_crtc->frame_done_comp); 743 DPU_ATRACE_END("crtc_commit"); 744 } 745 746 static void dpu_crtc_reset(struct drm_crtc *crtc) 747 { 748 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 749 750 if (crtc->state) 751 dpu_crtc_destroy_state(crtc, crtc->state); 752 753 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 754 } 755 756 /** 757 * dpu_crtc_duplicate_state - state duplicate hook 758 * @crtc: Pointer to drm crtc structure 759 */ 760 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 761 { 762 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 763 764 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 765 if (!cstate) { 766 DPU_ERROR("failed to allocate state\n"); 767 return NULL; 768 } 769 770 /* duplicate base helper */ 771 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 772 773 return &cstate->base; 774 } 775 776 static void dpu_crtc_disable(struct drm_crtc *crtc, 777 struct drm_atomic_state *state) 778 { 779 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 780 crtc); 781 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 782 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 783 struct drm_encoder *encoder; 784 unsigned long flags; 785 bool release_bandwidth = false; 786 787 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 788 789 /* Disable/save vblank irq handling */ 790 drm_crtc_vblank_off(crtc); 791 792 drm_for_each_encoder_mask(encoder, crtc->dev, 793 old_crtc_state->encoder_mask) { 794 /* in video mode, we hold an extra bandwidth reference 795 * as we cannot drop bandwidth at frame-done if any 796 * crtc is being used in video mode. 797 */ 798 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 799 release_bandwidth = true; 800 dpu_encoder_assign_crtc(encoder, NULL); 801 } 802 803 /* wait for frame_event_done completion */ 804 if (_dpu_crtc_wait_for_frame_done(crtc)) 805 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 806 crtc->base.id, 807 atomic_read(&dpu_crtc->frame_pending)); 808 809 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 810 dpu_crtc->enabled = false; 811 812 if (atomic_read(&dpu_crtc->frame_pending)) { 813 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 814 atomic_read(&dpu_crtc->frame_pending)); 815 if (release_bandwidth) 816 dpu_core_perf_crtc_release_bw(crtc); 817 atomic_set(&dpu_crtc->frame_pending, 0); 818 } 819 820 dpu_core_perf_crtc_update(crtc, 0, true); 821 822 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 823 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 824 825 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 826 cstate->num_mixers = 0; 827 828 /* disable clk & bw control until clk & bw properties are set */ 829 cstate->bw_control = false; 830 cstate->bw_split_vote = false; 831 832 if (crtc->state->event && !crtc->state->active) { 833 spin_lock_irqsave(&crtc->dev->event_lock, flags); 834 drm_crtc_send_vblank_event(crtc, crtc->state->event); 835 crtc->state->event = NULL; 836 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 837 } 838 839 pm_runtime_put_sync(crtc->dev->dev); 840 } 841 842 static void dpu_crtc_enable(struct drm_crtc *crtc, 843 struct drm_atomic_state *state) 844 { 845 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 846 struct drm_encoder *encoder; 847 bool request_bandwidth = false; 848 849 pm_runtime_get_sync(crtc->dev->dev); 850 851 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 852 853 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 854 /* in video mode, we hold an extra bandwidth reference 855 * as we cannot drop bandwidth at frame-done if any 856 * crtc is being used in video mode. 857 */ 858 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 859 request_bandwidth = true; 860 dpu_encoder_register_frame_event_callback(encoder, 861 dpu_crtc_frame_event_cb, (void *)crtc); 862 } 863 864 if (request_bandwidth) 865 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 866 867 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 868 dpu_crtc->enabled = true; 869 870 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 871 dpu_encoder_assign_crtc(encoder, crtc); 872 873 /* Enable/restore vblank irq handling */ 874 drm_crtc_vblank_on(crtc); 875 } 876 877 struct plane_state { 878 struct dpu_plane_state *dpu_pstate; 879 const struct drm_plane_state *drm_pstate; 880 int stage; 881 u32 pipe_id; 882 }; 883 884 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 885 struct drm_atomic_state *state) 886 { 887 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 888 crtc); 889 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 890 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 891 struct plane_state *pstates; 892 893 const struct drm_plane_state *pstate; 894 struct drm_plane *plane; 895 struct drm_display_mode *mode; 896 897 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 898 899 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 900 