1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
54 static void dpu_crtc_destroy(struct drm_crtc *crtc)
55 {
56 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
57 
58 	if (!crtc)
59 		return;
60 
61 	drm_crtc_cleanup(crtc);
62 	kfree(dpu_crtc);
63 }
64 
65 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
66 {
67 	struct drm_device *dev = crtc->dev;
68 	struct drm_encoder *encoder;
69 
70 	drm_for_each_encoder(encoder, dev)
71 		if (encoder->crtc == crtc)
72 			return encoder;
73 
74 	return NULL;
75 }
76 
77 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
78 {
79 	if (!src_name ||
80 	    !strcmp(src_name, "none"))
81 		return DPU_CRTC_CRC_SOURCE_NONE;
82 	if (!strcmp(src_name, "auto") ||
83 	    !strcmp(src_name, "lm"))
84 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
85 	if (!strcmp(src_name, "encoder"))
86 		return DPU_CRTC_CRC_SOURCE_ENCODER;
87 
88 	return DPU_CRTC_CRC_SOURCE_INVALID;
89 }
90 
91 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
92 		const char *src_name, size_t *values_cnt)
93 {
94 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
95 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
96 
97 	if (source < 0) {
98 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
99 		return -EINVAL;
100 	}
101 
102 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
103 		*values_cnt = crtc_state->num_mixers;
104 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
105 		struct drm_encoder *drm_enc;
106 
107 		*values_cnt = 0;
108 
109 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
110 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
111 	}
112 
113 	return 0;
114 }
115 
116 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
117 {
118 	struct dpu_crtc_mixer *m;
119 	int i;
120 
121 	for (i = 0; i < crtc_state->num_mixers; ++i) {
122 		m = &crtc_state->mixers[i];
123 
124 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
125 			continue;
126 
127 		/* Calculate MISR over 1 frame */
128 		m->hw_lm->ops.setup_misr(m->hw_lm, true, 1);
129 	}
130 }
131 
132 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
133 {
134 	struct drm_encoder *drm_enc;
135 
136 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
137 		dpu_encoder_setup_misr(drm_enc);
138 }
139 
140 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
141 {
142 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
143 	enum dpu_crtc_crc_source current_source;
144 	struct dpu_crtc_state *crtc_state;
145 	struct drm_device *drm_dev = crtc->dev;
146 
147 	bool was_enabled;
148 	bool enable = false;
149 	int ret = 0;
150 
151 	if (source < 0) {
152 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
153 		return -EINVAL;
154 	}
155 
156 	ret = drm_modeset_lock(&crtc->mutex, NULL);
157 
158 	if (ret)
159 		return ret;
160 
161 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
162 	crtc_state = to_dpu_crtc_state(crtc->state);
163 
164 	spin_lock_irq(&drm_dev->event_lock);
165 	current_source = crtc_state->crc_source;
166 	spin_unlock_irq(&drm_dev->event_lock);
167 
168 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
169 
170 	if (!was_enabled && enable) {
171 		ret = drm_crtc_vblank_get(crtc);
172 
173 		if (ret)
174 			goto cleanup;
175 
176 	} else if (was_enabled && !enable) {
177 		drm_crtc_vblank_put(crtc);
178 	}
179 
180 	spin_lock_irq(&drm_dev->event_lock);
181 	crtc_state->crc_source = source;
182 	spin_unlock_irq(&drm_dev->event_lock);
183 
184 	crtc_state->crc_frame_skip_count = 0;
185 
186 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
187 		dpu_crtc_setup_lm_misr(crtc_state);
188 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
189 		dpu_crtc_setup_encoder_misr(crtc);
190 	else
191 		ret = -EINVAL;
192 
193 cleanup:
194 	drm_modeset_unlock(&crtc->mutex);
195 
196 	return ret;
197 }
198 
199 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
200 {
201 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
202 	if (!encoder) {
203 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
204 		return 0;
205 	}
206 
207 	return dpu_encoder_get_vsync_count(encoder);
208 }
209 
210 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
211 		struct dpu_crtc_state *crtc_state)
212 {
213 	struct dpu_crtc_mixer *m;
214 	u32 crcs[CRTC_DUAL_MIXERS];
215 
216 	int rc = 0;
217 	int i;
218 
219 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
220 
221 	for (i = 0; i < crtc_state->num_mixers; ++i) {
222 
223 		m = &crtc_state->mixers[i];
224 
225 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
226 			continue;
227 
228 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
229 
230 		if (rc) {
231 			if (rc != -ENODATA)
232 				DRM_DEBUG_DRIVER("MISR read failed\n");
233 			return rc;
234 		}
235 	}
236 
237 	return drm_crtc_add_crc_entry(crtc, true,
238 			drm_crtc_accurate_vblank_count(crtc), crcs);
239 }
240 
241 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
242 {
243 	struct drm_encoder *drm_enc;
244 	int rc, pos = 0;
245 	u32 crcs[INTF_MAX];
246 
247 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
248 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
249 		if (rc < 0) {
250 			if (rc != -ENODATA)
251 				DRM_DEBUG_DRIVER("MISR read failed\n");
252 
253 			return rc;
254 		}
255 
256 		pos += rc;
257 	}
258 
259 	return drm_crtc_add_crc_entry(crtc, true,
260 			drm_crtc_accurate_vblank_count(crtc), crcs);
261 }
262 
263 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
264 {
265 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
266 
267 	/* Skip first 2 frames in case of "uncooked" CRCs */
268 	if (crtc_state->crc_frame_skip_count < 2) {
269 		crtc_state->crc_frame_skip_count++;
270 		return 0;
271 	}
272 
273 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
274 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
275 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
276 		return dpu_crtc_get_encoder_crc(crtc);
277 
278 	return -EINVAL;
279 }
280 
281 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
282 					   bool in_vblank_irq,
283 					   int *vpos, int *hpos,
284 					   ktime_t *stime, ktime_t *etime,
285 					   const struct drm_display_mode *mode)
286 {
287 	unsigned int pipe = crtc->index;
288 	struct drm_encoder *encoder;
289 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
290 
291 	encoder = get_encoder_from_crtc(crtc);
292 	if (!encoder) {
293 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
294 		return false;
295 	}
296 
297 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
298 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
299 
300 	/*
301 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
302 	 * the end of VFP. Translate the porch values relative to the line
303 	 * counter positions.
