1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0 34 #define DPU_DRM_BLEND_OP_OPAQUE 1 35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2 36 #define DPU_DRM_BLEND_OP_COVERAGE 3 37 #define DPU_DRM_BLEND_OP_MAX 4 38 39 /* layer mixer index on dpu_crtc */ 40 #define LEFT_MIXER 0 41 #define RIGHT_MIXER 1 42 43 /* timeout in ms waiting for frame done */ 44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 45 46 #define CONVERT_S3_15(val) \ 47 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 48 49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 50 { 51 struct msm_drm_private *priv = crtc->dev->dev_private; 52 53 return to_dpu_kms(priv->kms); 54 } 55 56 static void dpu_crtc_destroy(struct drm_crtc *crtc) 57 { 58 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 59 60 DPU_DEBUG("\n"); 61 62 if (!crtc) 63 return; 64 65 drm_crtc_cleanup(crtc); 66 kfree(dpu_crtc); 67 } 68 69 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 70 struct dpu_plane_state *pstate, struct dpu_format *format) 71 { 72 struct dpu_hw_mixer *lm = mixer->hw_lm; 73 uint32_t blend_op; 74 struct drm_format_name_buf format_name; 75 76 /* default to opaque blending */ 77 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 78 DPU_BLEND_BG_ALPHA_BG_CONST; 79 80 if (format->alpha_enable) { 81 /* coverage blending */ 82 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 83 DPU_BLEND_BG_ALPHA_FG_PIXEL | 84 DPU_BLEND_BG_INV_ALPHA; 85 } 86 87 lm->ops.setup_blend_config(lm, pstate->stage, 88 0xFF, 0, blend_op); 89 90 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n", 91 drm_get_format_name(format->base.pixel_format, &format_name), 92 format->alpha_enable, blend_op); 93 } 94 95 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 96 { 97 struct dpu_crtc_state *crtc_state; 98 int lm_idx, lm_horiz_position; 99 100 crtc_state = to_dpu_crtc_state(crtc->state); 101 102 lm_horiz_position = 0; 103 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 104 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 105 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 106 struct dpu_hw_mixer_cfg cfg; 107 108 if (!lm_roi || !drm_rect_visible(lm_roi)) 109 continue; 110 111 cfg.out_width = drm_rect_width(lm_roi); 112 cfg.out_height = drm_rect_height(lm_roi); 113 cfg.right_mixer = lm_horiz_position++; 114 cfg.flags = 0; 115 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 116 } 117 } 118 119 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 120 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 121 { 122 struct drm_plane *plane; 123 struct drm_framebuffer *fb; 124 struct drm_plane_state *state; 125 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 126 struct dpu_plane_state *pstate = NULL; 127 struct dpu_format *format; 128 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 129 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 130 131 u32 flush_mask; 132 uint32_t stage_idx, lm_idx; 133 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 134 bool bg_alpha_enable = false; 135 136 drm_atomic_crtc_for_each_plane(plane, crtc) { 137 state = plane->state; 138 if (!state) 139 continue; 140 141 pstate = to_dpu_plane_state(state); 142 fb = state->fb; 143 144 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 145 146 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n", 147 crtc->base.id, 148 pstate->stage, 149 plane->base.id, 150 dpu_plane_pipe(plane) - SSPP_VIG0, 151 state->fb ? state->fb->base.id : -1); 152 153 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 154 155 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 156 bg_alpha_enable = true; 157 158 stage_idx = zpos_cnt[pstate->stage]++; 159 stage_cfg->stage[pstate->stage][stage_idx] = 160 dpu_plane_pipe(plane); 161 stage_cfg->multirect_index[pstate->stage][stage_idx] = 162 pstate->multirect_index; 163 164 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 165 state, pstate, stage_idx, 166 dpu_plane_pipe(plane) - SSPP_VIG0, 167 format->base.pixel_format, 168 fb ? fb->modifier : 0); 169 170 /* blend config update */ 171 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 172 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 173 pstate, format); 174 175 mixer[lm_idx].flush_mask |= flush_mask; 176 177 if (bg_alpha_enable && !format->alpha_enable) 178 mixer[lm_idx].mixer_op_mode = 0; 179 else 180 mixer[lm_idx].mixer_op_mode |= 181 1 << pstate->stage; 182 } 183 } 184 185 _dpu_crtc_program_lm_output_roi(crtc); 186 } 187 188 /** 189 * _dpu_crtc_blend_setup - configure crtc mixers 190 * @crtc: Pointer to drm crtc structure 191 */ 192 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 193 { 194 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 195 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 196 struct dpu_crtc_mixer *mixer = cstate->mixers; 197 struct dpu_hw_ctl *ctl; 198 struct dpu_hw_mixer *lm; 199 int i; 200 201 DPU_DEBUG("%s\n", dpu_crtc->name); 202 203 for (i = 0; i < cstate->num_mixers; i++) { 204 mixer[i].mixer_op_mode = 0; 205 mixer[i].flush_mask = 0; 206 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 207 mixer[i].lm_ctl->ops.clear_all_blendstages( 