int multirect_count = 0; 901 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 902 int left_zpos_cnt = 0, right_zpos_cnt = 0; 903 struct drm_rect crtc_rect = { 0 }; 904 905 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 906 907 if (!crtc_state->enable || !crtc_state->active) { 908 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 909 crtc->base.id, crtc_state->enable, 910 crtc_state->active); 911 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 912 goto end; 913 } 914 915 mode = &crtc_state->adjusted_mode; 916 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 917 918 /* force a full mode set if active state changed */ 919 if (crtc_state->active_changed) 920 crtc_state->mode_changed = true; 921 922 memset(pipe_staged, 0, sizeof(pipe_staged)); 923 924 if (cstate->num_mixers) { 925 mixer_width = mode->hdisplay / cstate->num_mixers; 926 927 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 928 } 929 930 crtc_rect.x2 = mode->hdisplay; 931 crtc_rect.y2 = mode->vdisplay; 932 933 /* get plane state for all drm planes associated with crtc state */ 934 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 935 struct drm_rect dst, clip = crtc_rect; 936 937 if (IS_ERR_OR_NULL(pstate)) { 938 rc = PTR_ERR(pstate); 939 DPU_ERROR("%s: failed to get plane%d state, %d\n", 940 dpu_crtc->name, plane->base.id, rc); 941 goto end; 942 } 943 if (cnt >= DPU_STAGE_MAX * 4) 944 continue; 945 946 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 947 pstates[cnt].drm_pstate = pstate; 948 pstates[cnt].stage = pstate->normalized_zpos; 949 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 950 951 if (pipe_staged[pstates[cnt].pipe_id]) { 952 multirect_plane[multirect_count].r0 = 953 pipe_staged[pstates[cnt].pipe_id]; 954 multirect_plane[multirect_count].r1 = pstate; 955 multirect_count++; 956 957 pipe_staged[pstates[cnt].pipe_id] = NULL; 958 } else { 959 pipe_staged[pstates[cnt].pipe_id] = pstate; 960 } 961 962 cnt++; 963 964 dst = drm_plane_state_dest(pstate); 965 if (!drm_rect_intersect(&clip, &dst)) { 966 DPU_ERROR("invalid vertical/horizontal destination\n"); 967 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 968 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 969 DRM_RECT_ARG(&dst)); 970 rc = -E2BIG; 971 goto end; 972 } 973 } 974 975 for (i = 1; i < SSPP_MAX; i++) { 976 if (pipe_staged[i]) { 977 dpu_plane_clear_multirect(pipe_staged[i]); 978 979 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 980 DPU_ERROR( 981 "r1 only virt plane:%d not supported\n", 982 pipe_staged[i]->plane->base.id); 983 rc = -EINVAL; 984 goto end; 985 } 986 } 987 } 988 989 z_pos = -1; 990 for (i = 0; i < cnt; i++) { 991 /* reset counts at every new blend stage */ 992 if (pstates[i].stage != z_pos) { 993 left_zpos_cnt = 0; 994 right_zpos_cnt = 0; 995 z_pos = pstates[i].stage; 996 } 997 998 /* verify z_pos setting before using it */ 999 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1000 DPU_ERROR("> %d plane stages assigned\n", 1001 DPU_STAGE_MAX - DPU_STAGE_0); 1002 rc = -EINVAL; 1003 goto end; 1004 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1005 if (left_zpos_cnt == 2) { 1006 DPU_ERROR("> 2 planes @ stage %d on left\n", 1007 z_pos); 1008 rc = -EINVAL; 1009 goto end; 1010 } 1011 left_zpos_cnt++; 1012 1013 } else { 1014 if (right_zpos_cnt == 2) { 1015 DPU_ERROR("> 2 planes @ stage %d on right\n", 1016 z_pos); 1017 rc = -EINVAL; 1018 goto end; 1019 } 1020 right_zpos_cnt++; 1021 } 1022 1023 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1024 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos); 1025 } 1026 1027 for (i = 0; i < multirect_count; i++) { 1028 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1029 DPU_ERROR( 1030 "multirect validation failed for planes (%d - %d)\n", 1031 multirect_plane[i].r0->plane->base.id, 1032 multirect_plane[i].r1->plane->base.id); 1033 rc = -EINVAL; 1034 goto end; 1035 } 1036 } 1037 1038 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1039 1040 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1041 if (rc) { 1042 DPU_ERROR("crtc%d failed performance check %d\n", 1043 crtc->base.id, rc); 1044 goto end; 1045 } 1046 1047 /* validate source split: 1048 * use pstates sorted by stage to check planes on same stage 1049 * we assume that all pipes are in source split so its valid to compare 1050 * without taking into account left/right mixer placement 1051 */ 1052 for (i = 1; i < cnt; i++) { 1053 struct plane_state *prv_pstate, *cur_pstate; 1054 struct drm_rect left_rect, right_rect; 1055 int32_t left_pid, right_pid; 1056 int32_t stage; 1057 1058 prv_pstate = &pstates[i - 1]; 1059 cur_pstate = &pstates[i]; 1060 if (prv_pstate->stage != cur_pstate->stage) 1061 continue; 1062 1063 stage = cur_pstate->stage; 1064 1065 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1066 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1067 1068 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1069 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1070 1071 if (right_rect.x1 < left_rect.x1) { 1072 swap(left_pid, right_pid); 1073 swap(left_rect, right_rect); 1074 } 1075 1076 /** 1077 * - planes are enumerated in pipe-priority order such that 1078 * planes with lower drm_id must be left-most in a shared 1079 * blend-stage when using source split. 