304 	 */
305 
306 	vactive_start = vsw + vbp + 1;
307 	vactive_end = vactive_start + mode->crtc_vdisplay;
308 
309 	/* last scan line before VSYNC */
310 	vfp_end = mode->crtc_vtotal;
311 
312 	if (stime)
313 		*stime = ktime_get();
314 
315 	line = dpu_encoder_get_linecount(encoder);
316 
317 	if (line < vactive_start)
318 		line -= vactive_start;
319 	else if (line > vactive_end)
320 		line = line - vfp_end - vactive_start;
321 	else
322 		line -= vactive_start;
323 
324 	*vpos = line;
325 	*hpos = 0;
326 
327 	if (etime)
328 		*etime = ktime_get();
329 
330 	return true;
331 }
332 
333 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
334 		struct dpu_plane_state *pstate, struct dpu_format *format)
335 {
336 	struct dpu_hw_mixer *lm = mixer->hw_lm;
337 	uint32_t blend_op;
338 	uint32_t fg_alpha, bg_alpha;
339 
340 	fg_alpha = pstate->base.alpha >> 8;
341 	bg_alpha = 0xff - fg_alpha;
342 
343 	/* default to opaque blending */
344 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
345 	    !format->alpha_enable) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_BG_CONST;
348 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
349 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
350 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 		if (fg_alpha != 0xff) {
352 			bg_alpha = fg_alpha;
353 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
354 				    DPU_BLEND_BG_INV_MOD_ALPHA;
355 		} else {
356 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
357 		}
358 	} else {
359 		/* coverage blending */
360 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
361 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
362 		if (fg_alpha != 0xff) {
363 			bg_alpha = fg_alpha;
364 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
365 				    DPU_BLEND_FG_INV_MOD_ALPHA |
366 				    DPU_BLEND_BG_MOD_ALPHA |
367 				    DPU_BLEND_BG_INV_MOD_ALPHA;
368 		} else {
369 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
370 		}
371 	}
372 
373 	lm->ops.setup_blend_config(lm, pstate->stage,
374 				fg_alpha, bg_alpha, blend_op);
375 
376 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
377 		  &format->base.pixel_format, format->alpha_enable, blend_op);
378 }
379 
380 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
381 {
382 	struct dpu_crtc_state *crtc_state;
383 	int lm_idx, lm_horiz_position;
384 
385 	crtc_state = to_dpu_crtc_state(crtc->state);
386 
387 	lm_horiz_position = 0;
388 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
389 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
390 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
391 		struct dpu_hw_mixer_cfg cfg;
392 
393 		if (!lm_roi || !drm_rect_visible(lm_roi))
394 			continue;
395 
396 		cfg.out_width = drm_rect_width(lm_roi);
397 		cfg.out_height = drm_rect_height(lm_roi);
398 		cfg.right_mixer = lm_horiz_position++;
399 		cfg.flags = 0;
400 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
401 	}
402 }
403 
404 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
405 				       struct drm_plane *plane,
406 				       struct dpu_crtc_mixer *mixer,
407 				       u32 num_mixers,
408 				       enum dpu_stage stage,
409 				       struct dpu_format *format,
410 				       uint64_t modifier,
411 				       struct dpu_sw_pipe *pipe,
412 				       unsigned int stage_idx,
413 				       struct dpu_hw_stage_cfg *stage_cfg
414 				      )
415 {
416 	uint32_t lm_idx;
417 	enum dpu_sspp sspp_idx;
418 	struct drm_plane_state *state;
419 
420 	sspp_idx = pipe->sspp->idx;
421 
422 	state = plane->state;
423 
424 	trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
425 				   state, to_dpu_plane_state(state), stage_idx,
426 				   format->base.pixel_format,
427 				   modifier);
428 
429 	DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
430 			 crtc->base.id,
431 			 stage,
432 			 plane->base.id,
433 			 sspp_idx - SSPP_NONE,
434 			 state->fb ? state->fb->base.id : -1);
435 
436 	stage_cfg->stage[stage][stage_idx] = sspp_idx;