208 mixer[i].lm_ctl); 209 } 210 211 /* initialize stage cfg */ 212 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 213 214 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 215 216 for (i = 0; i < cstate->num_mixers; i++) { 217 ctl = mixer[i].lm_ctl; 218 lm = mixer[i].hw_lm; 219 220 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 221 222 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 223 mixer[i].hw_lm->idx); 224 225 /* stage config flush mask */ 226 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 227 228 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 229 mixer[i].hw_lm->idx - LM_0, 230 mixer[i].mixer_op_mode, 231 ctl->idx - CTL_0, 232 mixer[i].flush_mask); 233 234 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 235 &dpu_crtc->stage_cfg); 236 } 237 } 238 239 /** 240 * _dpu_crtc_complete_flip - signal pending page_flip events 241 * Any pending vblank events are added to the vblank_event_list 242 * so that the next vblank interrupt shall signal them. 243 * However PAGE_FLIP events are not handled through the vblank_event_list. 244 * This API signals any pending PAGE_FLIP events requested through 245 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 246 * @crtc: Pointer to drm crtc structure 247 */ 248 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 249 { 250 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 251 struct drm_device *dev = crtc->dev; 252 unsigned long flags; 253 254 spin_lock_irqsave(&dev->event_lock, flags); 255 if (dpu_crtc->event) { 256 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 257 dpu_crtc->event); 258 trace_dpu_crtc_complete_flip(DRMID(crtc)); 259 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 260 dpu_crtc->event = NULL; 261 } 262 spin_unlock_irqrestore(&dev->event_lock, flags); 263 } 264 265 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 266 { 267 struct drm_encoder *encoder; 268 269 if (!crtc) { 270 DPU_ERROR("invalid crtc\n"); 271 return INTF_MODE_NONE; 272 } 273 274 /* 275 * TODO: This function is called from dpu debugfs and as part of atomic 276 * check. When called from debugfs, the crtc->mutex must be held to 277 * read crtc->state. However reading crtc->state from atomic check isn't 278 * allowed (unless you have a good reason, a big comment, and a deep 279 * understanding of how the atomic/modeset locks work (<- and this is 280 * probably not possible)). So we'll keep the WARN_ON here for now, but 281 * really we need to figure out a better way to track our operating mode 282 */ 283 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 284 285 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 286 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 287 return dpu_encoder_get_intf_mode(encoder); 288 289 return INTF_MODE_NONE; 290 } 291 292 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 293 { 294 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 295 296 /* keep statistics on vblank callback - with auto reset via debugfs */ 297 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 298 dpu_crtc->vblank_cb_time = ktime_get(); 299 else 300 dpu_crtc->vblank_cb_count++; 301 _dpu_crtc_complete_flip(crtc); 302 drm_crtc_handle_vblank(crtc); 303 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 304 } 305 306 static void dpu_crtc_frame_event_work(struct kthread_work *work) 307 { 308 struct dpu_crtc_frame_event *fevent = container_of(work, 309 struct dpu_crtc_frame_event, work); 310 struct drm_crtc *crtc = fevent->crtc; 311 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 312 unsigned long flags; 313 bool frame_done = false; 314 315 DPU_ATRACE_BEGIN("crtc_frame_event"); 316 317 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 318 ktime_to_ns(fevent->ts)); 319 320 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 321 | DPU_ENCODER_FRAME_EVENT_ERROR 322 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 323 324 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 325 /* ignore vblank when not pending */ 326 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 327 /* release bandwidth and other resources */ 328 trace_dpu_crtc_frame_event_done(DRMID(crtc), 329 fevent->event); 330 dpu_core_perf_crtc_release_bw(crtc); 331 } else { 332 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 333 fevent->event); 334 } 335 336 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE) 337 dpu_core_perf_crtc_update(crtc, 0, false); 338 339 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 340 | DPU_ENCODER_FRAME_EVENT_ERROR)) 341 frame_done = true; 342 } 343 344 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 345 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 346 crtc->base.id, ktime_to_ns(fevent->ts)); 347 348 if (frame_done) 349 complete_all(&dpu_crtc->frame_done_comp); 350 351 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 352 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 353 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 354 DPU_ATRACE_END("crtc_frame_event"); 355 } 356 357 /* 358 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 359 * registers this API to encoder for all frame event callbacks like 360 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 361 * from different context - IRQ, user thread, commit_thread, etc. Each event 362 * should be carefully reviewed and should be processed in proper task context 363 * to avoid schedulin delay or properly manage the irq context's bottom half 364 * processing. 