1080 * - planes in source split must be contiguous in width 1081 * - planes in source split must have same dest yoff and height 1082 */ 1083 if (right_pid < left_pid) { 1084 DPU_ERROR( 1085 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1086 stage, left_pid, right_pid); 1087 rc = -EINVAL; 1088 goto end; 1089 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1090 DPU_ERROR("non-contiguous coordinates for src split. " 1091 "stage: %d left: " DRM_RECT_FMT " right: " 1092 DRM_RECT_FMT "\n", stage, 1093 DRM_RECT_ARG(&left_rect), 1094 DRM_RECT_ARG(&right_rect)); 1095 rc = -EINVAL; 1096 goto end; 1097 } else if (left_rect.y1 != right_rect.y1 || 1098 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1099 DPU_ERROR("source split at stage: %d. invalid " 1100 "yoff/height: left: " DRM_RECT_FMT " right: " 1101 DRM_RECT_FMT "\n", stage, 1102 DRM_RECT_ARG(&left_rect), 1103 DRM_RECT_ARG(&right_rect)); 1104 rc = -EINVAL; 1105 goto end; 1106 } 1107 } 1108 1109 end: 1110 kfree(pstates); 1111 return rc; 1112 } 1113 1114 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1115 { 1116 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1117 struct drm_encoder *enc; 1118 1119 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1120 1121 /* 1122 * Normally we would iterate through encoder_mask in crtc state to find 1123 * attached encoders. In this case, we might be disabling vblank _after_ 1124 * encoder_mask has been cleared. 1125 * 1126 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1127 * disable (which is also after encoder_mask is cleared). So instead of 1128 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1129 * currently assigned to our crtc. 1130 * 1131 * Note also that this function cannot be called while crtc is disabled 1132 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1133 * about the assigned crtcs being inconsistent with the current state 1134 * (which means no need to worry about modeset locks). 1135 */ 1136 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1137 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1138 dpu_crtc); 1139 1140 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1141 } 1142 1143 return 0; 1144 } 1145 1146 #ifdef CONFIG_DEBUG_FS 1147 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1148 { 1149 struct dpu_crtc *dpu_crtc; 1150 struct dpu_plane_state *pstate = NULL; 1151 struct dpu_crtc_mixer *m; 1152 1153 struct drm_crtc *crtc; 1154 struct drm_plane *plane; 1155 struct drm_display_mode *mode; 1156 struct drm_framebuffer *fb; 1157 struct drm_plane_state *state; 1158 struct dpu_crtc_state *cstate; 1159 1160 int i, out_width; 1161 1162 dpu_crtc = s->private; 1163 crtc = &dpu_crtc->base; 1164 1165 drm_modeset_lock_all(crtc->dev); 1166 cstate = to_dpu_crtc_state(crtc->state); 1167 1168 mode = &crtc->state->adjusted_mode; 1169 out_width = mode->hdisplay / cstate->num_mixers; 1170 1171 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1172 mode->hdisplay, mode->vdisplay); 1173 1174 seq_puts(s, "\n"); 1175 1176 for (i = 0; i < cstate->num_mixers; ++i) { 1177 m = &cstate->mixers[i]; 1178 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1179 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1180 out_width, mode->vdisplay); 1181 } 1182 1183 seq_puts(s, "\n"); 1184 1185 drm_atomic_crtc_for_each_plane(plane, crtc) { 1186 pstate = to_dpu_plane_state(plane->state); 1187 state = plane->state; 1188 1189 if (!pstate || !state) 1190 continue; 1191 1192 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1193 pstate->stage); 1194 1195 if (plane->state->fb) { 1196 fb = plane->state->fb; 1197 1198 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1199 fb->base.id, (char *) &fb->format->format, 1200 fb->width, fb->height); 1201 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1202 seq_printf(s, "cpp[%d]:%u ", 1203 i, fb->format->cpp[i]); 1204 seq_puts(s, "\n\t"); 1205 1206 seq_printf(s, "modifier:%8llu ", fb->modifier); 1207 seq_puts(s, "\n"); 1208 1209 seq_puts(s, "\t"); 1210 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1211 seq_printf(s, "pitches[%d]:%8u ", i, 1212 fb->pitches[i]); 1213 seq_puts(s, "\n"); 1214 1215 seq_puts(s, "\t"); 1216 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1217 seq_printf(s, "offsets[%d]:%8u ", i, 1218 fb->offsets[i]); 1219 seq_puts(s, "\n"); 1220 } 1221 1222 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1223 state->src_x, state->src_y, state->src_w, state->src_h); 1224 1225 