437 	stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
438 
439 	/* blend config update */
440 	for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
441 		mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
442 }
443 
444 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
445 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
446 	struct dpu_hw_stage_cfg *stage_cfg)
447 {
448 	struct drm_plane *plane;
449 	struct drm_framebuffer *fb;
450 	struct drm_plane_state *state;
451 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
452 	struct dpu_plane_state *pstate = NULL;
453 	struct dpu_format *format;
454 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
455 
456 	uint32_t lm_idx;
457 	bool bg_alpha_enable = false;
458 	DECLARE_BITMAP(fetch_active, SSPP_MAX);
459 
460 	memset(fetch_active, 0, sizeof(fetch_active));
461 	drm_atomic_crtc_for_each_plane(plane, crtc) {
462 		state = plane->state;
463 		if (!state)
464 			continue;
465 
466 		if (!state->visible)
467 			continue;
468 
469 		pstate = to_dpu_plane_state(state);
470 		fb = state->fb;
471 
472 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
473 
474 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
475 			bg_alpha_enable = true;
476 
477 		set_bit(pstate->pipe.sspp->idx, fetch_active);
478 		_dpu_crtc_blend_setup_pipe(crtc, plane,
479 					   mixer, cstate->num_mixers,
480 					   pstate->stage,
481 					   format, fb ? fb->modifier : 0,
482 					   &pstate->pipe, 0, stage_cfg);
483 
484 		if (pstate->r_pipe.sspp) {
485 			set_bit(pstate->r_pipe.sspp->idx, fetch_active);
486 			_dpu_crtc_blend_setup_pipe(crtc, plane,
487 						   mixer, cstate->num_mixers,
488 						   pstate->stage,
489 						   format, fb ? fb->modifier : 0,
490 						   &pstate->r_pipe, 1, stage_cfg);
491 		}
492 
493 		/* blend config update */
494 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
495 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format);
496 
497 			if (bg_alpha_enable && !format->alpha_enable)
498 				mixer[lm_idx].mixer_op_mode = 0;
499 			else
500 				mixer[lm_idx].mixer_op_mode |=
501 						1 << pstate->stage;
502 		}
503 	}
504 
505 	if (ctl->ops.set_active_pipes)
506 		ctl->ops.set_active_pipes(ctl, fetch_active);
507 
508 	_dpu_crtc_program_lm_output_roi(crtc);
509 }
510 
511 /**
512  * _dpu_crtc_blend_setup - configure crtc mixers
513  * @crtc: Pointer to drm crtc structure
514  */
515 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
516 {
517 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
518 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
519 	struct dpu_crtc_mixer *mixer = cstate->mixers;
520 	struct dpu_hw_ctl *ctl;
521 	struct dpu_hw_mixer *lm;
522 	struct dpu_hw_stage_cfg stage_cfg;
523 	int i;
524 
525 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
526 
527 	for (i = 0; i < cstate->num_mixers; i++) {
528 		mixer[i].mixer_op_mode = 0;
529 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
530 			mixer[i].lm_ctl->ops.clear_all_blendstages(
531 					mixer[i].lm_ctl);
532 	}
533 
534 	/* initialize stage cfg */
535 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
536 
537 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
538 
539 	for (i = 0; i < cstate->num_mixers; i++) {
540 		ctl = mixer[i].lm_ctl;
541 		lm = mixer[i].hw_lm;
542 
543 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
544 
545 		/* stage config flush mask */
546 		ctl->ops.update_pending_flush_mixer(ctl,
547 			mixer[i].hw_lm->idx);
548 
549 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
550 			mixer[i].hw_lm->idx - LM_0,
551 			mixer[i].mixer_op_mode,
552 			ctl->idx - CTL_0);
553 
554 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
555 			&stage_cfg);
556 	}
557 }
558 
559 /**
560  *  _dpu_crtc_complete_flip - signal pending page_flip events
561  * Any pending vblank events are added to the vblank_event_list
562  * so that the next vblank interrupt shall signal them.
563  * However PAGE_FLIP events are not handled through the vblank_event_list.