365 */ 366 static void dpu_crtc_frame_event_cb(void *data, u32 event) 367 { 368 struct drm_crtc *crtc = (struct drm_crtc *)data; 369 struct dpu_crtc *dpu_crtc; 370 struct msm_drm_private *priv; 371 struct dpu_crtc_frame_event *fevent; 372 unsigned long flags; 373 u32 crtc_id; 374 375 /* Nothing to do on idle event */ 376 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 377 return; 378 379 dpu_crtc = to_dpu_crtc(crtc); 380 priv = crtc->dev->dev_private; 381 crtc_id = drm_crtc_index(crtc); 382 383 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 384 385 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 386 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 387 struct dpu_crtc_frame_event, list); 388 if (fevent) 389 list_del_init(&fevent->list); 390 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 391 392 if (!fevent) { 393 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 394 return; 395 } 396 397 fevent->event = event; 398 fevent->crtc = crtc; 399 fevent->ts = ktime_get(); 400 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 401 } 402 403 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 404 { 405 trace_dpu_crtc_complete_commit(DRMID(crtc)); 406 } 407 408 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 409 struct drm_crtc_state *state) 410 { 411 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 412 struct drm_display_mode *adj_mode = &state->adjusted_mode; 413 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 414 int i; 415 416 for (i = 0; i < cstate->num_mixers; i++) { 417 struct drm_rect *r = &cstate->lm_bounds[i]; 418 r->x1 = crtc_split_width * i; 419 r->y1 = 0; 420 r->x2 = r->x1 + crtc_split_width; 421 r->y2 = adj_mode->vdisplay; 422 423 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 424 } 425 426 drm_mode_debug_printmodeline(adj_mode); 427 } 428 429 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 430 struct dpu_hw_pcc_cfg *cfg) 431 { 432 struct drm_color_ctm *ctm; 433 434 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 435 436 ctm = (struct drm_color_ctm *)state->ctm->data; 437 438 if (!ctm) 439 return; 440 441 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 442 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 443 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 444 445 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 446 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 447 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 448 449 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 450 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 451 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 452 } 453 454 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 455 { 456 struct drm_crtc_state *state = crtc->state; 457 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 458 struct dpu_crtc_mixer *mixer = cstate->mixers; 459 struct dpu_hw_pcc_cfg cfg; 460 struct dpu_hw_ctl *ctl; 461 struct dpu_hw_mixer *lm; 462 struct dpu_hw_dspp *dspp; 463 int i; 464 465 466 if (!state->color_mgmt_changed) 467 return; 468 469 for (i = 0; i < cstate->num_mixers; i++) { 470 ctl = mixer[i].lm_ctl; 471 lm = mixer[i].hw_lm; 472 dspp = mixer[i].hw_dspp; 473 474 if (!dspp || !dspp->ops.setup_pcc) 475 continue; 476 477 if (!state->ctm) { 478 dspp->ops.setup_pcc(dspp, NULL); 479 } else { 480 _dpu_crtc_get_pcc_coeff(state, &cfg); 481 dspp->ops.setup_pcc(dspp, &cfg); 482 } 483 484 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 485 mixer[i].hw_dspp->idx); 486 487 /* stage config flush mask */ 488 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 489 490 DPU_DEBUG("lm %d, ctl %d, flush mask 0x%x\n", 491 mixer[i].hw_lm->idx - DSPP_0, 492 ctl->idx - CTL_0, 493 mixer[i].flush_mask); 494 } 495 } 496 497 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 498 struct drm_crtc_state *old_state) 499 { 500 struct dpu_crtc *dpu_crtc; 501 struct dpu_crtc_state *cstate; 502 struct drm_encoder *encoder; 503 struct drm_device *dev; 504 unsigned long flags; 505 506 if (!crtc) { 507 DPU_ERROR("invalid crtc\n"); 508 return; 509 } 510 511 if (!crtc->state->enable) { 512 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n", 513 crtc->base.id, crtc->state->enable); 514 return; 515 } 516 517 DPU_DEBUG("crtc%d\n", crtc->base.id); 518 519 dpu_crtc = to_dpu_crtc(crtc); 520 cstate = to_dpu_crtc_state(crtc->state); 521 dev = crtc->dev; 522 523 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 524 525 if (dpu_crtc->event) { 526 WARN_ON(dpu_crtc->event); 527 } else { 528 spin_lock_irqsave(&dev->event_lock, flags); 529 dpu_crtc->event = crtc->state->event; 530 crtc->state->event = NULL; 531 spin_unlock_irqrestore(&dev->event_lock, flags); 532 } 533 534 /* encoder will trigger pending mask now */ 535 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 536 dpu_encoder_trigger_kickoff_pending(encoder); 537 538 /* 539 * If no mixers have been allocated in dpu_crtc_atomic_check(), 540 * it means we are trying to flush a CRTC whose state is disabled: 541 * nothing else needs to be done. 542 */ 543 if (unlikely(!cstate->num_mixers)) 544 return; 545 546 _dpu_crtc_blend_setup(crtc); 547 548 _dpu_crtc_setup_cp_blocks(crtc); 549 550 /* 551 * PP_DONE irq is only used by command mode for now. 552 * It is better to request pending before FLUSH and START trigger 553 * to make sure no pp_done irq missed. 