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1226 state->crtc_x, state->crtc_y, state->crtc_w, 1227 state->crtc_h); 1228 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1229 pstate->multirect_mode, pstate->multirect_index); 1230 1231 seq_puts(s, "\n"); 1232 } 1233 if (dpu_crtc->vblank_cb_count) { 1234 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1235 s64 diff_ms = ktime_to_ms(diff); 1236 s64 fps = diff_ms ? div_s64( 1237 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1238 1239 seq_printf(s, 1240 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1241 fps, dpu_crtc->vblank_cb_count, 1242 ktime_to_ms(diff), dpu_crtc->play_count); 1243 1244 /* reset time & count for next measurement */ 1245 dpu_crtc->vblank_cb_count = 0; 1246 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1247 } 1248 1249 drm_modeset_unlock_all(crtc->dev); 1250 1251 return 0; 1252 } 1253 1254 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1255 1256 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1257 { 1258 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1259 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1260 1261 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1262 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1263 seq_printf(s, "core_clk_rate: %llu\n", 1264 dpu_crtc->cur_perf.core_clk_rate); 1265 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1266 seq_printf(s, "max_per_pipe_ib: %llu\n", 1267 dpu_crtc->cur_perf.max_per_pipe_ib); 1268 1269 return 0; 1270 } 1271 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1272 1273 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1274 { 1275 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1276 1277 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1278 crtc->dev->primary->debugfs_root); 1279 1280 debugfs_create_file("status", 0400, 1281 dpu_crtc->debugfs_root, 1282 dpu_crtc, &_dpu_debugfs_status_fops); 1283 debugfs_create_file("state", 0600, 1284 dpu_crtc->debugfs_root, 1285 &dpu_crtc->base, 1286 &dpu_crtc_debugfs_state_fops); 1287 1288 return 0; 1289 } 1290 #else 1291 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1292 { 1293 return 0; 1294 } 1295 #endif /* CONFIG_DEBUG_FS */ 1296 1297 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1298 { 1299 return _dpu_crtc_init_debugfs(crtc); 1300 } 1301 1302 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1303 { 1304 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1305 1306 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1307 } 1308 1309 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1310 .set_config = drm_atomic_helper_set_config, 1311 .destroy = dpu_crtc_destroy, 1312 .page_flip = drm_atomic_helper_page_flip, 1313 .reset = dpu_crtc_reset, 1314 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1315 .atomic_destroy_state = dpu_crtc_destroy_state, 1316 .late_register = dpu_crtc_late_register, 1317 .early_unregister = dpu_crtc_early_unregister, 1318 .enable_vblank = msm_crtc_enable_vblank, 1319 .disable_vblank = msm_crtc_disable_vblank, 1320 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1321 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1322 }; 1323 1324 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1325 .atomic_disable = dpu_crtc_disable, 1326 .atomic_enable = dpu_crtc_enable, 1327 .atomic_check = dpu_crtc_atomic_check, 1328 .atomic_begin = dpu_crtc_atomic_begin, 1329 .atomic_flush = dpu_crtc_atomic_flush, 1330 .get_scanout_position = dpu_crtc_get_scanout_position, 1331 }; 1332 1333 /* initialize crtc */ 1334 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1335 struct drm_plane *cursor) 1336 { 1337 struct drm_crtc *crtc = NULL; 1338 struct dpu_crtc *dpu_crtc = NULL; 1339 int i; 1340 1341 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1342 if (!dpu_crtc) 1343 return ERR_PTR(-ENOMEM); 1344 1345 crtc = &dpu_crtc->base; 1346 crtc->dev = dev; 1347 1348 spin_lock_init(&dpu_crtc->spin_lock); 1349 atomic_set(&dpu_crtc->frame_pending, 0); 1350 1351 init_completion(&dpu_crtc->frame_done_comp); 1352 1353 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1354 1355 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1356 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1357 list_add(&dpu_crtc->frame_events[i].list, 1358 &dpu_crtc->frame_event_list); 1359 kthread_init_work(&dpu_crtc->frame_events[i].work, 1360 dpu_crtc_frame_event_work); 1361 } 1362 1363 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1364 NULL); 1365 1366 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1367 1368 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1369 1370 /* save user friendly CRTC name for later */ 1371 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1372 1373 /* initialize event handling */ 1374 spin_lock_init(&dpu_crtc->event_lock); 1375 1376 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1377 return crtc; 1378 } 1379