564  * This API signals any pending PAGE_FLIP events requested through
565  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
566  * @crtc: Pointer to drm crtc structure
567  */
568 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
569 {
570 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
571 	struct drm_device *dev = crtc->dev;
572 	unsigned long flags;
573 
574 	spin_lock_irqsave(&dev->event_lock, flags);
575 	if (dpu_crtc->event) {
576 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
577 			      dpu_crtc->event);
578 		trace_dpu_crtc_complete_flip(DRMID(crtc));
579 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
580 		dpu_crtc->event = NULL;
581 	}
582 	spin_unlock_irqrestore(&dev->event_lock, flags);
583 }
584 
585 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
586 {
587 	struct drm_encoder *encoder;
588 
589 	/*
590 	 * TODO: This function is called from dpu debugfs and as part of atomic
591 	 * check. When called from debugfs, the crtc->mutex must be held to
592 	 * read crtc->state. However reading crtc->state from atomic check isn't
593 	 * allowed (unless you have a good reason, a big comment, and a deep
594 	 * understanding of how the atomic/modeset locks work (<- and this is
595 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
596 	 * really we need to figure out a better way to track our operating mode
597 	 */
598 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
599 
600 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
601 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
602 		return dpu_encoder_get_intf_mode(encoder);
603 
604 	return INTF_MODE_NONE;
605 }
606 
607 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
608 {
609 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
610 
611 	/* keep statistics on vblank callback - with auto reset via debugfs */
612 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
613 		dpu_crtc->vblank_cb_time = ktime_get();
614 	else
615 		dpu_crtc->vblank_cb_count++;
616 
617 	dpu_crtc_get_crc(crtc);
618 
619 	drm_crtc_handle_vblank(crtc);
620 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
621 }
622 
623 static void dpu_crtc_frame_event_work(struct kthread_work *work)
624 {
625 	struct dpu_crtc_frame_event *fevent = container_of(work,
626 			struct dpu_crtc_frame_event, work);
627 	struct drm_crtc *crtc = fevent->crtc;
628 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
629 	unsigned long flags;
630 	bool frame_done = false;
631 
632 	DPU_ATRACE_BEGIN("crtc_frame_event");
633 
634 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
635 			ktime_to_ns(fevent->ts));
636 
637 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
638 				| DPU_ENCODER_FRAME_EVENT_ERROR
639 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
640 
641 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
642 			/* ignore vblank when not pending */
643 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
644 			/* release bandwidth and other resources */
645 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
646 							fevent->event);
647 			dpu_core_perf_crtc_release_bw(crtc);
648 		} else {
649 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
650 								fevent->event);
651 		}
652 
653 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
654 					| DPU_ENCODER_FRAME_EVENT_ERROR))
655 			frame_done = true;
656 	}
657 
658 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
659 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
660 				crtc->base.id, ktime_to_ns(fevent->ts));
661 
662 	if (frame_done)
663 		complete_all(&dpu_crtc->frame_done_comp);
664 
665 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
666 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
667 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
668 	DPU_ATRACE_END("crtc_frame_event");
669 }
670 
671 /*
672  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
673  * registers this API to encoder for all frame event callbacks like
674  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
675  * from different context - IRQ, user thread, commit_thread, etc. Each event
676  * should be carefully reviewed and should be processed in proper task context
677  * to avoid schedulin delay or properly manage the irq context's bottom half
678  * processing.
679  */
680 static void dpu_crtc_frame_event_cb(void *data, u32 event)
681 {
682 	struct drm_crtc *crtc = (struct drm_crtc *)data;
683 	struct dpu_crtc *dpu_crtc;
684 	struct msm_drm_private *priv;
685 	struct dpu_crtc_frame_event *fevent;
686 	unsigned long flags;
687 	u32 crtc_id;
688 
689 	/* Nothing to do on idle event */
690 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
691 		return;
692 
693 	dpu_crtc = to_dpu_crtc(crtc);
694 	priv = crtc->dev->dev_private;
695 	crtc_id = drm_crtc_index(crtc);
696 
697 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
698 
699 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
700 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
701 			struct dpu_crtc_frame_event, list);
702 	if (fevent)
703 		list_del_init(&fevent->list);
704 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
705 
706 	if (!fevent) {
707 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
708 		return;
709 	}
710 
711 	fevent->event = event;
712 	fevent->crtc = crtc;
713 	fevent->ts = ktime_get();
714 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
715 }
716 
717 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
718 {
719 	trace_dpu_crtc_complete_commit(DRMID(crtc));
720 	dpu_core_perf_crtc_update(crtc, 0, false);
721 	_dpu_crtc_complete_flip(crtc);
722 }
723 
724 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
725 		struct drm_crtc_state *state)
726 {
727 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
728 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
729 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
730 	int i;
731 
732 	for (i = 0; i < cstate->num_mixers; i++) {
733 		struct drm_rect *r = &cstate->lm_bounds[i];
734 		r->x1 = crtc_split_width * i;
735 		r->y1 = 0;
736 		r->x2 = r->x1 + crtc_split_width;
737 		r->y2 = adj_mode->vdisplay;
738 
739 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
740 	}
741 }
742 
743 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
744 		struct dpu_hw_pcc_cfg *cfg)
745 {
746 	struct drm_color_ctm *ctm;
747 
748 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
749 
750 	ctm = (struct drm_color_ctm *)state->ctm->data;
751 
752 	if (!ctm)
753 		return;
754 
755 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
756 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
757 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
758 
759 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
760 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
761 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
762 
763 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
764 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
765 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
766 }
767 
768 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
769 {
770 	struct drm_crtc_state *state = crtc->state;
771 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
772 	struct dpu_crtc_mixer *mixer = cstate->mixers;
773 	struct dpu_hw_pcc_cfg cfg;
774 	struct dpu_hw_ctl *ctl;
775 	struct dpu_hw_dspp *dspp;
776 	int i;
777 
778 
779 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
780 		return;
781 
782 	for (i = 0; i < cstate->num_mixers; i++) {
783 		ctl = mixer[i].lm_ctl;
784 		dspp = mixer[i].hw_dspp;
785 
786 		if (!dspp || !dspp->ops.setup_pcc)
787 			continue;
788 
789 		if (!state->ctm) {
790 			dspp->ops.setup_pcc(dspp, NULL);
791 		} else {
792 			_dpu_crtc_get_pcc_coeff(state, &cfg);
793 			dspp->ops.setup_pcc(dspp, &cfg);
794 		}
795 
796 		/* stage config flush mask */
797 		ctl->ops.update_pending_flush_dspp(ctl,
798 			mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
799 	}
800 }
801 
802 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
803 		struct drm_atomic_state *state)
804 {
805 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
806 	struct drm_encoder *encoder;
807 
808 	if (!crtc->state->enable) {
809 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
810 				crtc->base.id, crtc->state->enable);
811 		return;
812 	}
813 
814 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
815 
816 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
817 
818 	/* encoder will trigger pending mask now */
819 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
820 		dpu_encoder_trigger_kickoff_pending(encoder);
821 
822 	/*
823 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
824 	 * it means we are trying to flush a CRTC whose state is disabled:
825 	 * nothing else needs to be done.