554 * This is safe because no pp_done will happen before SW trigger 555 * in command mode. 556 */ 557 } 558 559 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 560 struct drm_crtc_state *old_crtc_state) 561 { 562 struct dpu_crtc *dpu_crtc; 563 struct drm_device *dev; 564 struct drm_plane *plane; 565 struct msm_drm_private *priv; 566 unsigned long flags; 567 struct dpu_crtc_state *cstate; 568 569 if (!crtc->state->enable) { 570 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n", 571 crtc->base.id, crtc->state->enable); 572 return; 573 } 574 575 DPU_DEBUG("crtc%d\n", crtc->base.id); 576 577 dpu_crtc = to_dpu_crtc(crtc); 578 cstate = to_dpu_crtc_state(crtc->state); 579 dev = crtc->dev; 580 priv = dev->dev_private; 581 582 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 583 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 584 return; 585 } 586 587 if (dpu_crtc->event) { 588 DPU_DEBUG("already received dpu_crtc->event\n"); 589 } else { 590 spin_lock_irqsave(&dev->event_lock, flags); 591 dpu_crtc->event = crtc->state->event; 592 crtc->state->event = NULL; 593 spin_unlock_irqrestore(&dev->event_lock, flags); 594 } 595 596 /* 597 * If no mixers has been allocated in dpu_crtc_atomic_check(), 598 * it means we are trying to flush a CRTC whose state is disabled: 599 * nothing else needs to be done. 600 */ 601 if (unlikely(!cstate->num_mixers)) 602 return; 603 604 /* 605 * For planes without commit update, drm framework will not add 606 * those planes to current state since hardware update is not 607 * required. However, if those planes were power collapsed since 608 * last commit cycle, driver has to restore the hardware state 609 * of those planes explicitly here prior to plane flush. 610 */ 611 drm_atomic_crtc_for_each_plane(plane, crtc) 612 dpu_plane_restore(plane); 613 614 /* update performance setting before crtc kickoff */ 615 dpu_core_perf_crtc_update(crtc, 1, false); 616 617 /* 618 * Final plane updates: Give each plane a chance to complete all 619 * required writes/flushing before crtc's "flush 620 * everything" call below. 621 */ 622 drm_atomic_crtc_for_each_plane(plane, crtc) { 623 if (dpu_crtc->smmu_state.transition_error) 624 dpu_plane_set_error(plane, true); 625 dpu_plane_flush(plane); 626 } 627 628 /* Kickoff will be scheduled by outer layer */ 629 } 630 631 /** 632 * dpu_crtc_destroy_state - state destroy hook 633 * @crtc: drm CRTC 634 * @state: CRTC state object to release 635 */ 636 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 637 struct drm_crtc_state *state) 638 { 639 struct dpu_crtc_state *cstate; 640 641 if (!crtc || !state) { 642 DPU_ERROR("invalid argument(s)\n"); 643 return; 644 } 645 646 cstate = to_dpu_crtc_state(state); 647 648 DPU_DEBUG("crtc%d\n", crtc->base.id); 649 650 __drm_atomic_helper_crtc_destroy_state(state); 651 652 kfree(cstate); 653 } 654 655 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 656 { 657 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 658 int ret, rc = 0; 659 660 if (!atomic_read(&dpu_crtc->frame_pending)) { 661 DPU_DEBUG("no frames pending\n"); 662 return 0; 663 } 664 665 DPU_ATRACE_BEGIN("frame done completion wait"); 666 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 667 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 668 if (!ret) { 669 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 670 rc = -ETIMEDOUT; 671 } 672 DPU_ATRACE_END("frame done completion wait"); 673 674 return rc; 675 } 676 677 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 678 { 679 struct drm_encoder *encoder; 680 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 681 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 682 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 683 684 /* 685 * If no mixers has been allocated in dpu_crtc_atomic_check(), 686 * it means we are trying to start a CRTC whose state is disabled: 687 * nothing else needs to be done. 688 */ 689 if (unlikely(!cstate->num_mixers)) 690 return; 691 692 DPU_ATRACE_BEGIN("crtc_commit"); 693 694 /* 695 * Encoder will flush/start now, unless it has a tx pending. If so, it 696 * may delay and flush at an irq event (e.g. ppdone) 697 */ 698 drm_for_each_encoder_mask(encoder, crtc->dev, 699 crtc->state->encoder_mask) 700 dpu_encoder_prepare_for_kickoff(encoder); 701 702 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 703 /* acquire bandwidth and other resources */ 704 DPU_DEBUG("crtc%d first commit\n", crtc->base.id); 705 } else 706 DPU_DEBUG("crtc%d commit\n", crtc->base.id); 707 708 dpu_crtc->play_count++; 709 710 