826 	 */
827 	if (unlikely(!cstate->num_mixers))
828 		return;
829 
830 	_dpu_crtc_blend_setup(crtc);
831 
832 	_dpu_crtc_setup_cp_blocks(crtc);
833 
834 	/*
835 	 * PP_DONE irq is only used by command mode for now.
836 	 * It is better to request pending before FLUSH and START trigger
837 	 * to make sure no pp_done irq missed.
838 	 * This is safe because no pp_done will happen before SW trigger
839 	 * in command mode.
840 	 */
841 }
842 
843 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
844 		struct drm_atomic_state *state)
845 {
846 	struct dpu_crtc *dpu_crtc;
847 	struct drm_device *dev;
848 	struct drm_plane *plane;
849 	struct msm_drm_private *priv;
850 	unsigned long flags;
851 	struct dpu_crtc_state *cstate;
852 
853 	if (!crtc->state->enable) {
854 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
855 				crtc->base.id, crtc->state->enable);
856 		return;
857 	}
858 
859 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
860 
861 	dpu_crtc = to_dpu_crtc(crtc);
862 	cstate = to_dpu_crtc_state(crtc->state);
863 	dev = crtc->dev;
864 	priv = dev->dev_private;
865 
866 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
867 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
868 		return;
869 	}
870 
871 	WARN_ON(dpu_crtc->event);
872 	spin_lock_irqsave(&dev->event_lock, flags);
873 	dpu_crtc->event = crtc->state->event;
874 	crtc->state->event = NULL;
875 	spin_unlock_irqrestore(&dev->event_lock, flags);
876 
877 	/*
878 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
879 	 * it means we are trying to flush a CRTC whose state is disabled:
880 	 * nothing else needs to be done.
881 	 */
882 	if (unlikely(!cstate->num_mixers))
883 		return;
884 
885 	/* update performance setting before crtc kickoff */
886 	dpu_core_perf_crtc_update(crtc, 1, false);
887 
888 	/*
889 	 * Final plane updates: Give each plane a chance to complete all
890 	 *                      required writes/flushing before crtc's "flush
891 	 *                      everything" call below.
892 	 */
893 	drm_atomic_crtc_for_each_plane(plane, crtc) {
894 		if (dpu_crtc->smmu_state.transition_error)
895 			dpu_plane_set_error(plane, true);
896 		dpu_plane_flush(plane);
897 	}
898 
899 	/* Kickoff will be scheduled by outer layer */
900 }
901 
902 /**
903  * dpu_crtc_destroy_state - state destroy hook
904  * @crtc: drm CRTC
905  * @state: CRTC state object to release
906  */
907 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
908 		struct drm_crtc_state *state)
909 {
910 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
911 
912 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
913 
914 	__drm_atomic_helper_crtc_destroy_state(state);
915 
916 	kfree(cstate);
917 }
918 
919 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
920 {
921 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
922 	int ret, rc = 0;
923 
924 	if (!atomic_read(&dpu_crtc->frame_pending)) {
925 		DRM_DEBUG_ATOMIC("no frames pending\n");
926 		return 0;
927 	}
928 
929 	DPU_ATRACE_BEGIN("frame done completion wait");
930 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
931 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
932 	if (!ret) {
933 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
934 		rc = -ETIMEDOUT;
935 	}
936 	DPU_ATRACE_END("frame done completion wait");
937 
938 	return rc;
939 }
940 
941 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
942 {
943 	struct drm_encoder *encoder;
944 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
945 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
946 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
947 
948 	/*
949 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
950 	 * it means we are trying to start a CRTC whose state is disabled:
951 	 * nothing else needs to be done.
952 	 */
953 	if (unlikely(!cstate->num_mixers))
954 		return;
955 
956 	DPU_ATRACE_BEGIN("crtc_commit");
957 
958 	drm_for_each_encoder_mask(encoder, crtc->dev,
959 			crtc->state->encoder_mask) {
960 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
961 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
962 			goto end;
963 		}
964 	}
965 	/*
966 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
967 	 * may delay and flush at an irq event (e.g. ppdone)
968 	 */
969 	drm_for_each_encoder_mask(encoder, crtc->dev,
970 				  crtc->state->encoder_mask)
971 		dpu_encoder_prepare_for_kickoff(encoder);
972 
973 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
974 		/* acquire bandwidth and other resources */
975 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
976 	} else
977 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
978 
979 	dpu_crtc->play_count++;
980 
981 	dpu_vbif_clear_errors(dpu_kms);
982 
983 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
984 		dpu_encoder_kickoff(encoder);
985 
986 	reinit_completion(&dpu_crtc->frame_done_comp);
987 
988 end:
989 	DPU_ATRACE_END("crtc_commit");
990 }
991 
992 static void dpu_crtc_reset(struct drm_crtc *crtc)
993 {
994 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
995 
996 	if (crtc->state)
997 		dpu_crtc_destroy_state(crtc, crtc->state);
998 
999 	if (cstate)
1000 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1001 	else
1002 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1003 }
1004 
1005 /**
1006  * dpu_crtc_duplicate_state - state duplicate hook
1007  * @crtc: Pointer to drm crtc structure
1008  */
1009 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1010 {
1011 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1012 
1013 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1014 	if (!cstate) {
1015 		DPU_ERROR("failed to allocate state\n");
1016 		return NULL;
1017 	}
1018 
1019 	/* duplicate base helper */
1020 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1021 
1022 	return &cstate->base;
1023 }
1024 
1025 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1026 					const struct drm_crtc_state *state)
1027 {
1028 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1029 	int i;
1030 
1031 	for (i = 0; i < cstate->num_mixers; i++) {
1032 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1033 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1034 		if (cstate->mixers[i].hw_dspp)
1035 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1036 	}
1037 }
1038 
1039 static void dpu_crtc_disable(struct drm_crtc *crtc,
1040 			     struct drm_atomic_state *state)
1041 {
1042 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1043 									      crtc);
1044 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1045 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1046 	struct drm_encoder *encoder;
1047 	unsigned long flags;
1048 	bool release_bandwidth = false;
1049 
1050 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1051 
1052 	/* If disable is triggered while in self refresh mode,
1053 	 * reset the encoder software state so that in enable
1054 	 * it won't trigger a warn while assigning crtc.
1055 	 */
1056 	if (old_crtc_state->self_refresh_active) {
1057 		drm_for_each_encoder_mask(encoder, crtc->dev,
1058 					old_crtc_state->encoder_mask) {
1059 			dpu_encoder_assign_crtc(encoder, NULL);
1060 		}
1061 		return;
1062 	}
1063 
1064 	/* Disable/save vblank irq handling */
1065 	drm_crtc_vblank_off(crtc);
1066 
1067 	drm_for_each_encoder_mask(encoder, crtc->dev,
1068 				  old_crtc_state->encoder_mask) {
1069 		/* in video mode, we hold an extra bandwidth reference
1070 		 * as we cannot drop bandwidth at frame-done if any
1071 		 * crtc is being used in video mode.
1072 		 */
1073 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1074 			release_bandwidth = true;
1075 
1076 		/*
1077 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1078 		 * we will need encoder->crtc connection to process the device sleep &
1079 		 * preserve it during psr sequence.
1080 		 */
1081 		if (!crtc->state->self_refresh_active)
1082 			dpu_encoder_assign_crtc(encoder, NULL);
1083 	}
1084 
1085 	/* wait for frame_event_done completion */
1086 	if (_dpu_crtc_wait_for_frame_done(crtc))
1087 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1088 				crtc->base.id,
1089 				atomic_read(&dpu_crtc->frame_pending));
1090 
1091 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1092 	dpu_crtc->enabled = false;
1093 
1094 	if (atomic_read(&dpu_crtc->frame_pending)) {
1095 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1096 				     atomic_read(&dpu_crtc->frame_pending));
1097 		if (release_bandwidth)
1098 			dpu_core_perf_crtc_release_bw(crtc);
1099 		atomic_set(&dpu_crtc->frame_pending, 0);
1100 	}
1101 
1102 	dpu_core_perf_crtc_update(crtc, 0, true);
1103 
1104 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1105 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
1106 
1107 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
1108 	cstate->num_mixers = 0;
1109 
1110 	/* disable clk & bw control until clk & bw properties are set */
1111 	cstate->bw_control = false;
1112 	cstate->bw_split_vote = false;
1113 
1114 	if (crtc->state->event && !crtc->state->active) {
1115 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1116 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1117 		crtc->state->event = NULL;
1118 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1119 	}
1120 
1121 	pm_runtime_put_sync(crtc->dev->dev);
1122 }
1123 
1124 static void dpu_crtc_enable(struct drm_crtc *crtc,
1125 		struct drm_atomic_state *state)
1126 {
1127 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1128 	struct drm_encoder *encoder;
1129 	bool request_bandwidth = false;
1130 	struct drm_crtc_state *old_crtc_state;
1131 
1132 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1133 
1134 	pm_runtime_get_sync(crtc->dev->dev);
1135 
1136 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1137 
1138 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1139 		/* in video mode, we hold an extra bandwidth reference
1140 		 * as we cannot drop bandwidth at frame-done if any
1141 		 * crtc is being used in video mode.