dpu_vbif_clear_errors(dpu_kms); 711 712 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 713 dpu_encoder_kickoff(encoder); 714 715 reinit_completion(&dpu_crtc->frame_done_comp); 716 DPU_ATRACE_END("crtc_commit"); 717 } 718 719 static void dpu_crtc_reset(struct drm_crtc *crtc) 720 { 721 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 722 723 if (crtc->state) 724 dpu_crtc_destroy_state(crtc, crtc->state); 725 726 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 727 } 728 729 /** 730 * dpu_crtc_duplicate_state - state duplicate hook 731 * @crtc: Pointer to drm crtc structure 732 */ 733 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 734 { 735 struct dpu_crtc_state *cstate, *old_cstate; 736 737 if (!crtc || !crtc->state) { 738 DPU_ERROR("invalid argument(s)\n"); 739 return NULL; 740 } 741 742 old_cstate = to_dpu_crtc_state(crtc->state); 743 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 744 if (!cstate) { 745 DPU_ERROR("failed to allocate state\n"); 746 return NULL; 747 } 748 749 /* duplicate base helper */ 750 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 751 752 return &cstate->base; 753 } 754 755 static void dpu_crtc_disable(struct drm_crtc *crtc, 756 struct drm_atomic_state *state) 757 { 758 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 759 crtc); 760 struct dpu_crtc *dpu_crtc; 761 struct dpu_crtc_state *cstate; 762 struct drm_encoder *encoder; 763 unsigned long flags; 764 bool release_bandwidth = false; 765 766 if (!crtc || !crtc->state) { 767 DPU_ERROR("invalid crtc\n"); 768 return; 769 } 770 dpu_crtc = to_dpu_crtc(crtc); 771 cstate = to_dpu_crtc_state(crtc->state); 772 773 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 774 775 /* Disable/save vblank irq handling */ 776 drm_crtc_vblank_off(crtc); 777 778 drm_for_each_encoder_mask(encoder, crtc->dev, 779 old_crtc_state->encoder_mask) { 780 /* in video mode, we hold an extra bandwidth reference 781 * as we cannot drop bandwidth at frame-done if any 782 * crtc is being used in video mode. 783 */ 784 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 785 release_bandwidth = true; 786 dpu_encoder_assign_crtc(encoder, NULL); 787 } 788 789 /* wait for frame_event_done completion */ 790 if (_dpu_crtc_wait_for_frame_done(crtc)) 791 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 792 crtc->base.id, 793 atomic_read(&dpu_crtc->frame_pending)); 794 795 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 796 dpu_crtc->enabled = false; 797 798 if (atomic_read(&dpu_crtc->frame_pending)) { 799 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 800 atomic_read(&dpu_crtc->frame_pending)); 801 if (release_bandwidth) 802 dpu_core_perf_crtc_release_bw(crtc); 803 atomic_set(&dpu_crtc->frame_pending, 0); 804 } 805 806 dpu_core_perf_crtc_update(crtc, 0, true); 807 808 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 809 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 810 811 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 812 cstate->num_mixers = 0; 813 814 /* disable clk & bw control until clk & bw properties are set */ 815 cstate->bw_control = false; 816 cstate->bw_split_vote = false; 817 818 if (crtc->state->event && !crtc->state->active) { 819 spin_lock_irqsave(&crtc->dev->event_lock, flags); 820 drm_crtc_send_vblank_event(crtc, crtc->state->event); 821 crtc->state->event = NULL; 822 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 823 } 824 825 pm_runtime_put_sync(crtc->dev->dev); 826 } 827 828 static void dpu_crtc_enable(struct drm_crtc *crtc, 829 struct drm_atomic_state *state) 830 { 831 struct dpu_crtc *dpu_crtc; 832 struct drm_encoder *encoder; 833 bool request_bandwidth = false; 834 835 if (!crtc) { 836 DPU_ERROR("invalid crtc\n"); 837 return; 838 } 839 840 pm_runtime_get_sync(crtc->dev->dev); 841 842 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 843 dpu_crtc = to_dpu_crtc(crtc); 844 845 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 846 /* in video mode, we hold an extra bandwidth reference 847 * as we cannot drop bandwidth at frame-done if any 848 * crtc is being used in video mode. 849 */ 850 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 851 request_bandwidth = true; 852 dpu_encoder_register_frame_event_callback(encoder, 853 dpu_crtc_frame_event_cb, (void *)crtc); 854 } 855 856 if (request_bandwidth) 857 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 858 859 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 860 dpu_crtc->enabled = true; 861 862 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 863 dpu_encoder_assign_crtc(encoder, crtc); 864 865 /* Enable/restore vblank irq handling */ 866 drm_crtc_vblank_on(crtc); 867 } 868 869 struct plane_state { 870 struct dpu_plane_state *dpu_pstate; 871 const struct drm_plane_state *drm_pstate; 872 int stage; 873 u32 pipe_id; 874 }; 875 876 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 877 struct drm_crtc_state *state) 878 { 879 struct dpu_crtc *dpu_crtc; 880 struct plane_state *pstates; 881 struct dpu_crtc_state *cstate; 882 883 const struct drm_plane_state *pstate; 884 struct drm_plane *plane; 885 struct drm_display_mode *mode; 886 887 int cnt = 0, rc = 0, mixer_width, i, z_pos; 888 889 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 890 int multirect_count = 0; 891 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 892 int left_zpos_cnt = 0, right_zpos_cnt = 0; 893 struct drm_rect crtc_rect = { 0 }; 894 895 if (!crtc) { 896 DPU_ERROR("invalid crtc\n"); 897 return -EINVAL; 898 } 899 900 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 901 902 dpu_crtc = to_dpu_crtc(crtc); 903 cstate = to_dpu_crtc_state(state); 904 905 if (!state->enable || !state->active) { 906 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n", 907 crtc->base.id, state->enable, state->active); 908 goto end; 909 } 910 911 mode = &state->adjusted_mode; 912 DPU_DEBUG("%s: check", dpu_crtc->name); 913 914 /* force a full mode set if active state changed */ 915 if (state->active_changed) 916 state->mode_changed = true; 917 918 memset(pipe_staged, 0, sizeof(pipe_staged)); 919 920 mixer_width = mode->hdisplay / cstate->num_mixers; 921 922 _dpu_crtc_setup_lm_bounds(crtc, state); 923 924 crtc_rect.x2 = mode->hdisplay; 925 crtc_rect.y2 = mode->vdisplay; 926 927 /* get plane state for all drm planes associated with crtc state */ 928 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { 929 struct drm_rect dst, clip = crtc_rect; 930 931 if (IS_ERR_OR_NULL(pstate)) { 932 rc = PTR_ERR(pstate); 933 DPU_ERROR("%s: failed to get plane%d state, %d\n", 934 dpu_crtc->name, plane->base.id, rc); 935 goto end; 936 } 937 if (cnt >= DPU_STAGE_MAX * 4) 938 continue; 939 940 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 941 pstates[cnt].drm_pstate = pstate; 942 pstates[cnt].stage = pstate->normalized_zpos; 943 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 944 945 if (pipe_staged[pstates[cnt].pipe_id]) { 946 multirect_plane[multirect_count].r0 = 947 pipe_staged[pstates[cnt].pipe_id]; 948 multirect_plane[multirect_count].r1 = pstate; 949 multirect_count++; 950 951 pipe_staged[pstates[cnt].pipe_id] = NULL; 952 } else { 953 pipe_staged[pstates[cnt].pipe_id] = pstate; 954 } 955 956 cnt++; 957 958 dst = drm_plane_state_dest(pstate); 959 if (!drm_rect_intersect(&clip, &dst)) { 960 DPU_ERROR("invalid vertical/horizontal destination\n"); 961 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 962 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 963 DRM_RECT_ARG(&dst)); 964 rc = -E2BIG; 965 goto end; 966 } 967 } 968 969 for (i = 1; i < SSPP_MAX; i++) { 970 if (pipe_staged[i]) { 971 dpu_plane_clear_multirect(pipe_staged[i]); 972 973 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 974 DPU_ERROR( 975 "r1 only virt plane:%d not supported\n", 976 pipe_staged[i]->plane->base.id); 977 rc = -EINVAL; 978 goto end; 979 } 980 } 981 } 982 983 z_pos = -1; 984 for (i = 0; i < cnt; i++) { 985 /* reset counts at every new blend stage */ 986 if (pstates[i].stage != z_pos) { 987 left_zpos_cnt = 0; 988 right_zpos_cnt = 0; 989 z_pos = pstates[i].stage; 990 } 991 992 /* verify z_pos setting before using it */ 993 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 994 DPU_ERROR("> %d plane stages assigned\n", 995 DPU_STAGE_MAX - DPU_STAGE_0); 996 rc = -EINVAL; 997 goto end; 998 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 999 if (left_zpos_cnt == 2) { 1000 DPU_ERROR("> 2 planes @ stage %d on left\n", 1001 z_pos); 1002 rc = -EINVAL; 1003 goto end; 1004 } 1005 left_zpos_cnt++; 1006 1007 } else { 1008 if (right_zpos_cnt == 2) { 1009 DPU_ERROR("> 2 planes @ stage %d on right\n", 1010 z_pos); 1011 rc = -EINVAL; 1012 goto end; 1013 } 1014 right_zpos_cnt++; 1015 } 1016 1017 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1018 DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos); 1019 } 1020 1021 for (i = 0; i < multirect_count; i++) { 1022 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1023 DPU_ERROR( 1024 "multirect validation failed for planes (%d - %d)\n", 1025 multirect_plane[i].r0->plane->base.id, 1026 multirect_plane[i].r1->plane->base.id); 1027 rc = -EINVAL; 1028 goto end; 1029 } 1030 } 1031 1032 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1033 1034 rc = dpu_core_perf_crtc_check(crtc, state); 1035 if (rc) { 1036 DPU_ERROR("crtc%d failed performance check %d\n", 1037 crtc->base.id, rc); 1038 goto end; 1039 } 1040 1041 /* validate source split: 1042 * use pstates sorted by stage to check planes on same stage 1043 * we assume that all pipes are in source split so its valid to compare 1044 * without taking into account left/right mixer placement 1045 */ 1046 for (i = 1; i < cnt; i++) { 1047 struct plane_state *prv_pstate, *cur_pstate; 1048 struct drm_rect left_rect, right_rect; 1049 int32_t left_pid, right_pid; 1050 int32_t stage; 1051 1052 prv_pstate = &pstates[i - 1]; 1053 cur_pstate = &pstates[i]; 1054 if (prv_pstate->stage != cur_pstate->stage) 1055 continue; 1056 1057 stage = cur_pstate->stage; 1058 1059 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1060 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1061 1062 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1063 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1064 1065 if (right_rect.x1 < left_rect.x1) { 1066 swap(left_pid, right_pid); 1067 swap(left_rect, right_rect); 1068 } 1069 1070 /** 1071 * - planes are enumerated in pipe-priority order such that 1072 * planes with lower drm_id must be left-most in a shared 1073 * blend-stage when using source split. 