1142 		 */
1143 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1144 			request_bandwidth = true;
1145 		dpu_encoder_register_frame_event_callback(encoder,
1146 				dpu_crtc_frame_event_cb, (void *)crtc);
1147 	}
1148 
1149 	if (request_bandwidth)
1150 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1151 
1152 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1153 	dpu_crtc->enabled = true;
1154 
1155 	if (!old_crtc_state->self_refresh_active) {
1156 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1157 			dpu_encoder_assign_crtc(encoder, crtc);
1158 	}
1159 
1160 	/* Enable/restore vblank irq handling */
1161 	drm_crtc_vblank_on(crtc);
1162 }
1163 
1164 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1165 {
1166 	struct drm_crtc *crtc = cstate->crtc;
1167 	struct drm_encoder *encoder;
1168 
1169 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1170 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1171 			return true;
1172 		}
1173 	}
1174 
1175 	return false;
1176 }
1177 
1178 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1179 		struct drm_atomic_state *state)
1180 {
1181 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1182 									  crtc);
1183 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1184 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1185 
1186 	const struct drm_plane_state *pstate;
1187 	struct drm_plane *plane;
1188 
1189 	int rc = 0;
1190 
1191 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1192 
1193 	if (!crtc_state->enable || !crtc_state->active) {
1194 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1195 				crtc->base.id, crtc_state->enable,
1196 				crtc_state->active);
1197 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1198 		return 0;
1199 	}
1200 
1201 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1202 
1203 	/* force a full mode set if active state changed */
1204 	if (crtc_state->active_changed)
1205 		crtc_state->mode_changed = true;
1206 
1207 	if (cstate->num_mixers)
1208 		_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
1209 
1210 	/* FIXME: move this to dpu_plane_atomic_check? */
1211 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1212 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1213 
1214 		if (IS_ERR_OR_NULL(pstate)) {
1215 			rc = PTR_ERR(pstate);
1216 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1217 					dpu_crtc->name, plane->base.id, rc);
1218 			return rc;
1219 		}
1220 
1221 		if (!pstate->visible)
1222 			continue;
1223 
1224 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1225 	}
1226 
1227 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1228 
1229 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1230 	if (rc) {
1231 		DPU_ERROR("crtc%d failed performance check %d\n",
1232 				crtc->base.id, rc);
1233 		return rc;
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1240 {
1241 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1242 	struct drm_encoder *enc;
1243 
1244 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1245 
1246 	/*
1247 	 * Normally we would iterate through encoder_mask in crtc state to find
1248 	 * attached encoders. In this case, we might be disabling vblank _after_
1249 	 * encoder_mask has been cleared.
1250 	 *
1251 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1252 	 * disable (which is also after encoder_mask is cleared). So instead of
1253 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1254 	 * currently assigned to our crtc.
1255 	 *
1256 	 * Note also that this function cannot be called while crtc is disabled
1257 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1258 	 * about the assigned crtcs being inconsistent with the current state
1259 	 * (which means no need to worry about modeset locks).
1260 	 */
1261 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1262 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1263 					     dpu_crtc);
1264 
1265 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 #ifdef CONFIG_DEBUG_FS
1272 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1273 {
1274 	struct dpu_crtc *dpu_crtc;
1275 	struct dpu_plane_state *pstate = NULL;
1276 	struct dpu_crtc_mixer *m;
1277 
1278 	struct drm_crtc *crtc;
1279 	struct drm_plane *plane;
1280 	struct drm_display_mode *mode;
1281 	struct drm_framebuffer *fb;
1282 	struct drm_plane_state *state;
1283 	struct dpu_crtc_state *cstate;
1284 
1285 	int i, out_width;
1286 
1287 	dpu_crtc = s->private;
1288 	crtc = &dpu_crtc->base;
1289 
1290 	drm_modeset_lock_all(crtc->dev);
1291 	cstate = to_dpu_crtc_state(crtc->state);
1292 
1293 	mode = &crtc->state->adjusted_mode;
1294 	out_width = mode->hdisplay / cstate->num_mixers;
1295 
1296 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1297 				mode->hdisplay, mode->vdisplay);
1298 
1299 	seq_puts(s, "\n");
1300 
1301 	for (i = 0; i < cstate->num_mixers; ++i) {
1302 		m = &cstate->mixers[i];
1303 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1304 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1305 			out_width, mode->vdisplay);
1306 	}
1307 
1308 	seq_puts(s, "\n");
1309 
1310 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1311 		pstate = to_dpu_plane_state(plane->state);
1312 		state = plane->state;
1313 
1314 		if (!pstate || !state)
1315 			continue;
1316 
1317 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1318 			pstate->stage);
1319 
1320 		if (plane->state->fb) {
1321 			fb = plane->state->fb;
1322 
1323 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1324 				fb->base.id, (char *) &fb->format->format,
1325 				fb->width, fb->height);
1326 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1327 				seq_printf(s, "cpp[%d]:%u ",
1328 						i, fb->format->cpp[i]);
1329 			seq_puts(s, "\n\t");
1330 
1331 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1332 			seq_puts(s, "\n");
1333 
1334 			seq_puts(s, "\t");
1335 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1336 				seq_printf(s, "pitches[%d]:%8u ", i,
1337 							fb->pitches[i]);
1338 			seq_puts(s, "\n");
1339 
1340 			seq_puts(s, "\t");
1341 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1342 				seq_printf(s, "offsets[%d]:%8u ", i,
1343 							fb->offsets[i]);
1344 			seq_puts(s, "\n");
1345 		}
1346 
1347 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1348 			state->src_x, state->src_y, state->src_w, state->src_h);
1349 
1350 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1351 			state->crtc_x, state->crtc_y, state->crtc_w,
1352 			state->crtc_h);
1353 		seq_printf(s, "\tsspp[0]:%s\n",
1354 			   pstate->pipe.sspp->cap->name);
1355 		seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1356 			pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1357 		if (pstate->r_pipe.sspp) {
1358 			seq_printf(s, "\tsspp[1]:%s\n",
1359 				   pstate->r_pipe.sspp->cap->name);
1360 			seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1361 				   pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1362 		}
1363 
1364 		seq_puts(s, "\n");
1365 	}
1366 	if (dpu_crtc->vblank_cb_count) {
1367 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1368 		s64 diff_ms = ktime_to_ms(diff);
1369 		s64 fps = diff_ms ? div_s64(
1370 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1371 
1372 		seq_printf(s,
1373 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1374 				fps, dpu_crtc->vblank_cb_count,
1375 				ktime_to_ms(diff), dpu_crtc->play_count);
1376 
1377 		/* reset time & count for next measurement */
1378 		dpu_crtc->vblank_cb_count = 0;
1379 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1380 	}
1381 
1382 	drm_modeset_unlock_all(crtc->dev);
1383 
1384 	return 0;
1385 }
1386 
1387 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1388 
1389 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1390 {
1391 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1392 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1393 
1394 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1395 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1396 	seq_printf(s, "core_clk_rate: %llu\n",
1397 			dpu_crtc->cur_perf.core_clk_rate);
1398 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1399 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1400 				dpu_crtc->cur_perf.max_per_pipe_ib);
1401 
1402 	return 0;
1403 }
1404 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1405 
1406 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1407 {
1408 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1409 
1410 	debugfs_create_file("status", 0400,
1411 			crtc->debugfs_entry,
1412 			dpu_crtc, &_dpu_debugfs_status_fops);
1413 	debugfs_create_file("state", 0600,
1414 			crtc->debugfs_entry,
1415 			&dpu_crtc->base,
1416 			&dpu_crtc_debugfs_state_fops);
1417 
1418 	return 0;
1419 }
1420 #else
1421 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1422 {
1423 	return 0;
1424 }
1425 #endif /* CONFIG_DEBUG_FS */
1426 
1427 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1428 {
1429 	return _dpu_crtc_init_debugfs(crtc);
1430 }
1431 
1432 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1433 	.set_config = drm_atomic_helper_set_config,
1434 	.destroy = dpu_crtc_destroy,
1435 	.page_flip = drm_atomic_helper_page_flip,
1436 	.reset = dpu_crtc_reset,
1437 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1438 	.atomic_destroy_state = dpu_crtc_destroy_state,
1439 	.atomic_print_state = dpu_crtc_atomic_print_state,
1440 	.late_register = dpu_crtc_late_register,
1441 	.verify_crc_source = dpu_crtc_verify_crc_source,
1442 	.set_crc_source = dpu_crtc_set_crc_source,
1443 	.enable_vblank  = msm_crtc_enable_vblank,
1444 	.disable_vblank = msm_crtc_disable_vblank,
1445 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1446 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1447 };
1448 
1449 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1450 	.atomic_disable = dpu_crtc_disable,
1451 	.atomic_enable = dpu_crtc_enable,
1452 	.atomic_check = dpu_crtc_atomic_check,
1453 	.atomic_begin = dpu_crtc_atomic_begin,
1454 	.atomic_flush = dpu_crtc_atomic_flush,
1455 	.get_scanout_position = dpu_crtc_get_scanout_position,
1456 };
1457 
1458 /* initialize crtc */
1459 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1460 				struct drm_plane *cursor)
1461 {
1462 	struct drm_crtc *crtc = NULL;
1463 	struct dpu_crtc *dpu_crtc = NULL;
1464 	int i, ret;
1465 
1466 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1467 	if (!dpu_crtc)
1468 		return ERR_PTR(-ENOMEM);
1469 
1470 	crtc = &dpu_crtc->base;
1471 	crtc->dev = dev;
1472 
1473 	spin_lock_init(&dpu_crtc->spin_lock);
1474 	atomic_set(&dpu_crtc->frame_pending, 0);
1475 
1476 	init_completion(&dpu_crtc->frame_done_comp);
1477 
1478 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1479 
1480 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1481 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1482 		list_add(&dpu_crtc->frame_events[i].list,
1483 				&dpu_crtc->frame_event_list);
1484 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1485 				dpu_crtc_frame_event_work);
1486 	}
1487 
1488 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1489 				NULL);
1490 
1491 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1492 
1493 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1494 
1495 	/* save user friendly CRTC name for later */
1496 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1497 
1498 	/* initialize event handling */
1499 	spin_lock_init(&dpu_crtc->event_lock);
1500 
1501 	ret = drm_self_refresh_helper_init(crtc);
1502 	if (ret) {
1503 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1504 			crtc->name, ret);
1505 		return ERR_PTR(ret);
1506 	}
1507 
1508 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1509 	return crtc;
1510 }
1511