1074 * - planes in source split must be contiguous in width 1075 * - planes in source split must have same dest yoff and height 1076 */ 1077 if (right_pid < left_pid) { 1078 DPU_ERROR( 1079 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1080 stage, left_pid, right_pid); 1081 rc = -EINVAL; 1082 goto end; 1083 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1084 DPU_ERROR("non-contiguous coordinates for src split. " 1085 "stage: %d left: " DRM_RECT_FMT " right: " 1086 DRM_RECT_FMT "\n", stage, 1087 DRM_RECT_ARG(&left_rect), 1088 DRM_RECT_ARG(&right_rect)); 1089 rc = -EINVAL; 1090 goto end; 1091 } else if (left_rect.y1 != right_rect.y1 || 1092 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1093 DPU_ERROR("source split at stage: %d. invalid " 1094 "yoff/height: left: " DRM_RECT_FMT " right: " 1095 DRM_RECT_FMT "\n", stage, 1096 DRM_RECT_ARG(&left_rect), 1097 DRM_RECT_ARG(&right_rect)); 1098 rc = -EINVAL; 1099 goto end; 1100 } 1101 } 1102 1103 end: 1104 kfree(pstates); 1105 return rc; 1106 } 1107 1108 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1109 { 1110 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1111 struct drm_encoder *enc; 1112 1113 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1114 1115 /* 1116 * Normally we would iterate through encoder_mask in crtc state to find 1117 * attached encoders. In this case, we might be disabling vblank _after_ 1118 * encoder_mask has been cleared. 1119 * 1120 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1121 * disable (which is also after encoder_mask is cleared). So instead of 1122 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1123 * currently assigned to our crtc. 1124 * 1125 * Note also that this function cannot be called while crtc is disabled 1126 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1127 * about the assigned crtcs being inconsistent with the current state 1128 * (which means no need to worry about modeset locks). 1129 */ 1130 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1131 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1132 dpu_crtc); 1133 1134 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1135 } 1136 1137 return 0; 1138 } 1139 1140 #ifdef CONFIG_DEBUG_FS 1141 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1142 { 1143 struct dpu_crtc *dpu_crtc; 1144 struct dpu_plane_state *pstate = NULL; 1145 struct dpu_crtc_mixer *m; 1146 1147 struct drm_crtc *crtc; 1148 struct drm_plane *plane; 1149 struct drm_display_mode *mode; 1150 struct drm_framebuffer *fb; 1151 struct drm_plane_state *state; 1152 struct dpu_crtc_state *cstate; 1153 1154 int i, out_width; 1155 1156 dpu_crtc = s->private; 1157 crtc = &dpu_crtc->base; 1158 1159 drm_modeset_lock_all(crtc->dev); 1160 cstate = to_dpu_crtc_state(crtc->state); 1161 1162 mode = &crtc->state->adjusted_mode; 1163 out_width = mode->hdisplay / cstate->num_mixers; 1164 1165 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1166 mode->hdisplay, mode->vdisplay); 1167 1168 seq_puts(s, "\n"); 1169 1170 for (i = 0; i < cstate->num_mixers; ++i) { 1171 m = &cstate->mixers[i]; 1172 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1173 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1174 out_width, mode->vdisplay); 1175 } 1176 1177 seq_puts(s, "\n"); 1178 1179 drm_atomic_crtc_for_each_plane(plane, crtc) { 1180 pstate = to_dpu_plane_state(plane->state); 1181 state = plane->state; 1182 1183 if (!pstate || !state) 1184 continue; 1185 1186 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1187 pstate->stage); 1188 1189 if (plane->state->fb) { 1190 fb = plane->state->fb; 1191 1192 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1193 fb->base.id, (char *) &fb->format->format, 1194 fb->width, fb->height); 1195 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1196 seq_printf(s, "cpp[%d]:%u ", 1197 i, fb->format->cpp[i]); 1198 seq_puts(s, "\n\t"); 1199 1200 seq_printf(s, "modifier:%8llu ", fb->modifier); 1201 seq_puts(s, "\n"); 1202 1203 seq_puts(s, "\t"); 1204 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1205 seq_printf(s, "pitches[%d]:%8u ", i, 1206 fb->pitches[i]); 1207 seq_puts(s, "\n"); 1208 1209 seq_puts(s, "\t"); 1210 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1211 seq_printf(s, "offsets[%d]:%8u ", i, 1212 fb->offsets[i]); 1213 seq_puts(s, "\n"); 1214 } 1215 1216 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1217 state->src_x, state->src_y, state->src_w, state->src_h); 1218 1219 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1220 state->crtc_x, state->crtc_y, state->crtc_w, 1221 state->crtc_h); 1222 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1223 pstate->multirect_mode, pstate->multirect_index); 1224 1225 seq_puts(s, "\n"); 1226 } 1227 if (dpu_crtc->vblank_cb_count) { 1228 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1229 s64 diff_ms = ktime_to_ms(diff); 1230 s64 fps = diff_ms ? div_s64( 1231 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1232 1233 seq_printf(s, 1234 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1235 fps, dpu_crtc->vblank_cb_count, 1236 ktime_to_ms(diff), dpu_crtc->play_count); 1237 1238 /* reset time & count for next measurement */ 1239 dpu_crtc->vblank_cb_count = 0; 1240 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1241 } 1242 1243 drm_modeset_unlock_all(crtc->dev); 1244 1245 return 0; 1246 } 1247 1248 static int _dpu_debugfs_status_open(struct inode *inode, struct file *file) 1249 { 1250 return single_open(file, _dpu_debugfs_status_show, inode->i_private); 1251 } 1252 1253 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \ 1254 static int __prefix ## _open(struct inode *inode, struct file *file) \ 1255 { \ 1256 return single_open(file, __prefix ## _show, inode->i_private); \ 1257 } \ 1258 static const struct file_operations __prefix ## _fops = { \ 1259 .owner = THIS_MODULE, \ 1260 .open = __prefix ## _open, \ 1261 .release = single_release, \ 1262 .read = seq_read, \ 1263 .llseek = seq_lseek, \ 1264 } 1265 1266 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1267 { 1268 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1269 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1270 1271 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1272 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1273 seq_printf(s, "core_clk_rate: %llu\n", 1274 dpu_crtc->cur_perf.core_clk_rate); 1275 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1276 seq_printf(s, "max_per_pipe_ib: %llu\n", 1277 dpu_crtc->cur_perf.max_per_pipe_ib); 1278 1279 return 0; 1280 } 1281 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_crtc_debugfs_state); 1282 1283 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1284 { 1285 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1286 1287 static const struct file_operations debugfs_status_fops = { 1288 .open = _dpu_debugfs_status_open, 1289 .read = seq_read, 1290 .llseek = seq_lseek, 1291 .release = single_release, 1292 }; 1293 1294 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1295 crtc->dev->primary->debugfs_root); 1296 1297 debugfs_create_file("status", 0400, 1298 dpu_crtc->debugfs_root, 1299 dpu_crtc, &debugfs_status_fops); 1300 debugfs_create_file("state", 0600, 1301 dpu_crtc->debugfs_root, 1302 &dpu_crtc->base, 1303 &dpu_crtc_debugfs_state_fops); 1304 1305 return 0; 1306 } 1307 #else 1308 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1309 { 1310 return 0; 1311 } 1312 #endif /* CONFIG_DEBUG_FS */ 1313 1314 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1315 { 1316 return _dpu_crtc_init_debugfs(crtc); 1317 } 1318 1319 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1320 { 1321 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1322 1323 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1324 } 1325 1326 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1327 .set_config = drm_atomic_helper_set_config, 1328 .destroy = dpu_crtc_destroy, 1329 .page_flip = drm_atomic_helper_page_flip, 1330 .reset = dpu_crtc_reset, 1331 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1332 .atomic_destroy_state = dpu_crtc_destroy_state, 1333 .late_register = dpu_crtc_late_register, 1334 .early_unregister = dpu_crtc_early_unregister, 1335 .enable_vblank = msm_crtc_enable_vblank, 1336 .disable_vblank = msm_crtc_disable_vblank, 1337 }; 1338 1339 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1340 .atomic_disable = dpu_crtc_disable, 1341 .atomic_enable = dpu_crtc_enable, 1342 .atomic_check = dpu_crtc_atomic_check, 1343 .atomic_begin = dpu_crtc_atomic_begin, 1344 .atomic_flush = dpu_crtc_atomic_flush, 1345 }; 1346 1347 /* initialize crtc */ 1348 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1349 struct drm_plane *cursor) 1350 { 1351 struct drm_crtc *crtc = NULL; 1352 struct dpu_crtc *dpu_crtc = NULL; 1353 int i; 1354 1355 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1356 if (!dpu_crtc) 1357 return ERR_PTR(-ENOMEM); 1358 1359 crtc = &dpu_crtc->base; 1360 crtc->dev = dev; 1361 1362 spin_lock_init(&dpu_crtc->spin_lock); 1363 atomic_set(&dpu_crtc->frame_pending, 0); 1364 1365 init_completion(&dpu_crtc->frame_done_comp); 1366 1367 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1368 1369 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1370 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1371 list_add(&dpu_crtc->frame_events[i].list, 1372 &dpu_crtc->frame_event_list); 1373 kthread_init_work(&dpu_crtc->frame_events[i].work, 1374 dpu_crtc_frame_event_work); 1375 } 1376 1377 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1378 NULL); 1379 1380 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1381 1382 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1383 1384 /* save user friendly CRTC name for later */ 1385 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1386 1387 /* initialize event handling */ 1388 spin_lock_init(&dpu_crtc->event_lock); 1389 1390 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name); 1391 return crtc; 1392 } 1393